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Abstract

The increasing lifespan and large individual di�erences in
cognitive capability highlight the importance of comprehending
the aging process of the brain. Contrary to visible signs of
bodily ageing, like greying of hair and loss of muscle mass,
the internal changes that occur within our brains remain less
apparent until they impair function. Brain age, distinct from
chronological age, re�ects our brain's health status and may de-
viate from our actual chronological age. Notably, brain age has
been associated with mortality and depression. The brain is
plastic and can compensate even for severe structural damage
by rewiring. Functional characterization o�ers insights that
structural cannot provide. Contrary to the multitude of stud-
ies relying on structural magnetic resonance imaging (MRI),
we utilize resting-state functional MRI (rsfMRI). We also ad-
dress the issue of inclusion of subjects with abnormal brain
ageing through outlier removal.

In this study, we employ the Least Absolute Shrinkage and
Selection Operator (LASSO) to identify the 39 most predictive
correlations derived from the rsfMRI data. The data is from a
cohort of 176 healthy right-handed volunteers, aged 18-78 years
(95/81 male/female, mean age 48, SD 17) collected at the
Mind Research Imaging Center at the National Cheng Kung
University.

We establish a normal reference model by excluding 68 out-
liers, which achieves a leave-one-out mean absolute error of
2.48 years. By asking which additional features that are needed
to predict the chronological age of the outliers with a smaller
error, we identify correlations predictive of abnormal aging.
These are associated with the Default Mode Network (DMN).

Our normal reference model has the lowest prediction error
among published models evaluated on adult subjects of almost
all ages and is thus a candidate for screening for abnormal
brain aging that has not yet manifested in cognitive decline.
This study advances our ability to predict brain aging and
provides insights into potential biomarkers for assessing brain
age, suggesting that the role of DMN in brain aging should be
studied further.

Keywords: Brain Aging, feature matching, Resting-State
Functional MRI, Least Absolute Shrinkage and Selection Op-
erator, Default Mode Network, Abnormal Brain Aging
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1 Introduction

The ageing process is a complex and dynamic phenomenon,
marked by progressive physiological and functional changes
that occur throughout an individual's lifespan (Sinclair and
Oberdoer�er, 2009). While chronological age serves as a fun-
damental indicator of the passage of time, it often falls short
of capturing the true age-related alterations within the human
brain. Individuals of the same chronological age can exhibit
distinct patterns of cognitive decline or preservation, indicat-
ing the existence of an intriguing phenomenon known as the
�brain age gap" (Ballester et al., 2023; Sanford et al., 2022;
Jawinski et al., 2022; Niu et al., 2020; Mohajer et al., 2020).

The brain age gap refers to the discrepancy between the
biological age of an individual, as inferred from the struc-
tural and functional characteristics of their brain, and their
chronological age. Advancements in neuroimaging techniques,
coupled with cutting-edge machine learning algorithms, have
opened up unprecedented opportunities to quantify this age
gap and explore its implications for human health and cogni-
tion (Baecker et al., 2021; Lee et al., 2022a). In recent years,
the investigation of brain age gaps has garnered signi�cant
attention in neuroscience and aging research. Understanding
why and how the biological age of the brain can di�er from the
chronological age holds the promise of unveiling new insights
into the mechanisms that govern brain aging and cognitive
decline (Lee et al., 2022b; Elliott et al., 2021). Additionally,
studying brain age gaps provides invaluable tools for assess-
ing individual health trajectories, identifying neurodegenera-
tive risk factors, and tailoring personalized interventions to
promote healthy ageing (Franke and Gaser, 2019; Ran et al.,
2022).

Analysis involving rsfMRI often links abnormal aging to the
DMN, given its activity during periods of rest and when the
mind is not focused on the external world (Wang et al., 2020).
It is also well-established that patients with Alzheimer's dis-
ease exhibit reduced functional connectivity within the DMN
(Ibrahim et al., 2021; Kucikova et al., 2021). However, other
brain networks have garnered attention as pertinent to age pre-
diction. Podgórski et al. (2021) reported that in the process of
brain aging in elderly females, various networks, including the
visual, salience, sensorimotor, language, frontoparietal, dor-
sal attention, and cerebellar networks, compensate for these
changes. Conversely, Oschmann et al. (2020) found that during
longitudinal observations of subjects, changes were evident in
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the frontoparietal and salience networks but not in the DMN.
Additionally, Liu et al. (2022) asserted that the attention and
frontoparietal networks are more relevant to aging than the
DMN. Our objective is not only to create a model capable of
predicting brain age but also to identify the regions associated
with abnormal ageing.

1.1 Statistical methods to determine

brain age

Table 1 and Table 2 show di�erent statistical models used to
predict chronological age from neuroimages. Table 1 shows the
methods utilized for each model and Table 2 their respective
performances. Studies that did not present a mathematical
model, utilized neuroimages, or did not focus on chronological
age prediction were excluded.

It is important to note that the age ranges vary in all stud-
ies. Researchers have concluded that performances tend to be
better with smaller age ranges (de Lange et al., 2022). Per-
formance metrics used for evaluating age prediction models
depend on cohort and study-speci�c data characteristics, and
this needs to be considered when comparing them across dif-
ferent studies. This can also be observed in the studies we
considered. The best-performing model (Li et al., 2018), with
a Mean Absolute Error (MAE) between predicted brain age
and chronological age of 2.15 years, only had an age range
of 8 to 22 years. A su�cient age range is crucial because a
naive model that predicts the age of each subject to be the
mean of the age range (15 years) has an expected MAE of 3.1
years for the age distribution reported in (Satterthwaite et al.,
2014), from where Li et al. (2018) took 983 of the 1445 sam-
ples. Any model performing worse than this naive model is
arguably worthless. The MAE achieved by Li et al. (2018) is
statistically signi�cantly better than this naive model (p-val
< 0.0001), but if they had selected the age range 11 to 19,
then a MAE below 2.15 years would have been seen in 17% of
random subject choices with replacement from their age distri-
bution. All models with an age range covering essentially the
life span of a human have reported MAEs above 3.39 years.

We have observed that the most popular type of neuroimage
is T1 structural MRI, followed by resting-state functional MRI.
The most widely used measure of the performance of models is
the MAE. This metric is de�ned as the average absolute value
of the residuals between the predicted age and the chronolog-
ical age across a set of samples. Being the average prediction
error makes it easy to understand. The most common method
to evaluate the performance of brain age prediction models is
to use a separate data set reserved for testing of performance.
Cross-validation is also common.

Additionally, we would like to note that most of the e�orts
focused on age prediction have been cross-sectional studies.
We found only one study (Aamodt et al., 2023) that focused
on longitudinal age prediction at 18 and 36 months on a cohort
of Norwegian subjects. They trained an XGBoost regression
model but only reported their mean baseline Brain Age Gap
(BAG), which is the residual of the real age minus the predicted
age, as 0.18 with a standard deviation of 9.03. Unlike the Mean
Absolute Error, BAG does not take the absolute value of the
residuals before calculating the mean, thus making the metrics
not comparable.

All works on brain age prediction use chronological age as
ground truth for training and validation. Since changes to
the brain, e.g. in Alzheimer's disease (Bateman et al., 2012;
Preische et al., 2019), occur before the function is visibly im-
paired, this use of chronological age as ground truth is prob-
lematic. It deserves more attention than it has gotten so far in
the literature. Moreover, mental, neurological, and substance
use disorders constitute around 25% of years lived with dis-
ability and the incidence of mental and neurological disorders
vary across age groups (WHO, 2023; Nichols et al., 2022; Kang
et al., 2022). Thus even a carefully vetted dataset of healthy
subjects is likely to include subjects where the brain is not
ageing normally. These subjects will bias the data and predic-
tions of a model trained on it in an unknown way that is likely

to be highly dependent on the dataset in question. Since this
inclusion of subjects with abnormally ageing brains in practice
is unavoidable we here explore the usage of outlier removal to
exclude these subjects and obtain a model of normal healthy
ageing.

2 Materials and Methods

2.1 Participants

Out of the 205 participants, 15 were excluded due to rea-
sons such as not completing the experiment, not meeting the
MRI criteria, etc. The participant demographic information is
shown in Table 3. All participants were assessed with the Mon-
treal Cognitive Assessment (MoCA) (Nasreddine et al., 2005)
and Beck Depression Inventory-II (BDI) (Beck et al., 1996). A
total of 11 participants with scores lower than 22 on the MoCA
(n=4) and higher than 13 on the BDI-II (n=7) were excluded
during the data analysis. Additionally, 3 individuals were not
included in the analysis due to image quality issues. Out of the
remaining 176 subjects healthy right-handed volunteers aged
18-78 years (81 females, mean age 48.04, std = 16.81), 156 had
their data recorded prior to the MRI software update, while
the remaining 20 were enrolled after the update.

In addition, other metadata such as the gender, educa-
tion years, and cardiovascular risk factors of the subjects
were recorded. Cardiovascular risk factors include diabetes,
hypertension, hyperlipidemia, hyperglycemia, stroke, smok-
ing (past/present), and other reported untreated risk factors.
Procedures were carried out in accordance with ethical ap-
proval obtained from the National Cheng Kung University Re-
search Ethics Committee, and participants provided written,
informed consent before the start of the experiment.

2.2 Image acquisition

MRI images were acquired using a GE MR750 3T scanner (GE
Healthcare, Waukesha, WI, USA) at the Mind Research Imag-
ing Center at National Cheng Kung University. Resting-state
functional images were acquired with a gradient-echo Echo-
Planar Imaging (EPI) pulse sequence (TR = 2000 ms, TE =
30 ms, �ip angle = 77°, 64 × 64 matrices, FOV = 22 × 22
cm2, slice thickness = 4 mm, no gap, voxel size = 3.4375 mm
× 3.4375 mm × 4 mm, 32 axial slices covering the entire brain).
A total of 245 volumes were acquired; the �rst �ve served as
dummy scans and were discarded to avoid T1 equilibrium ef-
fects. During the scans, participants were instructed to remain
awake with their eyes open and �xate on a central white cross
displayed on the screen. High-resolution anatomical T1 images
were acquired using fast-SPGR, consisting of 166 axial slices
(TR = 7.6 ms, TE = 3.3 ms, �ip angle = 12°, 224 Ã� 224
matrices, slice thickness = 1 mm), which lasted 218 seconds.

2.3 Image processing

For functional connectivity analysis, �rst, EPI data were pre-
processed using the Data Processing and Analysis for Brain
Imaging toolbox (Yan et al., 2016), implemented in Matlab
(The MathWorks, Inc., Natick, MA, USA), which called func-
tions from SPM 8. Images were slice-time corrected and re-
aligned to correct for head motion using a rigid-body transfor-
mation. The mean EPI image was coregistered with the T1
image, and the T1 image was coregistered and normalized to
the Montreal Neurological Institute and Hospital (MNI) tem-
plate. The co-registration parameters of the mean EPI were
applied to all functional volumes. Nuisance time series (motion
parameters, ventricle, and white matter signals) were regressed
out. The functional data were then spatially smoothed with
a 6 mm Gaussian kernel. Finally, the images were band-pass
�ltered at 0.01 to 0.08 Hz to remove scanner drift and high-
frequency noise (e.g., respiratory and cardiac activity).
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2.3.1 Rest state data preprocessing

Each subject contributed time series data from one resting-
state fMRI session. The work�ow of functional data prepro-
cessing is summarized as follows: (1) removal of the �rst four
volumes of the Blood-Oxygen-Level Dependent (BOLD) sig-
nals to achieve signal stabilization; (2) realignment of func-
tional images using Motion Correlation FMRIB's Linear Im-
age Registration Tool (MCFLIRT) (Jenkinson et al., 2002);
(3) removal of nine confounding signals (six motion parameters
plus global, white matter, cerebral spinal �uid) as well as the
temporal derivative, quadratic term, and temporal derivatives
of each quadratic term (36 regressors in total) (Satterthwaite
et al., 2016); (4) co-registration of functional images with the
T1 image using boundary-based registration (Greve and Fis-
chl, 2009); (5) alignment of the co-registered images to the
template space using the ANTs-transform for the T1 image,
as mentioned above; and (6) temporal �ltering of time series
between 0.01 and 0.08 Hz, as in previous studies (Biswal et al.,
1995), using a �rst-order Butterworth �lter. In this study,
all regressors, including motion parameters and confound time
courses, were band-pass �ltered to the same frequency range as
the time series data to prevent frequency-dependent mismatch
during confound regression (Hallquist et al., 2013). Functional
images were smoothed using Gaussian convolution with a 6
mm full-width at half-maximum.

2.3.2 Parcellation

We partitioned the brain of each participant into cortical
and subcortical Regions of Interest (ROI)s using the following
Power et al. (2011) whole-brain functional atlases (i.e. 264 cor-
tical and subcortical ROIs of the widely-used functional Power
atlas (Power et al., 2011).

2.3.3 Functional connectivity

For each participant, whole-brain functional connectivity be-
tween all brain regions was constructed pairwise from the pre-
processed fMRI data. The fMRI time series were extracted
from each voxel and averaged within each ROI of the three at-
lases (AAL, Power, and Gordon). The functional connectivity
between time series for all pairwise ROIs was estimated by cal-
culating two commonly used connectivity metrics: Pearson's
correlation and wavelet coherence. For Pearson's correlation,
the correlation coe�cients were Fisher-transformed to enable
drawing more statistically interpretable conclusions about the
magnitude of the correlations (Cohen and D'Esposito, 2016;
Doucet et al., 2017).

2.4 Feature selection and age predic-

tion

Feature selection and age prediction were performed using the
LASSO (Tibshirani, 1996). LASSO �nds the model parameters
that minimise the sum of squared residuals and the sum of
absolute parameter values. Given the small number of samples,
we aim to create the simplest model that can explain the data.
To �nd the simplest model, i.e. the model with the fewest
parameters, we would ideally like to minimise the L0 norm of
the parameters. L0 is a variation of LP regularization that
penalizes parameters for being di�erent from zero. However,
for any P < 1 the function describing the parameter value
vs. the penalty applied is not convex, and the optimization
in general an untractable combinatorial NP-Hard problem. To
get around this, we resort to L1 regularization, i.e. LASSO,
which in practice has been shown to yield sparse and predictive
models (James et al., 2013). A more detailed explanation of
feature selection using LASSO can be found in the Appendix.

The Fisher's z-transform of Pearson's r representation of the
fMRI's Functional Connectivity (FC) is a 264 Ã� 264 sym-
metric matrix A, with the diagonal containing extremely high
values approaching in�nity. Since the matrix is symmetric, for
any element ai,j in A where i, j = 1, 2, ..., 264 there exists an

identical element aj,i. To eliminate redundant and impractical
features, we used either the �attened upper or lower triangle
of the matrix A, excluding the diagonal, as the input vector
of our linear regression model. After pre-processing the data
of n = 176 subjects, the resulting feature vectors span over a
p = 34716 dimensional space. This then calls for identifying
a subset of q ≪ p relevant features, also known as regressors,
useful for explaining/predicting the target variable y, i.e. age.
In other words, we need to solve a feature selection problem.

The Glmnet implementation of LASSO enables an elastic-
net solution by manipulating the mixing parameter α. With
range α ∈ [0, 1], α = 1 results in LASSO and α = 0 in ridge re-
gression, i.e. L2 regularization. Elastic-net enables a weighted
solution that combines the advantages of both LASSO and
ridge regression. Similarly to LASSO, elastic-net can also pro-
vide sparse and interpretable representations, but in addition it
also encourages grouping of regressors, e.g. strongly correlated
regressors are typically included or excluded altogether (Zou
and Hastie, 2005). However, usage of elastic-net in an optimal
manner requires tuning the mixing parameter α. Following Oc-
cam's razor principle to create the most simple model that can
explain the data, we selected α = 1, which is pure LASSO. We
train our regression model using the chronological age of each
subject as ground truth and estimate the deviances through a
5-fold cross-validation.

2.4.1 Algorithm regressor count

We hypothesize that our dataset is composed of normally aging
subjects, i.e., subjects whose chronological age closely matches
their brain age, and subjects aging abnormally, i.e., subjects
whose chronological age deviates from their brain age. How-
ever, we do not know the size of these groups, which subjects
belong to each group, their degree of abnormality, nor whether
they deviate by aging faster or slower. We �rst aim to create a
model for normal aging subjects; thus, we iteratively exclude
outlier subjects. Then, we explore the creation of di�erent
models for the di�erent sets of outliers to identify features that
could explain abnormal aging.

Iteratively removing outliers from a dataset can potentially
be considered a form of p-value hacking in the sense that it
reduces the MAE and potentially make the model statistically
more signi�cant compared to alternative models. In general,
p-value hacking involves manipulating data or analysis proce-
dures in a way that increases the chances of obtaining a sig-
ni�cant p-value. In our case, we have a dataset that likely
contains outliers in the form of subjects with abnormally ag-
ing brains, e.g. due to dementia or any other condition that
has not yet impaired function. Outliers are data points that
are signi�cantly di�erent from the rest of the data. They can
sometimes have a strong in�uence on statistical analyses, lead-
ing to changes in results and interpretations. Removal of out-
liers should be based on sound statistical or domain-speci�c
reasons, not merely to obtain a desired outcome. Since there
is no variable that can be used to identify abnormal aging and
remove these outliers, we have to resort to statistical means to
remove them. In our study, we clearly document the removal of
outliers from the dataset to ensure that their removal is based
on objective criteria and not driven by the goal of achieving a
speci�c performance.

We initialize our outlier removal algorithm by introducing a
set of kept subjects and outliers. In the �rst iteration, all sub-
jects belong to the kept set, and none of them are considered
outliers. We then proceed to conceptually remove the subject
that makes the model deviate the most from the unknown true
model. More precisely, we in each iteration employed a Monte-
Carlo method to 100 times sample subjects with replacement,
i.e. bootstrapping, from the set of kept subjects and �t LASSO
models with di�erent regularization coe�cients. Each time we
selected the model with the minimum deviance and recorded
which features were included in that model. After the 100 sam-
ples, we trained a linear model on the features, i.e. regressors,
that were selected at least once during the Monte-Carlo sam-
pling. We included features in decreasing order of the number
of times they were selected in the Monte-Carlo sampling. The
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model was evaluated using Leave-One-Out Mean Absolute Er-
ror (LOOMAE) on the kept subject set. In each iteration,
our best model is the one that minimized the LOOMAE. This
model with �xed regressors was then retrained on all the sub-
jects, and the residuals were calculated using the retrained
model. The subject with the largest residual is appended to
the outlier set of subjects and removed from the kept set.

We repeated this process of selecting models based on
their regressor count until we could clearly observe that the
LOOMAE, as a function of kept subjects, displayed an increas-
ing trend, which happened to be 91 subjects. An increasing
trend in LOOMAE means too many subjects have been re-
moved so the model trained on a subset is no longer able to
predict the one left out. Thus the best model exist in the val-
ley of the LOOMAE. Due to random noise in the data some
models are over�t, i.e. explain noise, and other are under�t,
i.e. does not explain the data. Both generalises more poorly to
new data than a model that is neither over- nor under�t. To
minimise the risk of selecting an over�t or under�t model, we
estimate the expected LOOMAE by �tting a polynomial of de-
gree 4 to the observed values and selected the sparsest model in
the valley that has a LOOMAE near the expected value. This
�nal model with 39 features is the one most likely to truly cap-
ture normal brain aging and yield predicted brain age close to
the chronological age for any subjectt with at normally aging
brain. This of course only holds under the assumption that
the dataset is informative and holds enough normally aging
subjects that the outliers can be removed before the ability to
predict left out subjects degrade. We refer to this algorithm
as Bootstrapped regressor count, and the pseudocode for this
algorithm is described in the Appendix.

This model can accurately predict the chronological age of
normally aging subjects. The outliers are subjects that have
shown irregular signals and whose age cannot be modeled ac-
curately with the same regressors as the kept subjects. We
divided the outliers of the selected model into the four co-
horts: younger predicted to be older, younger predicted to be
younger, older predicted to be younger, and older predicted
to be older. Younger subjects are those whose real age is be-
low the mean of 48.04 years, and likewise, older subjects are
those whose age is above the mean. We then decided to fur-
ther explore which features are relevant to better predict these
abnormally aging subjects by iteratively reintegrating features
into the selected model.

2.4.2 Reintegration of features

To identify which regions were relevant for predicting chrono-
logical age, we decided to iteratively reintegrate features into
each of the four outlier groups, as shown in Figure 1. We
started with the model of the kept subjects with the 39 fea-
tures as our base model. In each reintegration step, we itera-
tively selected one feature from all other features not included
in the initial 39 features and added it to the set of features of
the base model. The model was then re�tted using the cohort
of subjects, and the LOOMAE was calculated. When re�tting
the model with the added feature, the parameters of the base
model were not updated, and only the weight associated with
the reintegrated feature was optimized. The feature resulting
in the lowest LOOMAE was reintegrated into the model, and
this model became the base model for the next iteration. We
continued the procedure until the LOOMAE was equal to or
less than the LOOMAE of the model with the 108 kept sub-
jects, which was 2.487 years.

For each cohort, the reintegrated features allowed us to gen-
erate hypotheses about which features are relevant to explain
abnormal aging. This is because each cohort represents abnor-
mally aging subjects whose brain age cannot be explained with
the same model as the majority of other subjects. The reinte-
grated features were then mapped back to their corresponding
brain subnetworks. Table 4 shows the subnetworks considered
in this study along with their corresponding brain regions.

2.4.3 Monte Carlo simulations for hypothesis

testing

Testing of the hypothesis that the observed number of features
involving DMN is due to chance was done through a Monte
Carlo simulation. In each of the 10,000 iterations, the number
of additional features was drawn from a uniform distribution
of all possible features without replacement, assuming an equal
probability of selecting any one feature. This simulation was
done in Python 3 using the NumPy package.

3 Results

3.1 Model selection

Figure 2 displays the LOOMAE error as a function of the num-
ber of subjects for the bootstrapped regressor count algorithm.
The LOOMAE curve exhibits a parabolic shape, which is ex-
pected since, at the beginning, the dataset contains all outliers
that negatively impact the performance of the models. As
we iteratively remove outliers, the LOOMAE of the models
decreases and converges to a low level, as evidenced by the
LOOMAE from approximately 100 to 130 subjects being, on
average, around 2.5 years. Subsequently, removing too many
subjects causes the LOOMAE of the models to increase again,
as the information in the remaining small number of subjects is
insu�cient to explain each other, unlike when it converged to
the best solutions. Note that the LOOMAE �uctuates around
the expected value due to the inclusion/exclusion of features
needed to explain random noise in the data. We �t a degree-4
polynomial to the LOOMAE to obtain an estimate of the ex-
pected LOOMAE. This polynomial has a global minimum of
110.49 subjects. To minimize the risk of over-/under�tting to
random noise, we choose to work with a model that has the
LOOMAE close to the expected one. This model with 108 sub-
jects also strikes a good balance between LOOMAE and the
number of included features, having only 39 features. Mod-
els with LOOMAE values below the �tted line are over�tted,
as the �tted curve represents the expected LOOMAE for that
speci�c number of subjects.

We chose this model because the LOOMAE agrees with the
expected one, the number of features is low relative to the
total number of subjects, and it is close to the minimum of
the expected LOOMAE. At the minimum, due to noise, we
happened to get models that have around twice the number
of features compared to the selected model and are clearly
over�tted to the selected dataset, and therefore poor choices.
The demographic information of the 68 removed subjects is
included in the Appendix.

Figure 3 shows the error distribution for the model with
108 subjects organized by decades. The model tends to pre-
dict subjects with chronological age below the mean of 48.04
years as older and subjects with chronological age above the
mean as younger. This makes sense as the model is simply
a linear combination of the 39 selected features and lacks the
complexity to capture the nuisances at the extremes of the
distribution.

The number of times a feature was selected and the
LOOMAE as a function of the included features is shown in
Figure 4. We can see how the number of times a feature was
selected exponentially decreases with every feature added. The
LOOMAE seems to follow a similar decreasing trend until 39
added features, after which an increase is observed. The se-
lected model had 39 features and a LOOMAE of 2.487 years on
the kept subjects. Out of the 68 outliers of this model, 23 are
younger subjects predicted to be older (33.8%), 8 are younger
subjects predicted to be younger (11.8%), 25 are older subjects
predicted to be younger (36.8%), and 12 are older subjects pre-
dicted to be older (17.6%).

The predicted age as a function of the real age is shown in
Figure 5. The model is able to model well the kept subjects
with a MAE of 1.58 years and does not perform well on the
outliers with a MAE of 12.32 years. In this case, MAE is the
average absolute value of the residuals of the model trained
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model
q1+ q2+ +...+ qn

Younger predicted to be younger
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q1+ q2+ +...+ qn

Younger predicted to be older

Selected 

model
q1+ q2+ +...+ qn

Older predicted to be younger

Selected 

model
q1+ q2+ +...+ qn

Older predicted to be older

Figure 1: Reintegration of features paradigm. For each of the four abnormally ageing cohorts we reintegrated n features
until the LOOMAE of the set was lower than the LOOMAE of the models for the normally ageing subjects of 2.487 years.
Each reintegrated feature is the feature that minimized the LOOMAE for that iteration. The blue box represents that at each
iteration the base model adds one feature and its parameters become �xed before integrating the next feature.

on the kept subjects evaluated on all samples of the dataset.
It di�ers from the LOOMAE in the sense that the LOOMAE
is calculated by training on all samples except one and eval-
uating the excluded sample until each sample serves as the
left out sample. The LOOMAE then averages all the absolute
values of the residuals of left out samples. The accuracy of
the model for predicting kept subjects is also represented by
the position of the points relative to the red dashed line, which
represents the perfect model that always predicts the brain age
the same as the chronological age. It is also noticeable that the
model performs equally well on the kept subjects, independent
of their age, while overestimating the age of younger outliers
and underestimating the age of older outliers.

3.2 Reintegration of features

Table 5, Table 6, Table 7, and Table 8 show the results of
the reintegration of features for the younger subjects predicted
older, younger subjects predicted to be younger, older sub-
jects predicted to be younger, and older subjects predicted to
be older, respectively. The mapping of brain regions to their
respective subnetworks is depicted in Table 4. We can see
that the younger subjects predicted to be older and the older
subjects predicted to be younger have the largest LOOMAE
values of 14.974 and 14.198 years, respectively. These are the
two cohorts with the largest number of outliersâ¿�23 and 25,
respectively. The younger subjects predicted to be younger
and the older subjects predicted to be older have LOOMAE of
6.129 and 7.818 years and only contain 8 and 12 years, respec-
tively.

Among these four cohorts, the largest number of additional
features to reduce the LOOMAE to the target LOOMAE of
2.487 years was four for the younger predicted older. Of these
four features, three involve the DMN (75%). The older pre-
dicted to be younger required three additional features to re-
duce the LOOMAE below the target, of which two involve the
DMN (67%). The older predicted to be older required two
additional features to reduce the LOOMAE below the target,
of which one involves the DMN (50%). Even the younger pre-
dicted to be younger cohort, which required only one additional
feature, included a feature associated with the DMN (100%).
We �nd it interesting that features involving the DMN were
added in all four cases and investigate the likelihood of this.

Of the 39 features in our model for predicting brain age in

normally aging subjects 17 (43.59%) involve the DMN, which
is lower than the incidence among the additional features in the
four cohorts. Given that 56 out of 264 regions corresponding
to the DMN (21.21%), as shown in Table 4, the proportion
of the 34 716 features involving DMN is 37.99%, since each
feature is a correlation involving two of the 264 brain regions.
The expected number of 39 randomly picked features involving
DMN is only 14.8 and the probability of at random picking 17
or more is 0.29. The expected number of 4 randomly picked
features involving DMN is only 1.5 and the probability of at
random picking 3 or more is 0.16. The expected number of
3 randomly picked features involving DMN is only 1.2 and
the probability of at random picking 2 or more is 0.32. The
expected number of 2 randomly picked features involving DMN
is 0.8 and the probability of at random picking 1 or more is 0.62.
The expected number of 1 randomly picked features involving
DMN is 0.38 and the probability of at random picking 1 or more
is 0.38. In total 7 out of the 10 additional features involves
DMN. The expected number is 3.8 and the probability of at
random picking 7 or more is 0.035. While the enrichment of
DMN in any of the sets of additional features is not statistically
signi�cant, it is when considering all four sets. The hypothesis
that the observed number of features involving DMN is due to
chance is rejected, assuming equal probability of selecting any
one feature. For this reason, we believe that the DMN is an
essential feature to predict the brain age of abnormally aging
subjects. We cannot rule out that this enrichment of DMN
is due to our usage of rsfMRI and the DMN therefore being
active.

4 Conclusions

Our results indicate that we have successfully created a model
to predict the age of normally aging subjects by removing
outliers with abnormally aging brains. This model has the
lowest prediction error among the models used to predict age
over a lifespan based on neuroimaging data, in terms of MAE.
Having a model that accurately predicts age for normally ag-
ing subjects enables researchers to concentrate on characteriz-
ing the natural aging trajectory without the in�uence of out-
liers or confounding factors associated with abnormal aging.
The model can also serve as a screening tool, as it can e�ec-
tively identify subjects whose biological age signi�cantly di�ers
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Figure 2: Number of kept subjects vs LOOMAE of selected model (blue solid line), �tted polynomial curve of degree 4 (green
solid line), and the number of features of the selected model for that iteration (red dotted line).

from their chronological age, potentially indicating underlying
health issues or neurodegenerative conditions that require fur-
ther investigation.

We also identi�ed regions that could explain abnormal aging
with the model for normally aging subjects as a base. Among
these, the DMN revealed itself to be relevant in all of the ab-
normal cohorts. This subnetwork is highly active during rest
and becomes less active during goal-directed cognitive tasks.
It is believed to play a crucial role in various cognitive func-
tions, including self-referential thinking, social cognition, and
memory consolidation. Our models are consistent with neuro-
science theories related to brain aging and network dynamics.

We believe our contribution plants a seed towards enabling
timely interventions to slow or prevent neurodegenerative dis-
eases. Additionally, our identi�cation of the DMN as a relevant
brain region for abnormal aging may serve as a biomarker for
certain conditions and therefore improve diagnostics and per-
sonalized treatments. The interpretability of our model allows
for easy understanding by most stakeholders of the connectiv-
ity patterns associated with aging. Prioritizing the identi�ed
brain regions can lead to initiatives for the early detection of
abnormalities, which can further improve brain health in aging
populations.
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fraction of subjects predicted to be older and younger, respectively. The dotted black line marks the average chronological age
of all subjects (48.04 years).
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Figure 4: Feature cuts and LOOMAE for the most selected features in the model for 108 subjects. The features are in
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Table 1: Methods and data sets used for prediction of chronological age from brain images.

Article Training Dataset
Name Type AvailabilityAge

range
N sub-
jects

Li et al.
(2018)

Multi-channel 4D fully con-
nected image (obtained from
stacking the whole brain voxel-
wise fully connected measures
of all the intrinsic connectivity
networks)

PNC rsfMRI Public 8-22 983

Jónsson
et al. (2019)

Blending of predictions of CNN
trained on 4 types of data

Icelandic T1 MRI Secret 18-75 1815

UK Biobank Public 46-80 21928
IXI Public 20-86 544

Varikuti
et al. (2018)

Non-negative factorized matrices
(calculated from pre-processed
whole-brain gray matter masks)

1000BRAINS T1 MRI Secret 55-75 693

Cole et al.
(2017)

Normalized volume maps BAHC T1 MRI Public 18-90 2001

Liem et al.
(2017)

Variety of input data: func-
tional connectomes and measures
of cortical anatomy

1. LIFE rsfMRI and
T1 MRI

Public 19-82 2354

2. NKI Apply 18-85 475

Cole et al.
(2018)

Similarity matrix (obtained from
concatenated, normalized gray
matter and white matter images)

14 di�erent
sources

T1 MRI Public 18-90 2001

Lancaster
et al. (2018)

Vectors of intensity values (con-
verted from optimally prepro-
cessed gray matter volumes using
Bayesian optimization)

1. BAHC T1 MRI Public 16-90 2003

2. CamCAN Public 18-88 648

Jiang et al.
(2020)

Gray matter volumes 1. ABIDE T1 MRI Public 18-90 1454

2. BNU Public
3. ICBM Public
4. IXI Public
5. OASIS Public

Zhu et al.
(2023)

Brain volume and cortical thick-
ness of 46 fractional anisotropy
values as ROIs

National Yang
Ming Chiao
Tung University

T1 MRI and
DTI

Secret 20-84 524

Pardoe and
Kuzniecky
(2018)

Freesurfer surfaces (obtained
from measures of cortical
anatomy)

1. ABIDE I T1 MRI Apply 6-89 2367

2. ABIDE II Apply
3. CoRR Apply
4. DLBS Public
5. NKI Apply

Millar et al.
(2022)

FC matrices as the Fisher-
transformed Pearson correlation
matrix of the �nal averaged
BOLD time-series between dif-
ferent ROIs

Mixture of An-
ces lab, DIAN,
and Knight
ADRC

rsfMRI Apply 18-89 483

Gonneaud
et al. (2021)

26 graph metrics, chosen based
on their ability to quantify
whole-brain connectivity

1. DIAN rsfMRI Apply 18-94 1340

2. PREVENT-
AD

Apply

3. CamCAN Public
4. ADNI Apply
5. FCP-
Cambridge

Public

6. ICBM Public

Madan and
Kensinger
(2018)

Morphological measures (from
cortical metrics: thickness and
fractal dimensionality)

1. IXI T1 MRI Public 20-86 427

2. OASIS Public 18-94 314
3. DLBS Apply 20-89 315
4. BC test Secret 18-83 176
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Table 2: Models and their performance for prediction of chronological age from brain images. Only the best results are
presented. Abbreviations: Convolutional Neural Network (CNN), Relevance Vector Machine (RVM), Gaussian Process Regres-
sion (GPR), Support Vector Machine (SVM), Arti�cial Neural Network (ANN), Support Vector Regression (SVR), Correlation
Based Regression (CBR), Cross-Validation (CV).

Article Model Validation Performance
MAE RMSE Pearson's

r
R2

Li et al.
(2018)

CNN 5-fold CV 2.15 0.614

Jónsson
et al.
(2019)

CNN Split into train (1171),
validation (298) and test
(346) sets

3.39 0.87

10-fold CV 3.85 0.77

Varikuti
et al.
(2018)

LASSO 3-fold CV 3.4

Cole
et al.
(2017)

CNN Split train (1601), val-
idation (200), & test
(200) sets

4.16 5.31 0.96 0.92

Liem
et al.
(2017)

SVR Tested on independent
data set (NKI)

4.28 0.87

Cole
et al.
(2018)

GPR 10-fold CV 5.02 6.31 0.94 0.88

Lancaster
et al.
(2018)

SVM Tested on independent
data set (CamCAN)

5.08 0.941 0.89

Jiang
et al.
(2020)

CNN Split into train (1303)
and test (151) sets

5.55

Zhu
et al.
(2023)

GPR Split into train (330) and
test (194) sets

5.56

Pardoe
and
Kuzniecky
(2018)

RVM Split into train (2167) &
test (200) sets

7.2

Millar
et al.
(2022)

GPR Split into train (391) and
test (98) sets

8.20 10.32 0.73

Gonneaud
et al.
(2021)

SVM Split into train (773),
validation (46), and test
(521) sets

11.58 13.24 0.36

Madan
and
Kensinger
(2018)

RVM Split into train (1056) &
test (176) sets

0.80

Table 3: Demographic information of the 176 participants.

Age group Age Gender
Education

MoCa
Cardiovascular Before MRI

years risk factor update
(years) (mean/ std) (male/female) (mean/std) (mean/std) (+/-) (before/after)
18-30 24.24/2.95 25/15 16.05/1.52 28.73/0.95 14/25 34/6
30-40 34.00/2.93 10/9 15.95/1.54 27.47/1.93 9/10 18/1
40-50 44.94/2.91 15/10 14.24/23 26.64/2.19 10/15 24/1
50-60 55.30/3.04 14/23 14.38/2.69 26.97/1.88 23/14 35/2
60-70 64.69/2.35 21/21 14.10/3.01 27.29/1.78 21/21 32/10
70-80 73.29/2.35 10/3 13.92/2.62 26.23/1.89 3/10 13/0
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Figure 5: Predicted age as a function of real age for the model of 108 subjects for the normally ageing subjects (blue) and
the four abnormally ageing cohorts of younger predicted to be younger (orange), younger predicted to be older (yellow), older
predicted to be younger (purple) and older predicted to be older (green). The red dashed line marks the y = x line. Any
deviations from the red line represent deviations from the perfect model. The black dashed line marks the mean age of the
subjects of 48.04 years.
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Table 4: Mapping of the brain features to their respec-
tive subnetwork. Indices correspond to the region numbers
which range from 1 to 264. Abbreviations: Motor: Motor
network, CON: Cingulo-Opercular Network, Aud: Auditory
network, DMN: Default Mode Network, Vis: Visual network,
FPN: Fronto-Parietal Network, SAN: Salience Network, Subc:
Subcortical Network, VAN: Ventral Attention Network, DAN:
Dorsal Attention Network.

Subnetwork Indices No. regions

Motor 13-41, 255 29

CON 47-60 13

Aud 61-73 12

DMN 74-83, 86-131, 137, 139 56

Vis 143-173 30

FPN 174-181, 186-202 23

SAN 203-220 17

Subc 222-234 12

VAN 235-242 7

DAN 251-252, 256-264 10

Others 55
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Table 5: Best model (model for 108 subjects) analysis for the Younger subjects predicted to be older. Agen is the predicted
age after adding n features. Feature No. refers to the index of the feature in our dataset which ranges from 1 to 34716,
Region No. refers to the brain regions which is a tuple in which each element ranges from 1 to 264, Region name is the
name of the subnetwork associated with each of the 264 regions; in case there was no subnetwork associated with a region we
report the Region No..

Subject Real Predicted Age1 Age2 Age3 Age4

ID age age
138 20.986 48.925 15.809 24.869 17.624 23.769
191 26.279 58.597 11.685 35.344 19.184 32.724
145 21.148 37.534 21.818 25.424 20.214 21.989
148 32.523 51.862 35.604 30.718 33.449 33.054
173 30.578 46.646 28.261 25.61 34.214 29.099
151 21.156 38.388 24.785 13.794 25.533 17.114
189 18.995 43.7 8.267 24.58 13.427 22.79
102 22.033 33.363 26.144 18.68 22.255 23.326
83 48.14 62.393 54.972 46.156 44.997 47.848
174 33.364 48.375 31.722 35.459 34.377 33.374
146 20.863 38.166 19.72 15.045 27.975 13.579
178 44.332 52.054 45.68 47.344 41.963 45.402
74 40.814 55.778 40.244 39.863 42.339 38.866
142 24.682 47.665 17.998 30.676 24.038 24.651
176 32.255 51.204 35.348 27.588 33.785 32.35
133 20.836 43.615 18.062 24.283 20.889 19.283
160 26.668 37.208 23.21 27.058 23.844 26.460
164 28.523 35.702 33.825 28.009 32.048 29.250
82 41.129 50.687 40.357 41.237 41.323 40.483
96 45.94 51.556 45.935 45.297 45.651 44.437
77 47.093 53.982 47.458 46.958 47.579 47.212
67 41.715 44.698 51.089 40.192 40.336 44.863
165 31.216 33.575 43.275 27.084 34.225 29.346

Feature No. 5570 20376 21677 23537
Region No. (38,23) (120,95) (105,103) (114,260)
Region name Motor-Motor DMN-DMN DMN-DMN DMN-DAN
LOOMAE 14.974 4.680 3.661 2.612 1.950

Table 6: Best model (model for 108 subjects) analysis for the Younger subjects predicted to be younger. Agen is the predicted
age after adding n features. Feature No. refers to the index of the feature in our dataset which ranges from 1 to 34716,
Region No. refers to the brain regions which is a tuple in which each element ranges from 1 to 264, Region name is the
name of the subnetwork associated with each of the 264 regions; in case there was no subnetwork associated with a region we
report the Region No..

Subject Real Predicted Age1

ID age age
91 45.584 36.401 45.954
171 30.249 24.959 30.935
153 24.992 19.216 25.219
10 47.197 41.297 46.794
149 27.775 25.005 26.9
194 27.762 25.279 28.044
86 46.485 37.747 46.251
167 27.444 18.552 27.391

Feature No. 1903
Region No. (91,8)
Region name DMN-8
LOOMAE 6.129 0.520
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Table 7: Best model (model for 108 subjects) analysis for the Older subjects predicted to be younger. Agen is the predicted
age after adding n features. Feature No. refers to the index of the feature in our dataset which ranges from 1 to 34716,
Region No. refers to the brain regions which is a tuple in which each element ranges from 1 to 264, Region name is the
name of the subnetwork associated with each of the 264 regions; in case there was no subnetwork associated with a region we
report the Region No..

Subject Real Predicted Age1 Age2 Age3

ID age age
11 63.216 41.2 69.657 59.269 65.194
197 64.332 44.085 64.905 68.149 63.087
203 66.688 36.46 81.676 55.702 71.252
188 59.2 46.53 58.183 57.322 59.842
112 54.132 26.126 62.896 52.891 52.713
14 70.879 46.5 77.189 64.861 73.193
60 77.992 49.638 83.117 73.105 78.728
17 53.238 43.81 47.726 55.19 52.626
117 57.808 48.888 56.757 59.747 56.928
62 57.986 51.748 48.282 58.61 57.402
47 68.329 56.067 73.234 67.705 68.826
8 66.677 58.845 69.155 64.292 71.918
50 51.926 36.67 49.014 56.46 52.335
42 61.299 46.034 56.546 63.83 61.424
33 64.236 48.199 66.005 62.543 64.383
192 61.715 51.577 56.313 61.224 66.93
66 53.46 48.049 50.618 54.703 55.077
71 50.077 40.497 49.402 51.227 48.912
119 58.438 38.424 58.217 62.317 55.895
75 51.937 44.603 51.741 54.983 49.308
5 64.811 49.403 65.001 67.827 63.296
29 62.247 55.532 64.717 65.551 58.99
63 70.718 65.631 58.549 77.664 67.394
185 67.978 63.619 60.453 64.439 65.363
26 72.893 59.126 72.859 72.599 71.194

Feature No. 19125 30276 2169
Region No. (249,87) (195,170) (102,9)
Region name 249-DMN FPN-Vis DMN-9
LOOMAE 14.198 4.661 3.305 2.090

Table 8: Best model (model for 108 subjects) analysis for the Older subjects predicted to be older. Agen is the predicted age
after adding n features. Feature No. refers to the index of the feature in our dataset which ranges from 1 to 34716, Region
No. refers to the brain regions which is a tuple in which each element ranges from 1 to 264, Region name is the name of the
subnetwork associated with each of the 264 regions; in case there was no subnetwork associated with a region we report the
Region No..

Subject Real Predicted Age1 Age2

ID age age
41 66.058 88.759 60.62 68.699
24 66.274 68.174 66.096 65.739
21 69.233 74.249 72.53 65.51
13 63.526 64.032 63.254 62.759
53 52.827 59.26 58.86 52.464
36 73.874 85.879 74.39 74.024
68 64.66 70.07 62.474 66.622
52 56.444 61.36 58.612 57.918
126 64.907 74.724 64.768 64.454
115 51.353 60.135 51.226 51.477
84 58.244 67.536 57.107 57.108
37 71.734 78.768 69.197 72.361

Feature No. 26482 1638
Region No. (158,136) (82,7)
Region name Vis-136 DMN-7
LOOMAE 7.818 2.571 1.400
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A Appendix

A.1 Feature selection using LASSO

Suppose we have a dataset of a n number of p-dimensional
observations where p >> n. Each observation consists of a
scalar target y and an input vector x ∈ IRp. Linear models, in
the form of

y = Σp
j=1xjβj (1)

where βj are the parameters of the model, serve as a method for
�tting the data and describing the relation between the input
variables x and the target y. In this case, the parameters βj

describe how much weight or relevance each variable has on
the output.

Ordinary least squares (OLS) is a technique for estimat-
ing the optimal parameters in a linear regression model. The
values of the parameters are selected through the principle of
least squares, i.e. minimizing the sum of the residuals squared
between the target y and the prediction of the linear model.
In more general terms, the objective function of OLS can be
written as

min
β

Σn
i=1(y

i − Σp
j=1xjβj)

2. (2)

LASSO formulates the problem of estimating the model pa-
rameters βj as

min
β

Σn
i=1(y

i − Σp
j=1x

i
jβj)

2 + λΣp
j=1 | βj | (3)

where λ > 0 is the L1 regularization parameter that de�nes the
amount of parameters in solution β (Huang and Jojic, 2011).
The value of λ in�uences the sparsity of the model as a higher
λ yields a sparser model.

A.2 Outlier selection algorithm

We include the pseudocode of our algorithm used to select
outliers which we coined bootstrap regressor count. The list of
outliers in order of removal for our selected model can be seen
on Table 9.
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Table 9: Outliers information table for 68 removed subjects. The outliers are sorted from �rst removed (top) to last removed
(bottom). For Gender, 0 means male. For MRI update, 0 means before the update. For Cardiovascular risk factors, 1 indicates
that the participant has at least one risk factor.

Original Gender Education MoCA BDI Cardiovascular MRI Real Predicted Error
ID years risk factor update age age
138 0 15 28 1 0 0 20.986 48.925 27.938
11 0 12 28 7 0 0 63.216 41.2 -22.017
191 0 13 30 1 26.279 58.597 32.318
145 1 15 29 2 0 0 21.148 37.534 16.386
148 0 16 28 1 0 0 32.523 51.862 19.339
197 0 16 30 0 64.332 44.085 -20.247
203 0 16 28 0 66.688 36.46 -30.227
188 1 16 30 0 59.2 46.53 -12.67
112 1 16 26 0 0 0 54.132 26.126 -28.005
173 0 18 29 4 0 0 30.578 46.646 16.068
14 0 12 26 5 0 0 70.879 46.5 -24.38
151 1 15 29 7 0 0 21.156 38.388 17.232
60 0 12 26 4 0 0 77.992 49.638 -28.353
189 1 13 29 1 18.995 43.7 24.706
41 0 16 25 10 1 0 66.058 88.759 22.701
102 1 16 30 4 0 0 22.033 33.363 11.33
17 1 12 28 0 0 0 53.238 43.81 -9.4287
24 0 16 27 0 0 0 66.274 68.174 1.9
83 1 12 29 5 1 0 48.14 62.393 14.253
21 0 12 27 6 1 0 69.233 74.249 5.0159
117 1 16 27 0 1 0 57.808 48.888 -8.9199
91 0 14 28 3 1 0 45.584 36.401 -9.1821
13 1 12 25 2 0 0 63.526 64.032 0.50611
62 0 16 28 2 0 0 57.986 51.748 -6.2379
174 0 16 26 13 0 0 33.364 48.375 15.011
47 1 14 27 2 0 0 68.329 56.067 -12.262
53 0 18 27 2 0 0 52.827 59.26 6.4328
146 0 15 28 3 0 0 20.863 38.166 17.303
178 0 14 24 0 0 0 44.332 52.054 7.7228
8 1 14 27 13 0 0 66.677 58.845 -7.8316
74 0 14 23 2 0 0 40.814 55.778 14.964
142 1 16 29 9 0 0 24.682 47.665 22.983
171 0 16 27 12 0 0 30.249 24.959 -5.2901
36 0 18 27 1 0 0 73.874 85.879 12.005
50 1 14 27 9 0 0 51.926 36.67 -15.256
42 1 16 25 3 0 0 61.299 46.034 -15.264
176 1 14 28 7 0 0 32.255 51.204 18.949
68 0 15 26 0 0 0 64.66 70.07 5.4102
153 0 16 29 0 0 0 24.992 19.216 -5.7753
10 0 12 24 7 0 0 47.197 41.297 -5.8998
52 1 16 24 0 0 0 56.444 61.36 4.9158
133 0 15 28 4 0 0 20.836 43.615 22.779
149 0 19 29 8 0 0 27.775 25.005 -2.7708
160 0 16 27 7 0 0 26.668 37.208 10.539
164 0 16 28 1 0 0 28.523 35.702 7.1789
82 1 16 28 3 0 0 41.129 50.687 9.5583
33 1 16 27 3 0 0 64.236 48.199 -16.036
126 1 16 29 4 0 0 64.907 74.724 9.8172
192 0 12 29 1 61.715 51.577 -10.138
66 1 14 28 6 0 0 53.46 48.049 -5.4116
115 1 23 26 3 1 0 51.353 60.135 8.7817
71 1 12 29 3 0 0 50.077 40.497 -9.5797
119 1 12 28 0 0 0 58.438 38.424 -20.015
75 1 12 26 7 1 0 51.937 44.603 -7.3337
194 0 16 29 1 27.762 25.279 -2.4825
96 1 12 25 9 0 0 45.94 51.556 5.6168
5 1 11 29 1 1 0 64.811 49.403 -15.408
86 1 14 27 2 0 0 46.485 37.747 -8.7384
29 1 14 25 10 0 0 62.247 55.532 -6.7144
77 1 14 29 2 0 0 47.093 53.982 6.8885
67 0 14 26 13 0 0 41.715 44.698 2.9826
84 0 12 24 8 1 0 58.244 67.536 9.2924
63 1 9 23 2 0 0 70.718 65.631 -5.0869
165 1 18 29 10 0 0 31.216 33.575 2.3586
185 0 6 27 1 67.978 63.619 -4.3595
37 0 12 26 0 0 0 71.734 78.768 7.0339
26 0 16 28 0 0 0 72.893 59.126 -13.767
167 1 16 28 5 0 0 27.444 18.552 -8.8918
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