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relationships, which can be analysed using methods from 
graph theory. This analysis can generate rich set of features 
useful for characterising the structure and dynamics of the 
time-series data (Sannino et al., 2017; Varley & Sporns, 
2022). One key advantage of VG analysis is its ability to han-
dle nonlinear and nonstationary time-series data (Sannino et 

Introduction

A time series can be mapped into a network by linking sig-
nal visibility at each timepoint with respect to other time-
points, an approach known as visibility graphs (VG) (Lacasa 
et al., 2008). A VG network captures intra-time-series 
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Abstract
Visibility graphs provide a novel approach for analysing time-series data. Graph theoretical analysis of visibility graphs 
can provide new features for data mining applications in fMRI. However, visibility graphs features have not been used 
widely in the field of neuroscience. This is likely due to a lack of understanding of their robustness in the presence of noise 
(e.g., motion) and their test-retest reliability. In this study, we investigated visibility graph properties of fMRI data in the 
human connectome project (N = 1010) and tested their sensitivity to motion and test-retest reliability. We also characterised 
the strength of connectivity obtained using degree synchrony of visibility graphs. We found that strong correlation (r > 0.5) 
between visibility graph properties, such as the number of communities and average degrees, and motion in the fMRI data. 
The test-retest reliability (Intraclass correlation coefficient (ICC)) of graph theoretical features was high for the average 
degrees (0.74, 95% CI = [0.73, 0.75]), and moderate for clustering coefficient (0.43, 95% CI = [0.41, 0.44]) and average 
path length (0.41, 95% CI = [0.38, 0.44]). Functional connectivity between brain regions was measured by correlating 
the visibility graph degrees. However, the strength of correlation was found to be moderate to low (r < 0.35). These find-
ings suggest that even small movement in fMRI data can strongly influence robustness and reliability of visibility graph 
features, thus, requiring robust motion correction strategies prior to data analysis. Further studies are necessary for better 
understanding of the potential application of visibility graph features in fMRI.
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al., 2017; Varley & Sporns, 2022). Studies have shown that 
VG inherits properties of the corresponding time-series into 
its topological structure. VG properties of periodic time-
series are also useful for capturing information hidden in 
multivariate, non-stationary, and noisy datasets (Sannino et 
al., 2017; Stephen et al., 2015), which can be employed for 
event detection, classification, temporal community detec-
tion, and data mining applications in neuronal time-series 
data (Supriya et al., 2021; Tang et al., 2013; Zhang et al., 
2022; Zhu et al., 2014a).

The use of VG-based analysis of neuronal signal data as 
networks is still in its infancy, with most of studies focusing 
on univariate analysis of EEG time series. One of the first 
applications of VG analysis to EEG data was for classifying 
sleep stages using a single channel EEG signal (Zhu et al., 
2014a), whereby topological features of epoch-by-epoch 
VG networks were employed for the classification of EEG 
segments into different sleep stages. Network features, such 
as edge strength, have also been found to be useful for clas-
sifying sleep states (Supriya et al., 2021). Furthermore, VG 
analysis can detect abnormal neuronal events (e.g., seizures) 
from EEG data. For example, a VG-based approach was 
found to be more sensitive to seizure detection than a sim-
ple entropy method (Tang et al., 2013). Other studies have 
found that the graph theoretical features of VG to be highly 
effective in discriminating epileptic seizures from EEG 
time-series data (Supriya et al., 2016; Zhu et al., 2014b).

Few studies have used a VG-based approach for the anal-
ysis of fMRI data (Gao et al., 2020; Varley & Sporns, 2022). 
fMRI captures the rich spatiotemporal dynamics of human 
brain activity, which can be used to characterise brain net-
work correlations, temporal evolutions, and state transi-
tions associated with human behaviour. The spatiotemporal 
nature of fMRI makes it amenable to multilayer transfor-
mation, enabling singular representations of both intra and 
inter-regional correlations (Varley & Sporns, 2022). A recent 
proof-of-concept study used this multilayer VG approach to 
analyse correlations between brain regions and, for the first 
time, demonstrated that this approach may be used to clas-
sify different disease states (Sannino et al., 2017). Another 
study (Gao et al., 2020) used graph theoretical features 
from VG to distinguish individuals with Alzheimer’s dis-
ease from healthy controls. Although these findings are very 
encouraging, there is a need for a better understanding of 
the robustness and reliability of VG features in resting-state 
fMRI data. Furthermore, the characterisation of the different 
network properties describing the structure of VGs within 
neuronal processes as encoded in fMRI time-series is miss-
ing in the literature.

The most common approach for fMRI-based brain net-
work analyses utilizes direct comparison of time-series 
using similarity metrics such as the Pearson correlation 

coefficient. Visualization Graphs (VGs) provide a unique 
framework that goes beyond mere pairwise correlations, 
allowing for the extraction of complex relationships within 
the brain’s functional architecture in both time and space. 
The construction of VGs involves mapping the time series 
data to a graph structure based on the visibility algorithm, 
capturing dependencies in time that may be overlooked by 
methods solely relying on pairwise correlations (Stephen 
et al., 2015; Zheng et al., 2021). Furthermore, VGs enable 
the estimation of associations across time and extraction 
of multivariate graph theoretical features from univariate 
time series. VGs also enable the exploration of higher-order 
associations and dynamics within the brain’s functional net-
work, providing a more nuanced understanding of the com-
plex relationships present in fMRI data.

Despite the increasing use of VG analysis in network 
neuroscience studies utilising fMRI data, there is a lack of 
research on the robustness and reliability of measures gen-
erated through this analysis. fMRI signal is highly sensi-
tive to any movement inside the scanner, which can lead 
to transient and slow signal changes (Power et al., 2015). 
The presence of motion artifacts in signal data poses a sig-
nificant challenge to VG (Variance-based Global) analysis 
and its applications. Both the transient and slower and more 
widespread (global) signal changes introduced by motion 
artifacts may obscure meaningful variations in the data. 
This can significantly affect the graph structure of VGs, 
leading to the formation of additional edges or the suppres-
sion of existing edges (Ahmadlou & Adeli, 2012; Donner & 
Donges, 2012; Varley & Sporns, 2022). Furthermore, test-
retest reliability of fMRI activity over multiple sessions/
days is poor (Noble et al., 2019), which may impact on the 
reliability of associated VG graphs. This study aimed to 
evaluate the impact of varying levels of motion on the graph 
theoretical properties of VGs, and to characterize the repro-
ducibility of these measurements when the same individuals 
are tested multiple times (test-retest reliability).

Methods

Mapping Time Series to Networks Using Visibility 
Graph

A time series can be converted into a network by mapping 
the connection between timepoints using visibility criteria 
(Lacasa et al., 2008; Zhang et al., 2022). A visibility graph 
(VG) for a time series xi is defined as a graph G = (V, E) 
such that each time stamp, t, is a node (V) in the graph and 
the edge (E) between nodes 𝑣𝑖, and 𝑣𝑗, is a line of visibility 
between the signal amplitudes xi and xj.
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Any two data points (ti, xi) and (tj, xj) will be connected 
nodes of the graph if any other data points (tk, xk) which lie 
between them meet the following criteria.

xk < xj + (xi − xj)
(tj − tk)

(tj − ti)

This natural visibility can also be illustrated by using verti-
cal bars to represent time-series data (Fig. 1b). These VGs 
are connected graphs, in which each node has at least one 
connection (i.e., neighbouring timepoints are connected to 
each other). This network is invariant under affine transfor-
mations and vector translations of the data. Weighted VGs 
(Silva et al., 2022) can be obtained by using Euclidian dis-
tance between timepoints as weighting factor such that:

w(i,j) =
1√

(tj − ti)
2 + (xj − xi)

2

VG graph of fMRI time-series represent a simplified 
mathematical construct to generate graph format repre-
sentation of timeseries. Each node in the graph represents 
a time-point and the binary edges represent visibility of 
signal at a timepoint to another. Thus, edges represent 
temporal relationship in the data. VG networks are use-
ful for generating unique features, which can reveal cer-
tain patterns or relationships within the time series data. 
However, it cannot provide insights into the specific neu-
ral connections, synapses, or the underlying spatial archi-
tecture of the brain (Silva et al., 2022).

An important aspect of VG analysis is that there is a 
natural correspondence of nodes (i.e., timepoints in VG) 
across different brain regions and subjects. Hence, any 
local features of nodes such as degree-sequence can be 
compared across various brain regions. One previous 
work has used this natural alignment within multiplex 
visibility framework as compact way of extracting at 
once both the local temporal structure and the global con-
nectivity pattern (Sannino et al., 2017). Our current work 
aimed to go back one step and investigate whether basic 
local and global properties of visibility graphs are reli-
able and robust.

Graph Theoretical Features of Visibility Graphs

The variability of time-series data can be analysed using 
graph-theoretical methods. These analyses can extract 
features such as centrality, distance, community struc-
ture, and connectivity, which are important for under-
standing the characteristics of a graph. In this work, we 
use five global properties of the graph - average weighted 

degree, average path length, global clustering coefficient, 
number of communities, and modularity - to characterise 
the time-series graphs. A brief description of these mea-
sures is provided below.

The average weighted degree is the arithmetic mean 
of the weighted degrees of all nodes in a network. The 
weighted degree is a measure of the strength of connec-
tivity for each node and characterises the intensity of 
connectivity in the node’s neighbourhood. The average 
path length is the mean of the shortest paths between all 
pairs of nodes. This is a measure of the flow of informa-
tion in the network. The global clustering coefficient is 
a measure of the extent to which the nodes of a graph 
tend to cluster. It measures the probability that two nodes 
connected to a given node are also connected. The num-
ber of communities is the number of clustered groups of 
nodes in the network. The modularity, Q, measures how 
well the graph can be divided into communities. A high 
modularity indicates a graph with a dense internal com-
munity structure and sparse connections between nodes 
of different communities.

The Walktrap Community-finding algorithm was uti-
lized for community detection. This algorithm employs 
a random walks approach to identify regions of the net-
work where nodes are more likely to be interconnected, 
indicating the presence of a community. Furthermore, to 
calculate the modularity of a graph, we determined the 
degree of separation of nodes belonging to different com-
munities using the approach described in a previous work 
(Silva et al., 2022). We used the NetF toolbox to generate 
VG features from fMRI timeseries (Silva et al., 2022). 
The toolbox is available via github (https://github.com/
vanessa-silva/NetF).

Network Connectivity Using Degree Synchrony

The VG networks can also be represented as a system of 
multilayer network in which each brain region forms a 
layer (Fig.  1) (Ahmadlou & Adeli, 2012). Such a mul-
tilayer network has one-to-one correspondence between 
nodes of each layer such that node i in one layer cor-
responds to the same node in other layers, making the 
multilayer graph a multiplex network. Graph theoretical 
features of multiplex graph can be used to measure simi-
larity between layers.

The degree synchronization is a measure of similarity 
between the series of connectivity degree of each layer 
(Ahmadlou & Adeli, 2012). Since each node in each layer 
represent a time-point, the series of connectivity degree 
of visibility graphs at layers is a representation of fluc-
tuations in degree over time. Thus, any correlations in 
fluctuations in visibility graph degrees over time across 
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Fig. 1  A framework for visibility graph analysis of fMRI data. a fMRI 
data is parcellated into different brain regions using an atlas b Aver-
age time series is extracted from all brain regions. This time-series 
data can be represented as a temporal landscape such that visibility 
between each data point can be identified. Visibility between two time 
points exists (i.e., an edge) if any other time point between them has a 
corresponding intensity below the line connecting the two time points 

(i.e., there is a direct line-of-sight between the peaks of time points) c 
The graphs generated using the visibility criteria has number of nodes 
equal to number of time points in the data. The graphs can then be pro-
cessed using standard graph theoretical analysis methods to generate 
graph features. d The visibility graph degree vectors from each ROI 
can be correlated to generate a Degree Connectivity network, provid-
ing a new measure of functional connectivity
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in CIFTI (Connectivity Informatics Technology Initiative) 
format, in which cortical surface time series and subcortical 
volume time series were structured in a grayordinate dense 
time series file. Head motion was quantified using frame-
wise displacement (Power et al., 2015).

Estimation of Visibility Graph Features

The pre-processed fMRI time-series data from each session 
(REST1 and REST2) were temporally concatenated across 
the two runs within the session. This generated approxi-
mately 30 min of rs-fMRI data per session. The fMRI data 
were parcellated using Yeo-17 functional atlas (Yeo et al., 
2011) for obtaining average time series across functionally-
defined brain regions (114 brain regions). The time-series 
data obtained from the parcellation were then converted into 
VGs using natural visibility graph algorithms in R (Silva 
et al., 2022). To characterise the degree properties of the 
VG obtained from fMRI time-series, log-log degree distri-
bution was estimated for each subject. The degree distribu-
tions were obtained from several regions of interests within 
the Yeo-17 atlas for demonstration purpose. The degree 
distribution plots were pooled across participants and plot-
ted. Power-law fit was obtained by using powerLaw pack-
age in R. The VG for each region was analysed using graph 
theoretical analysis tools in implemented in R by a previous 
work (Silva et al., 2022) to obtain the five features: aver-
age weighted degrees, average path length, global cluster-
ing coefficient, number of communities and modularity. In 
order to characterise degree distribution of VG associated 
with fMRI time-series, log-log plot of degree distribution 
were generated for a region from each canonical functional 
network. Power law fit was approximated for each degree 
distribution plot using PoweRlaw package in R.

Impact of Motion and Test-Retest Reliability

To identify the impact of motion intrusions on VG features 
and identify the threshold required for removing any motion 
related impacts, we characterised the relationship between 
proportions of motion corrupted data and VG features across 
the participants. First, to estimate the impact of motion on the 
features, we calculated the correlation (Pearson’s) between 
each feature and the percentage of fMRI data points asso-
ciated with motion across the participants. This percentage 
was defined as the percentage of fMRI data points associated 
with frame-wise displacement (FD) greater than 0.2  mm 
(i.e., data points with greater than 0.2 mm FD divided by 
total data points). Next, to determine the allowable percent-
age of data points with motion without compromising the 
VG features, we ran the correlation analysis using various 
subsets of the data, with each subset exclusively comprising 

multiple layers represents an alternative measure of syn-
chronization. Thus, degree synchronization is given as:

S [Dx,Dy] =

∑
(Dx −Dx)

(
Dy −Dy

)

σ (Dx)σ (Dy)

where Dx and Dy are degree sequence of visibility graphs 
representing timeseries x and y.

While correlation-based connectivity mapping of fMRI 
time-series provides valuable static insights into functional 
connectivity, degree synchrony-based connectivity map-
ping introduces a unique dimension, emphasizing how fluc-
tuations in the amplitude of time signals synchronize across 
different regions over time. Although more work is needed 
to better understand the biological underpinnings of degree-
synchrony-based connectivity mapping, it represents an 
important step towards a computationally efficient method 
with the potential to capture multi-scale dynamics in fMRI 
data.

Application of Visibility Graph Analysis in rs-fMRI 
Data

Participants and Data

The dataset used in the present study was obtained from 
the Human Connectome Project (HCP) S1200 release (Van 
Essen et al., 2013). Participants (n = 1113) were young 
healthy adults aged 22 to 37 years. Each participant took 
part in two sessions (conducted on two consecutive days) of 
resting-state fMRI scans acquired over two runs (right-to-
left and left-to-right phase encoding) of 14m33s each. The 
MRI data were acquired on a customized Siemens Skyra 
3 Tesla MR scanner using a multiband echo planar imag-
ing sequence (TR = 720ms, TE = 33.1ms, voxel dimension: 
2 × 2 × 2 mm3) (Smith et al., 2013). The current study uses 
data from the participants who completed all four runs with 
a final sample of 1010 individuals (mean age 29 ± 4 years, 
453 males).

fMRI Pre-processing

We used fMRI data processed using HCP pipeline and 
available publicly. The detailed pre-processing steps used 
in HCP pipeline are described elsewhere (Glasser et al., 
2016; Smith et al., 2013). Briefly, the fMRI pre-processing 
steps within the HCP data included (1) removal of spatial 
artifacts and distortions, (2) correction of head motion, 
(3) spatial registration to the MNI (Montreal Neurological 
Institute) standard space and (4) removal of motion-related 
and structured physiological noise artefacts using ICA-
FIX (Salimi-Khorshidi et al., 2014). Data were analysed 
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value of exponent alpha > 0 in all time-series across the 
canonical brain networks.

The Impact of Motion on Visibility Graph Features

Figure  3A shows the relationships between percentage of 
motion corrupted data points and VG features across all the 
participants. The largest impact of motion was observed on 
the number of communities (r = 0.55 ± 0.11), modularity 
(r = 0.55 ± 0.08), and average degrees (r = 0.50± 0.12), fol-
lowed by the clustering coefficient (r = -0.29 ± 0.08) VG 
features. The average path length feature was least affected 
by motion (r = 0.09± 0.07). The relationships between the 
varying percentage of motion corrupted data points and VG 
features (Fig. 3B) shows that the impact of motion on VG 
features reduces more-or-less linearly with the reduction in 
the percentage of motion corrupted data points. On aver-
age, the correlation between motion and VG features falls 
to less than r = 0.1 when the motion corrupted data frames 
are less than 20%. A similar pattern of the impact of motion 
was observed in the second session (‘Rest2’) fMRI data (see 
Supplementary Figure S1).

Test-Retest Reliability of the Visibility Graph 
Features

Due to the strong impact of motion on VG features, we used 
a subset of the datasets (n = 396) in which the percentage of 
motion corrupted fMRI data points (i.e., FD > 0.2 mm) was 
less than 20%. The intraclass correlation analysis within 
this dataset showed a high test-retest reliability between 
two sessions (Rest1 and Rest2) for the average degrees VG 
feature (ICC = 0.74, 95% CI = [0.73, 0.75]). The clustering 
coefficient (ICC = 0.43, 95% CI = [0.41, 0.44]) and aver-
age path length (ICC = 0.41, 95% CI = [0.38, 0.44]) also 
showed moderate reliability (Fig. 4A). Whereas the number 
of communities (ICC = 0.18, 95% CI = [0.17, 0.19]) and 
modularity (ICC = 0.15, 95% CI = [0.14, 0.17]) had low 
test-retest reliability. Figure 4B shows spatial variability in 
ICC values for degrees, average path length, and clustering 
coefficient features, which had moderate to high reliability. 
The reliability of the average degree feature was high across 
the brain (ICC > 0.5). For the clustering coefficient, 17 
brain regions showed high reliability (ICC > 0.5). Whereas 
for the average path length, 38 brain regions showed high 
reliability.

Degree Synchrony Based Functional Connectivity 
Maps

Figure 5 shows the connectivity maps obtained by correlat-
ing degree vectors from visibility graph obtained from 114 

subjects exhibiting less than x% of frames characterized by 
frame displacement (FD) exceeding 0.2 mm. The value of x 
ranged from 10 to 40% in the steps of 0.5%. This allowed us 
to identify appropriate motion thresholds (in terms of toler-
able percentage of motion corrupted data points) necessary 
for reliable VG features.

To estimate test-retest reliability of VG features between 
two sessions acquired on different days (REST1 and REST2), 
we computed the intraclass correlation coefficient (ICC). A 
two-way mixed effects model with absolute agreement as 
a reliability measure was used, as per the recommendation 
from previous work (Koo & Li, 2016). This analysis was 
applied only to the low motion dataset identified using the 
motion threshold established in the previous section.

Functional Network Estimation Using Degree 
Synchrony

Mapping of functional network using VG degree synchrony 
is a novel approach. Only one previous study has attempted 
to do this in a small dataset (Gao et al., 2020). We used the 
low motion fMRI dataset and mapped the functional net-
works in the brain using the degree synchrony. We gener-
ated degree synchrony based functional connectivity maps 
for all individuals, which were averaged to obtain a mean 
connectivity map.

The primary motivation for this analysis was to intro-
duce methodological approach for generating these net-
works, paving the way for future in-depth analyses. This 
analysis should be taken as an initial step in hypothesis gen-
eration, opening the door for subsequent detailed analyses. 
The detailed analysis of network properties and the impact 
of motion on these analyses is outside the scope of this 
manuscript.

To capture the degree synchrony, a pairwise correlation 
analysis was performed on the VG degree time series of 
each region, yielding a matrix of inter-regional correlations. 
The construction of the functional network was achieved by 
thresholding the degree synchrony matrix to retain connec-
tions with significant synchrony.

Results

Degree Characteristics of fMRI Visibility Graphs

The log-log plot of degree distribution of fMRI weighted 
VG graphs in the example brain regions belonging to the 
seven resting state networks within the Yeo-17 atlas is 
shown in Fig.  2. The tail end of the distributions follows 
a power law distribution of the shape P(k) ∼ k−α, with the 
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features. When a low motion is used the analysis, network 
features such as the average degree, average path length, 
and clustering coefficient show moderate to high test-retest 
reliability between sessions.

The presence of motion in fMRI data is problematic 
for interpreting both time-series and connectivity analyses 
(Poskanzer et al., 2022; Power et al., 2015). Motion can 
introduce noise and artifacts into the data, making it diffi-
cult to accurately interpret the connectivity between brain 
regions. Even small amounts of motion (FD ~ 0.2 mm), such 
as those caused by sleepiness in the MRI scanner (Poudel 
et al., 2021), can affect the VG features of fMRI time-series 
data. In this study of healthy control subjects, we found a 
strong correlation between region-wise VG features and the 
amount of motion-related intrusions in the data. We also 
found that VG features were most sensitive to motion when 
more than 20% of the data was contaminated by framewise 
displacement of more than 0.2. This level of sensitivity 
to motion is consistent with previous research showing a 
strong association between functional network features and 
framewise motion in fMRI data (Raval et al., 2022). VGs 
are particularly sensitive to the presence of outliers and 
large values in the data, which is typical of what happens 

cortical brain regions within the Yeo-17 atlas. The average 
connectivity values were low to moderate (< 0.4) in both 
sessions. In both sessions, most strongly correlated brain 
regions were bilateral brain regions within the salient and 
visual networks.

Discussion

There is currently a lack of research on the reproducibility 
of the VG properties of fMRI data, which is a significant 
concern given the increasing use of VG analysis in network 
science studies involving fMRI data. This study aims to 
address this gap by evaluating the VG properties of fMRI 
time-series data from the Human Connectome Project (Van 
Essen et al., 2013). Specifically, the study aims to charac-
terise the impact of motion on the VG properties of fMRI 
data, as well as the test-retest reliability of these properties 
between fMRI sessions. The findings show that the degree 
distribution of the VG associated with fMRI time-series fol-
lows a power-law distribution, suggesting scale-free nature 
of the VG networks. Furthermore, small movements can 
significantly alter the VG network structure and associated 

Fig. 2  Log-log plot of weighted degree distribution of fMRI VG 
graphs. Each panel shows pooled degree distribution of average fMRI 
time series obtained from 7 example brain regions belonging to the 
resting-state networks. Alpha values (and 95% CI) of power laws fit 

for each region is also provided on the panels. Alpha values of power 
law fits were obtained for pooled distribution and averaged across 
participants
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We also evaluated the reliability of the graph metrics of 
VG graphs using a low motion subset of the dataset. Graph 
metrics were compared using ICC statistics, which identi-
fied absolute agreement between two measurements and 
provided a measure of reproducibility (Koo & Li, 2016). 
The findings suggest that the reliability of VG metrics 
ranges from moderate to high, and is highly dependent on 
the type of metrics and brain regions. The average degree 
was observed to have the highest reliability amongst the 
graph measures used. Other measures, including the clus-
tering coefficient and average path, also showed moderate 
reliability. Although this is the first study to investigate 

when there are motion events in fMRI. Outliers can sig-
nificantly affect the graph structure of VGs, leading to the 
formation of additional edges or the suppression of exist-
ing edges (Ahmadlou & Adeli, 2012; Donner & Donges, 
2012; Varley & Sporns, 2022). This can make it more dif-
ficult to accurately interpret the properties of the VG, such 
as its degree distribution or clustering coefficient. Similarly, 
large values in the data can also impact the structure of VGs, 
causing the formation of additional edges or the suppres-
sion of existing edges. It is, therefore, important to carefully 
consider the impact of outliers and large values when using 
VGs for data analysis.

Fig. 3  Association between percent-
age of motion corrupted data points 
and VG features across all the 
participants. A Violin plots showing 
summary statistics and density of 
correlation values between percent-
age of motion corrupted data points 
and VG features. The lower and 
upper hinges of boxplots within 
the violin plots correspond to the 
first and third quartiles (the 25th 
and 75th percentiles) of correlation 
values across the 114 brain regions. 
The density plots correspond to 
distributions of correlation values 
for the 114 brain regions B Changes 
in correlation between the percent-
age of fMRI data points associated 
with frame-wise displacement 
(FD) greater than 0.2 mm and VG 
features. Correlations are presented 
for different levels of motion in the 
data: from 10–40% of data cor-
rupted by motion
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Fig. 4  Test-retest reliability of VG features. A Violin plots showing 
summary statistics and density of intraclass correlation (ICC) grouped 
by VG features. The lower and upper hinges of boxplots within the 
violin plots correspond to the first and third quartiles (the 25th and 
75th percentiles) of correlation values across the 114 brain regions. 

The density plots correspond to distributions of correlation values for 
the 114 brain regions B Spatial distribution of ICC values across the 
brain for degrees, clustering coefficient, and average path length VG 
features. The colour-bar represents ICC values
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Some comments regarding the pros and cons of VG-based 
methods for fMRI analysis are warranted. One of the main 
advantages is the simplicity and low computational complex-
ity of the algorithm. This makes VG analysis particularly suit-
able for the spatio-temporally dense fMRI data. Additionally, 
VG-based methods can potentially uncover hidden structural 
properties of time-series, which may not be possible with con-
ventional time-series analysis techniques (Donner & Donges, 
2012). This is an active area of research and requires further 
work. The features generated from VG analysis of fMRI has 
potential use in data mining for fMRI-based classification 
and prediction of neurological conditions (Gao et al., 2020; 
Sannino et al., 2017). Despite the benefits, it is important to 
acknowledge the limitations that exist. For example, the neu-
rophysiological basis for the network structure that is obtained 
from VG is not clear. In a biological context, a visibility graph 
obtained from a single brain region signifies the influence or 
interaction between neural activity at timepoints represented 
by the nodes. The edges in the VG network signify temporal 
relationships in the time series. For example, if node A and 
node B are connected by an edge, it implies that the neuronal 
activity at timepoint A is influencing or affecting the neuro-
nal activity at timepoint B (or vice versa). Given the temporal 
order of neural activity, this concept is consistent with neuronal 
activity that unfolds over time, leading to a particular behav-
iour and the principle of predictive coding of brain function. 
Recent studies have shown that the ability of a neuron to influ-
ence its future activity may provide a mechanism for learning 
in the brain (Luczak et al., 2022). Furthermore, brain connec-
tivity (between brain regions) obtained from VG features (e.g., 
degree connectivity) also provides a novel way of looking at 
how different neuronal populations might be interacting in the 

test-retest reliability of VG features in fMRI data, previous 
studies have reported similar ICC values for the reliability 
of graph metrics functional connectivity data (Braun et al., 
2012; Termenon et al., 2016).

Furthermore, we generated functional connectivity maps 
by correlating the degree vectors obtained from the VG rep-
resentation of the low-motion fMRI timeseries data. The 
correlation values in these maps were low to moderate, sug-
gesting that degree fluctuations are not tightly synchronised. 
While one previous study has used this approach to generate 
functional connectivity maps, the correlation values were 
not reported (Sannino et al., 2017). This notwithstanding, 
the functional significance of the degree-synchrony-based 
functional connectivity maps lies in its ability to reveal 
meaningful relationships and associations between dif-
ferent brain regions. An important observation is that the 
degree-synchrony based connectivity maps are localised in 
the default-mode and somatosensory networks. Of particu-
lar interest are the somatosensory networks, known to be 
strongly influenced by transient changes in brain states such 
as fluctuations in wakefulness and slow-eye-closures asso-
ciated with microsleeps (Wang et al., 2016). It is possible 
that the connectivity maps capture these transient changes, 
as degree sequences are influenced by high-amplitude sig-
nal changes (leading to high visibility of that time point and 
hence increased degree). However, future investigations 
are necessary to understand the relationship between these 
observed correlations and potential changes in behaviour. 
The utility of this approach in obtaining coordinated activity 
patterns among neural regions and obtain novel insights into 
the functional organization of the brain needs to be further 
investigated.

Fig. 5  Functional connectivity maps obtained using degree synchrony 
measure from A Rest1 and B Rest2 sessions. The maps were highly 
consistent between session. The connectivity matrix represents upper 

triangle of the connectivity matrix, showing correlation between 114 
cortical brain regions within the Yeo-17 atlas
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