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Abstract
The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how 
the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, 
subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by 
placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the 
positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply 
the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to com-
pute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. 
We show how our first order method improves mapping accuracy in both simulated and real neuron traces under random 
diffeomorphisms. Our method is freely available in our open-source Python package brainlit.
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Main

The brain functions as a network of chemical and electri-
cal activity, so identifying how neurons connect across brain 
regions is central to understanding how the brain works, and 
how to treat brain diseases. Modern neuroscience techniques 
can image single neuron morphology at scale (Economo et al., 

2016), and subsequent neuron tracing can help discover new 
morphological subtypes (Winnubst et al., 2019). Due to ana-
tomical variation, and deformations that may have occurred dur-
ing tissue preparation, neuron traces need to be mapped between 
coordinate spaces to compare morphologies from different brain 
samples. Brain registration software often includes neuron map-
ping implementations, but these implementations have not been 
thoroughly characterized from a numerical analysis perspective.

This question is relevant to the ongoing work of the 
international neuroscience community, including the 
Brain Initiative Cell Census Network (BICCN), to estab-
lish comprehensive neuronal atlases of the mammalian 
brain (BRAIN Initiative Cell Census Network, 2021). This 
effort has produced many images of stained or fluorescently 
labeled brains, which are being used to identify whole-brain 
connectivity patterns. Sometimes this data is analyzed with 
density-based methods to measure connectivity between 
brain regions (Watakabe et al., 2023; Athey et al., 2023). 
In other cases, when individual neurons can be resolved, 
it is possible to generate digital neuron traces for morpho-
logical analysis (Skibbe et al., 2018; Athey et al., 2022). 
This paper focuses on neuron traces, which are commonly 
stored as a set of connected 3D coordinates, or knots, such 
as in the SWC format (Stockley et al., 1993; Cannon et al., 
1998). The connections between the knots are classically 
represented as cylinders (Cannon et al., 1998), or conical 
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frustums (O’Halloran, 2020), but here we ignore radius 
information, since it is not generated by all neuron tracing 
methods. Consequently, the whole neuron trace is consid-
ered to be a tree of piecewise linear curves.

In order to assemble these traces into a complete picture 
of the various neuron morphologies in the brain, scientists 
need a way to map neuron traces into common coordinate 
systems. Several popular software applications exist for 
this task and are used to assemble atlases of neuron mor-
phology. For example, Peng et al. (2021) used mBrain-
Aligner (Qu et al., 2022), Gao et al. (2022) used the Com-
putational Morphometry Toolkit, and the MouseLight 
project (Winnubst et al., 2019) used displacement fields 
from Fedorov et al. (2012). Existing methods use what we 
call zeroth order curve mapping in that they only map the 
positions of the knots (also known as trace points). How-
ever, depending on the nonlinearity of the mapping, and 
the continuous representation of the neuron trace, zeroth 
order mapping is sensitive to different samplings of the 
original neuronal curve (Fig. 1a,b). In other words, sam-
pling the same curve different ways while tracing in the 
original image may lead to different mapped morphologies. 
It is critical that neuron mapping methods preserve the 

geometry of digital neuron traces in order to build reliable 
atlases of neuron morphology, and to accurately identify 
deviations in diseased brains.

In this work, we introduce a method to preserve derivative 
information when mapping neuronal curves, and investigate 
the conditions under which this technique is advantageous to 
existing methods (Figure 1). We applied our method to both 
simulated data and real neuron traces from a whole mouse 
brain image, and the code used developed in this work is 
freely available in our Python package brainlit.

Results

Action of Diffeomorphisms on Discrete Samplings

In the following sections, we use Ck to represent the space of 
continuous functions with k continuous derivatives, where 
the domain and range can be inferred by the context. We 
model a neuronal branch (dendrite or axon) as a regular 3D 
curve c ∶ [0, L] → ℝ

3 , c ∈ Ck , and |ċ| > 0 , where L, without 
loss of generality, is the arc length of the curve (Younes, 
2010). When a neuronal curve is traced, it is typically stored 

Fig. 1  Neglecting the action of a nonlinear mapping on a curve’s 
derivatives can introduce errors. a-b Different samplings of a curve 
can lead to different results under nonlinear deformations, such as 
only sampling the endpoints (a) versus sampling several times along 
the curve (b). c-d Large distances between trace points can contribute 
to mapping inaccuracies. The green line segment following cortical 
layers 2/3 in a synthetic mouse brain image (c) is defined only by its 

endpoints. Transforming only the positions of the endpoints (zeroth 
order mapping, d), is less accurate than incorporating the action 
on the derivatives as well (first order mapping, d). e-f Quantitative 
descriptions of the mapping from target to atlas via the logarithm of 
the Jacobian determinant, which quantifies expansion and compres-
sion (e), and the spectral norm of the displacement field, which plays 
a role in an error bound of zeroth order mapping (f)
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as a sequence of points {xi = c(ti) ∶ ti < ti+1}
n
i=1

 , where the 
independent variables ti can be taken to be the indices of 
the points. When there is a diffeomorphism between coor-
dinate systems � ∶ ℝ

3
→ ℝ

3 , these traces are mapped via 
the group action:

We want to extend the space of traces, and the associ-
ated action, to include derivatives of the underlying curve 
denoted �tc . This can be done using the jet space Jk . In our 
setting, Jk = [0, L] × X(k) , where an element of X(k) is a k + 1-
tuple (x0, x1, ..., xk) ∈ (ℝ3)k+1 representing a position and first 
k derivatives of a curve in ℝ3 . A Ck curve c ∶ [0, L] → ℝ

3 
can be extended to a curve ĉ ∶ [0, L] → X(k) simply by add-
ing derivatives, with ĉ(t) = (c(t), 𝜕tc(t),… , 𝜕k

t
c(t)) ∈ X(k) 

(Olver, 1995).
The Ck diffeomorphisms have a natural group action on 

the jet space Jk , ensuring the commutation between the 
standard action of diffeomorphisms on curves, (�, c) ↦ �◦c 
and their extensions, such that the identity 𝜙 ⋅ ĉ(t) = �𝜙◦c(t) 
holds for all curves c and times t, defining the left-hand 
side. For example, for k = 2 , this provides

Neuron traces, as mentioned before, involve a sequence 
of samples with time-stamps {(ti, x

(k)

i
)}n

i=1
 , identified as ele-

ments of (Jk)n , the n-fold Cartesian product of Jk . Our 
diffeomorphisms will act on such a sequence as follows:

Statement 1 For a sequence of time-stamped elements on 
the jet space, T = {(ti, x

(k)

i
)}n

i=1
 in (Jk)n , we define the action 

of diffeomorphisms

The fact that this operation provides an action is an 
established result (Olver, 1995), and the proof is provided 
in the Supplement. We will define k’th order discrete map-
ping to be the action in Eq. 1 of a diffeomorphism on a 
curve sampling that includes k derivatives. The axioms 
that define group actions are important to verify because 
they ensure that applying the identity transformation does 
not change the object, and that applying a composition of 
transformations is equivalent to applying the individual 
transformations successively. Further, group actions can 
exchange mathematical structure between the acting group 
and the set being acted upon, and they are at the core of 
several important theorems (Suksumran, 2016).

The k’th order discrete mapping method allows us to 
compute the first k derivatives of the transformed curve. 
We will interpolate the transformed curve using splines of 
order 2k + 1 that satisfy the derivative values. For example, 

� ⋅ {xi}
n
i=1

= {�(xi)}
n
i=1

� ⋅ (t, x0, x1, x2) = (t,�(x0),D�(x0)x1,D�(x0)x2 + D2�(x0)(x1, x1))

(1)� ⋅ T = {(ti,� ⋅ x
(k)

i
)}n

i=1

zeroth order mapping will produce a first order spline and 
first order mapping will produce a cubic Hermite spline 
(Spitzbart, 1960).

Error Analysis of Zeroth and First Order Mapping

Now we will examine the error introduced by zeroth order 
mapping, which is used by existing neuron mapping meth-
ods. First, note that under affine transformations, zeroth 
order mapping of piecewise linear curves introduce no error, 
so these results are only useful under non-affine transfor-
mations. The following results require that the curve c be 
parameterized by arc length. However, we note that all con-
tinuously differentiable regular curves can be reparameter-
ized by arc length (Smale, 1958). We use | ⋅ | to denote the 
Euclidean norm for elements of ℝd , and the spectral norm 
for matrices.

Proposition 1 [Zeroth Order Mapping Error Bound] Say 
� ∶ ℝ

3
→ ℝ

3 is a C1 diffeomorphism and c ∶ [0, L] → ℝ
3 

is a continuous, piecewise linear curve parameterized by 
arc length with knots {ti ∶ t1 = 0, tn = L, ti−1 < ti}

n
i=1

 . For 
the transformed curve f = � ◦ c , the zeroth order mapping 
defines a first order spline g which satisfies:

where �i ≜ c(ti) − �(c(ti)) and D� ◦ c(t) is the Jacobian of � 
evaluated at c(t).

This shows how the error introduced by the state of the art 
mapping method is related to the displacement magnitude, � , 
and the extent to which the Jacobian of the transformation, 
D� , differs from the identity matrix. Note that the bound in 
Eq. 2 goes to zero as � approaches the identity map (in which 
case zeroth order mapping has zero error for piecewise linear 
curves). It depends on the arc lengths of the original curve 
segments and the spectral norm of D� , which is related to 
the finite time Lyapunov exponent ( log |D�| ), a well-known 
quantity in field dynamics which characterizes the amount of 
stretching in a differentiable flow. Also, the bound applies to 
maxt∈[0,L] |f (t) − g(t)| , which is not parameterization invari-
ant, and therefore not a strictly geometric quantity. However 
we note that this quantity is an upper bound of the Frechet 
distance, which is parameterization invariant.

In this paper we demonstrate first order mapping in an 
effort to mitigate this mapping error. Such a method has the 
advantage of having superior error convergence at the knots 
as a consequence of Taylor’s theorem. Further, we present a  
set of error bounds that helps clarify the advantage of first 
order mapping.

(2)
max
t∈[0,L]

|f (t) − g(t)| ≤ max
i∈{0,...,n},t∈[ti−1 ,ti]

1

2

(
|D� ◦ c(t) − I||ti − ti−1| + |�i − �i−1|

)
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Proposition 2 [Comparable Bounds for Zeroth and First Order 
Mapping] Say � ∶ ℝ

3
→ ℝ

3 is a C4 diffeomorphism and 
c ∶ [a, b] → ℝ

3 is a continuous, piecewise C4 curve param-
eterized with knots {ti ∶ t1 = a, tn = b, ti−1 < ti}

n
i=1

 . For the 
transformed curve f = �◦c defined by coordinate functions 
f = (f 0, f 1, f 2)T , the zeroth order mapping defines a first 
order spline g0 which satisfies:

where � ≜ max2≤i≤n |ti − ti−1| and �(k)t f j(t) is the k’th deriva-
tive of f j evaluated at t. Also, the first order mapping defines 
a third order spline g1 , which satisfies

and we note that the bound in (4) is tighter than the bound 
in (3). Further, there exists a transformed curve f and a set 
of knots {ti}ni=1 that achieves both bounds exactly.

Thus, we have made a connection between the state of the 
art (zeroth order mapping) and a higher order method (first 
order mapping) via worst-case bounds on mapping error. 
The error bound for first order mapping is smaller than that 
for zeroth order mapping, though for any given curve, either 
method may produce smaller error than the other. Proofs for 
the propositions are in the supplement.

Software Implementation

We implemented both zeroth and first order discrete map-
ping in our our open-source Python package brainlit. For 
first order mapping, we compute one-sided derivatives at the 
knots of the curve from first order splines in accordance with 
original SWC formulation (Stockley et al., 1993; Cannon 
et al., 1998). Then, once the knot positions and derivatives 
are transformed, we generate a continuous curve in the new 
space using Hermite interpolation. Further details of our 
implementation can be found in the Methods.

First order mapping involves more computations than 
zeroth order mapping. First, if the Jacobian of the trans-
formation, D� , is not immediately available, it needs to be 
approximated. Our software uses a finite difference method 
which, to approximate D�(x) , involves calling � four times, 
three vector addition operations, and three vector scaling 

(3)

max
t∈[a,b]

�f (t) − g0(t)� ≤
√
3

4
max

t∈[a,b],j∈{0,1,2}
��(4)t f j(t)�

�
�

2

�4

+

√
3

2

�
�

2

�2

max
i∈{1...n},j∈{0,1,2}

��(3)t f j(ti)�
�
�

2

�
+

√
3

2

�
�

2

�2

max
i∈{1...n},j∈{0,1,2}

��(2)t f j(ti)�

(4)max
t∈[a,b]

�f (t) − g1(t)� ≤
√
3

4!
max

t∈[a,b],j∈{0,1,2}
��(4)t f j(t)�

�
�

2

�4

operations. Next, the derivatives at the knots need to be 
approximated and transformed by D� . For each line seg-
ment, our method computes one vector addition and one 
vector scaling to approximate one-sided derivatives, and 
computes two matrix-vector products to transform the deriv-
atives (Algorithm 3). Lastly, generating and evaluating cubic 
splines involves more computations than first-order splines 
(Kincaid & Cheney, 2002). Despite these differences, first 
order mapping still scales linearly with the number of trace 
nodes, and the number of computations differs from zeroth 
order mapping by a constant factor of computations. In prac-
tice, both zeroth order and first order mapping take on the 
order of seconds for traces with thousands of nodes, which 
should not be a bottleneck in neuron morphology studies.

Figure 2 shows examples of our method on simulated 
data, compared to the zeroth order method, and the “ground 
truth” where we map a dense sampling of points along the 
first order spline of the original curve.

Application to Real Neurons

We applied our method to 20 reconstructed neurons in SWC 
format from a whole mouse brain image from the Janelia 
MouseLight project (Winnubst et al., 2019). We selected 
the first 20 SWC files that successfully downloaded from 
MouseLight’s NeuronBrowser repository and did not have 
repeat trace nodes. Neurons have a tree-like structure, and 
we split them into non-branching curves in order to apply 
our mapping methods. We follow a method introduced pre-
viously (Athey et al., 2021) where the root to leaf path with 
the longest arc length is recursively removed until the tree 
is reduced to non-bifurcating “branches”. The transformed 
branches are then reconnected to maintain the topology of the 
original trace, and therefore our methods generalize naturally 
from 3D curves, to the branching structure of neuron traces.

We generate random transformations using the Large 
Deformation Diffeomorphic Metric Mapping (LDDMM) 
framework described in Miller et al. and applied in Tward 
and Miller (Miller et al., 2006; Tward & Miller, 2017). We 
generate an initial momentum field by sampling Gaussian 
noise with zero mean and varying standard deviation, � . 
The momentum is smoothed to construct a velocity field, 
and integrated in time according to the conservation laws 
established in Miller et al. to generate a diffeomorphic trans-
formation (Miller et al., 2006). We generated four diffeo-
morphisms with � levels of 80 , 160 , 320 and 640 �m∕time . 
The position and tangent displacement profiles of these four 
diffeomorphisms are shown in Figure 3a. We centered the 
neuron traces at the origin then applied the random diffeo-
morphisms to compare zeroth and first order mapping to 
ground truth (Fig. 3b-g). Ground truth was generated by 
upsampling the original traces to a maximum node spacing 
of 2�m followed by zeroth order mapping.
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For each neuron trace, we computed the discrete Fre-
chet error from ground truth (Fig. 4a). We also wanted to 
measure which mapping method better matched the ground 
truth with respect to a neuron’s distribution of common 
morphometric quantities, such as path angle, branch angle, 
tortuosity, and segment length. We used the Kolmogorov-
Smirnov test statistic to measure how much the distribution 
of these quantities differed from ground truth (Fig. 4b). We 
performed two-sided Wilcoxon signed-rank tests for each 
comparison and used a Bonferroni correction across the dif-
ferent � values (Fig. 4b). Lastly, we compared the discrete 

Frechet errors to the average sampling period of the trace i.e. 
the average distance between trace nodes (Fig. 4c).

To explore the effect of downsampling neuron traces on 
mapped morphologies, we identified non-branching nodes 
in straight portions of the trace, and measured the impact of 
removing those nodes from the trace. Specifically, we per-
formed both zeroth and first order mapping on the segment 
with the node removed, and compared it to the ground truth 
mapping of the original segment. We determined which frac-
tion of nodes maintained a discrete Frechet error less than 
one micron, serving as an estimate for the fraction of nodes 

Fig. 2  Preserving derivative information can mitigate errors when 
transforming discretized curves. a-b Applying a nonlinear deforma-
tion field to a single line segment (a) using zeroth and first order map-
ping (b). c-d Applying a nonlinear deformation field to a piecewise 

linear curve (c) using zeroth and first order mapping (d). Zeroth and 
first order discrete mapping methods are shown relative to ground 
truth considered to be the application of the vector field to a dense 
sampling of the original curves
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which are not necessary to maintain the mapped morphology 
(Fig. 5c). We performed two-sided Wilcoxon signed-rank 
tests to compare zeroth and first order methods and used a 
Bonferroni correction across the different values of �.

Discussion

In this paper we examine the “naive” approach to mapping 
discretely sampled one-dimensional structures by simply 
transforming the positions of the knots, i.e. mapping line 
segments to line segments. We show that this method can 

be inaccurate when the Jacobian of the transformation 
is non-constant. We describe how to preserve derivative 
information which will lead to more accurate mappings in 
neighborhoods of the knots. We offer an implementation of 
a first-order mapping technique which, empirically, is more 
accurate on discretely sampled differentiable curves. Our 
mathematical framework is described in terms of 3D curves, 
but we also show how our method can handle branching. We 
apply our method to real neuron reconstructions and show 
that it more accurately matches ground truth in both frechet 
error, and a variety of morphometric quantities.

Fig. 3  Application of zeroth and first order mapping of neuron traces 
under diffeomorphisms derived from random Gaussian initial momenta. 
a Different values of � produced diffeomorphisms with different posi-
tion and tangent vector displacement profiles. The positions and tangent 
vectors sampled in the histogram were distributed as a uniform grid with 
a spacing of 500�m . b-g Two examples of the diffeomorphism with 

� = 640 applied to neuron traces to produce zeroth and first order map-
pings, along with ground truth. Both examples show the original trace 
and the transformation (b, e), the results of the different transformation 
methods (c, f), and a zoomed in view of the region outlined by the dot-
ted line to show discrepancies between the methods (d, g). Plot axes are 
in units of microns
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In our experiment with real neuron reconstructions, it 
is important to note what we are considering ground truth. 
Since the original reconstructions are in SWC format, only 
the knot positions are known, and the neurons are typically 
represented as piecewise linear structures. Real neuron mor-
phologies are not piecewise linear, and instead are continu-
ously curving as they pass through dense brain tissue. None-
theless, because we have no further information about the 
neuron trajectories, we consider the original reconstructions 
to be piecewise linear, and generate the ground truth map-
pings by transforming the straight lines between the knots.

The transformations in our experiments were generated 
by “shooting” a random initial momenta field (Miller et al., 
2006). In neuromorphology studies, transformations are 
typically generated via image registration to an atlas for 
which several approaches exist (Toga & Thompson, 2001; 
Chandrashekhar et al., 2021). This work is only relevant 
to non-affine registration techniques since affine transfor-
mations preserve straight lines. The utility of higher order 
mapping depends on the extent to which the brain sample 
is deformed nonlinearly. In practice, investigators can look 
at the profiles of position and tangent vector displacements 

to identify which regime ( � level) is most similar to their 
transformation (Fig. 3a). At low values of � , Frechet error of 
both zeroth and first order methods are in the range of 1 − 10 
microns (Fig. 3c), which is likely negligble for mesoscale 
neuromorphology. However, under more extreme transfor-
mations, the first order mapping offers a more significant 
improvement in both Frechet error and distributions of mor-
phometric quantities (Fig. 3c, d).

As mentioned previously, existing mapping methods use 
zeroth order mapping. Investigators can use the error bound in 
Eq. 2 to determine whether zeroth order mapping is adequate. 
If Jacobian and displacement values of the transformation at 
hand are not easily accessible, our empirical results can offer 
guidance. For example, we found that under less extreme 
transformations ( � = 80, 160 ), the frechet errors remained 
below ten microns for both zeroth and first order methods. 
However, as transformations got more extreme, it became 
more important to either keep the sampling period small, or 
to use first order mapping. Specifically, if the sampling period 
was less than ten microns, then both zeroth and first order 
mapping had low error. For higher sampling periods, first 
order mapping offered more significant improvements.

Fig. 4  Comparison of zeroth and first order mapping of neuron 
traces under random diffeomorphisms. a Discrete Frechet error was 
computed between the different order mappings, and ground truth. 
b Distributions of common morphometric quantities were compared 
to that of ground truth using the Kolmogorov-Smirnov test statis-
tic. Differences between zeroth and first order methods were tested 
using Wilcoxon signed-rank test with Bonferroni correction across 

different values of � ( ∗∶ p ≤ 0.05 , ∗∗∶ p ≤ 0.01 , ∗∗∗∶ p ≤ 0.001 , 
∗∗∗∗ p ≤ 0.0001 ). Box plots show median, upper and lower quartiles 
and whiskers have a maximum length of 1.5x the interquartile range 
with other outlier data marked with points. c Relationship between 
discrete Frechet error and average sampling period (distance between 
trace points) under the random diffeomorphisms
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Conversely our results can be used to make manual 
tracing more efficient. If the registration transformation, 
� , is know a priori, and there are stretches where a neu-
ronal branch is straight, then it is possible to compute the 
minimum sampling rate while still controlling the amount 
of error introduced during mapping to atlas coordinates. 

The neuron trace files examined here are at most a couple 
megabytes, so this approach is not likely produce signifi-
cant data storage gains. However, it could allow manual 
tracers to sample more sparsely along straight stretches of 
axons, possibly leading to faster reconstruction. As a pre-
liminary experiment, we computed the fraction of nodes 

Fig. 5  Counting how many nodes in MouseLight neuron traces can 
be removed without affecting the mapped morphology. a For each 
non-branching node with path angle above 170 degrees, we gener-
ated a line segment with that node removed. b We performed first 
order mapping on the downsampled line segment and compared the 
result with the ground truth mapping of the original curve. c For each 
mapped neuron trace, we determined the fraction of nodes where 

the discrete Frechet error is less than or equal to one micron under 
the four random diffeomorphisms. Box plots show median, upper 
and lower quartiles and whiskers have a maximum length of 1.5x 
the interquartile range with other outlier data marked with points. 
We performed Wilcoxon signed-rank test between the paired neuron 
traces at � = 0.05 with Bonferroni correction across different values 
of � ( ∗∶ p ≤ 0.05 , ∗∗∗∶ p ≤ 10−3)
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which could be removed, while maintaining a submicron 
error after first order mapping (Fig. 5). On average, around 
5% of nodes achieved submicron error for both zeroth and 
first order mapping. This fraction decreased with larger 
sigma, indicating the importance of a higher sampling rate 
under more extreme transformations. First order mapping 
led to a statistically significant increase in the fraction of 
nodes with submicron error for � = 160, 320, 640 , though 
this increase was small. It is important to note that since 
each node was examined individually, it is not necessarily 
the case that removing all the nodes together would main-
tain submicron error. In the worst case, if all the nodes were 
located consecutively along the trace, only every other node 
could be removed to maintain submicron error. Further, it 
is unknown whether skipping the nodes identified in our 
experiment would have saved time in the MouseLight trac-
ing protocol. A proper experiment to test this hypothesis 
would involve both registration and neuron reconstruction 
in real whole-brain images and thus is reserved as a poten-
tial avenue of future study. However, given that manual 
tracing remains a bottleneck and requires several person-
hours per neuron (Winnubst et al., 2019), making tracing 
process just a couple percentage points faster would tangi-
bly accelerate neuromorphological experiments.

It may be tempting to use our “ground-truth” map-
ping method, i.e. upsampling a linear interpolation then 
performing zeroth order mapping, as a neuron mapping 
method. While this may be appropriate in some settings, 
this approach has two primary disadvantages. First, as stated 
before, neurons are not piecewise linear structures so, while 
the knot positions can be generally regarded as lying on 
the neuron, the linear interpolation cannot. Therefore, it 
would be necessary to keep track of which knots are from 
the original trace, and which knots are from the upsampling 
in order to preserve the original trace information. This 
would require existing file formats to expand their metadata 
conventions. Secondly, for large traces, the upsampled data 
could become computationally cumbersome to store.

We want to highlight work in the adjacent field of neuron 
reconstruction where algorithms such as Li et al. (2020) can 
convert reconstruction knots into dense image segmenta-
tions which capture neuron trajectories at finer resolutions. 
Algorithms to automatically trace images of single neurons 
have been under development for decades (Peng et al., 2015; 
Athey et al., 2022). They could be adapted to generate both 
denser neuron samplings, and more accurate derivative esti-
mates at the sampled points. These methods could improve 
both zeroth and first order mapping methods, so weighing 
these effects alongside the accuracy required for the given 
scientific goal would help determine which mapping method 
is appropriate.

Numerical error in mapping 3D curves, the subject of 
this paper, is only one source of error in neuron reconstruc-
tion studies. Error can also be introduced during the neuron 
tracing process. However, tracing errors generally come in 
the form of missing branches, or fusing two unconnected 
branches, rather than incorrect placement of trace points 
(Winnubst et al., 2019). Indeed, many tracing workflows 
involve semi-automated tools that “snap” the trace points to 
the fluorescent signal, and therefore tracing error of point 
placement can be assumed to be roughly equal to the resolu-
tion of the image. In the case of the MouseLight project, this 
was 0.3 × 0.3 × 1�m3 , less than the mapping errors in our 
experiments. A more likely location of trace error is between 
trace points, if the neuron does not follow a straight path 
between trace paths. However, in well-designed experiments, 
neuron tracers are trained to place enough trace points to 
closely follow the neuron’s trajectory. If a neuron’s morphol-
ogy includes sharp turns which deviate several microns from 
the trace, then tracing error may dominate mapping error.

Neuron traces are not the only 3D curves being mapped in 
neuroscience. Tractographic data in diffusion MRI involves 
similar data structures and mapping algorithms, so we 
believe the relevance of our work extends beyond neuron 
tracing studies in mice (Tournier et al., 2019). We believe 
this work could also be extended to other geometric objects 

Algorithm 1  Ground Truth Mapping
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other than branching curves, such as closed networks of 
curves, or surfaces.

As brain mapping efforts expand to include other spe-
cies, such as non-human primates, we believe it will remain 
important to design algorithms that mitigate numerical error 
when handling digital neuron traces. Non-human primate 
brains are orders of magnitudes larger than those in mice, 
and also have shown more inter-individual variability, pre-
senting new challenges for brain mapping (Ose et al., 2022).

Methods

Software Implementation

Our mapping framework was described in terms of non-
branching curves in 3D, but can be naturally extended to 
neuron traces that have tree-like topology, i.e. have branch-
ing, but no loops. We decompose a branching trace into 
“branches” by recursively removing the root to leaf path with 
the longest arc length (Athey et al., 2021). The trace points 

where branching occurs are copied into each of their associ-
ated branches e.g. the trace point of at a bifurcation will be 
part of two neuron branches. Thus, the tree-like graph of 
trace points is decomposed into non-branching subgraphs.

Each branch is considered to be a first order spline, i.e. 
the curve is piecewise linear. In this representation, map-
ping a neuron branch can be decomposed into mapping a 
collection of line segments that connect consecutive trace 
points, xi = c(ti), xi+1 = c(ti+1) . Algorithm 1 illustrates our 
process for generating ground truth, where we linearly 
interpolate the line segment every 2 microns, then apply � 
to each coordinate. Algorithm 2 illustrates the zeroth order 
mapping method, where we apply � to the endpoints of the 
line segment, then perform linear interpolation. Algo-
rithm 3 illustrates our first order mapping method, where 
xi+1−xi

|xi+1−xi|
 is the (one-sided) derivative at each endpoint, then 

we use � to map the endpoint positions, and D� to map the 
endpoint derivatives. The mapped positions and derivatives 
are used to define a cubic Hermite spline (Kincaid & 
Cheney, 2002). Specifically, we use the SciPy implementa-
tion of cubic Hermite splines (Virtanen et al., 2020).

Algorithm 2  Zeroth Order Mapping

Algorithm 3  First Order Mapping
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After mapping is applied to each branch, the branches 
are re-connected by matching and “fusing” the trace 
points that were copied into multiple branches. This way, 
the topology of the original branching trace is preserved. 
Figure 3b-g depicts two examples of branching neuron 
traces which were transformed with both zeroth and first 
order mapping. The mapped morphologies are written to 
SWC format. 

Quantitatively Comparing Curves

We define the Frechet distance between neuron traces to be 
the maximal Frechet distance between matched branches. 
Since we are comparing different mappings of the same 
neuron, matching branches to each other is trivial. We used 
the package from Jekel et al. to compute discrete frechet 
distance (Jekel et al., 2019). Discrete Frechet distance is an 
approximation of, and upper bound to Frechet distance (Eiter 
& Mannila, 1994). We used nGauge to load the transformed 
SWC files and compute morphometric quantities. We used 
SciPy to perform Kolmogorov-Smirnov statistics (Walker 
et al., 2022; Virtanen et al., 2020).

Further details about our implementation can be found 
in our open-source Python package brainlit: http:// brain lit. 
neuro data. io/.

Information Sharing Statement
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