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Abstract

The long-term behaviour of dynamic systems can be classified in two

different regimes, regular or chaotic, depending on the values of the control

parameters, which are kept constant during the time evolution. Starting from

slightly different initial conditions, a regular system converges to the same

final trajectory, whereas a chaotic system follows two distinct trajectories

exponentially diverging from each other.

In spite of these differences, regular and chaotic systems share a com-

mon property: both arrive exponentially fast to their final destiny, becoming

trapped there. In both cases one has finite transient times. This is not a

profitable property in what concerns evolutionary strategies, where the eter-

nal search for new forms, better than the current one, is imperative. That

is why evolutionary dynamic systems tend to tune themselves in very par-

ticular situations in between regular and chaotic regimes. These particular

situations present eternal transients, and the system actually never reaches

its final destiny, preserving diversity. This feature allows the system to visit

other regions of the space of possibilities, not only the tiny region covered by

its final attractor.
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I) Introduction

Any dynamic system has its dynamic variables which evolve as time goes by, and also

its constant parameters. An example is the so-called logistic map

xt+1 = a xt(1− xt) , (1)

where xt is the dynamic variable which follows the trajectory x0, x1, x2 . . . after starting

from the initial seed x0. The time t = 0, 1, 2 . . . is discrete. The control parameter a is

kept constant during the dynamic evolution. This map was introduced a century and a

half ago in order to model population growth dynamics [1], by considering xt = Pt/Pmax,

where Pt is the current population at time (or generation) t, and Pmax is the maximum

population the environment can support. Within this model, a represents the birth rate per

generation, allowing population growth if a > 1 for small values of xt (i.e. Pt <<< Pmax).

The Verhulst death factor (1 − xt) avoids population explosion whenever Pt approaches

the maximum environment capacity Pmax, provided a ≤ 4.

Other dynamic systems cannot be put in a simple, compact analytic language as in

equation (1). Nevertheless, the dynamic variable as well as the rules governing its time

evolution exist, and must be described according to some other language. For instance,

the genetic pool of a real population evolves in time, but cannot be expressed by a single

number xt. At least one needs to count the frequency of each possible allele for all genes,

among the current population at time (or generation) t, storing the results on a one-

dimensional array of frequencies. In this case, instead of a number, the dynamic variable

is this array. In order to consider possible correlations between these genes, for instance

how many individuals share the same set of D alleles, the frequencies must be stored on

a D-dimensional array which becomes the dynamic variable. Instead of frequencies, the

most complete representation is to store, for each individual, a bit 1 or 0 for each possible

present or absent allele: in this case, the current populations is represented by a variable

number of bit-arrays, or bit-strings, one for each alive individual, i.e. the dynamic variable

becomes a P -dimensional array of bit-strings, where the population size P varies. Also the

rules allowing to determine the current genetic status of the population from the knowledge

of its past history depends on its reproduction and death behaviour, environment changes,

and so on. Hardly these rules can be translated into equations relating the current and

previous arrays. Perhaps other more detailed genetic information cannot even be stored in

arrays of numbers, and the mathematical description of the system becomes very difficult.

Many other non-biological evolutionary systems, as the behaviour of an economy with its

various individual agents, or the development of a human language, fall into the same class
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of problems, with more or less the same difficulties.

A very powerful language to express the rules governing the evolution of such a system,

is computer modeling. Let’s consider a diploid population, as a simple example. Each

individual is represented by two B-bit-strings storing, say, B = 1024 bits each. These two

ordered B-strings will be called the individual’s genome, kept fixed during its whole life.

It inherits one B-string from its mother, and the other from its father. First, before its

birth, the mother’s genome is copied, and a random crossover is performed on the copy:

both B-strings are cut in the same random position, and a new B-string is constructed

by joining one random piece with the complementary piece taken from the other string.

This is the B-string inherited from the mother, and the other is constructed by performing

the same process on the father’s genome. Then, M random mutations are introduced, say

M = 1, by flipping M randomly chosen bits (from 0 to 1, or vice-versa) of the newborn

genome. Besides its genome, each newborn also inherits the mother’s family name, without

mutations. During each time step, each individual reproduces F times as mother, say

F = 1. This breeding process is sequentially performed for each alive individual, with the

father being another one, randomly chosen.

The population size P (the number of alive individuals) is kept nearly constant, always

fluctuating around some number P0, say P0 = 1000, by applying the following death rule

after the whole population breeding is over. Each individual i survives with probability

p = xNi+1, where Ni is the number of homozygous 1-bit pairs in its genome (1-bits in

the same position of both B-strings). Before to kill anybody, the value of x is determined

in order to give an overall death rate compensating the appearance of newborns, i.e. by

solving equation

x

P∑

i=1

xNi = P0 , (2)

where the sum runs over all individuals (including newborns), or alternatively

x

∞∑

N=0

H(N)xN = P0 , (3)

where H(N) counts the current number of individuals with N homozygous 1-bit pairs.

Once the value of x is already known, the death roulette is applied sequentially to each

individual i, according to its Ni. We count one more time step (one generation) after this

complete process, breeding and deaths, is applied to the whole population.
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This simple rule strictly follows Darwin’s principles [2]. First, the offspring genomes

are slightly modified copies of the parents’, with the additional crossing mechanism ob-

served in diploid real organisms. These minor modifications from parent to offspring are

performed at random. No further genome modification is performed during each indi-

vidual’s lifetime (no somatic mutations are considered). Second, again following Darwin,

selection acts through the different survival probabilities, depending on some characteris-

tics of the individual’s genome. Here, specifically, the larger the number of homozygous

1-bits it has, the lower is its life expectancy, and thus the lower is the number of offspring

it is supposed to breed. In this case, 1-bits represent harmful mutations. Many different

versions of such a rule can be invented, the first one being the famous Eigen model [3]. The

details of each model are not relevant here, the important feature is their common pur-

pose to mimic Darwin’s evolution working in real time. A few among them allow analytic

treatments by translating the rules into differential equations, and solving them.

These analytic successes are rare. For most models, like the present one, analytic ap-

proaches are hard or impossible: in spite of its simplicity, one cannot translate the above

rules into differential equations. Then, another language is necessary. For instance, C,

FORTRAN, PASCAL or any other computer language which allows one to program the

machine to follow strictly the dynamic rules, starting from some given population, during

many time steps. By using some tricks [4], one can repeat this routine many times with

different randomnesses, in a very fast way. Thus, one can measure the various properties

of interest, their averages and correlations, how much they fluctuate due to randomness,

etc. More important is the possibility to follow the historical evolution, time after time,

an impossible task concerning most examples of real biological evolution. Moreover, one

can even repeat the historical path introducing some controlled modifications, in order to

study their influences. We were able to follow the above defined model for S = 1000 differ-

ent samples, with P0 = 1000 individuals each, with a length genome of B = 1024, during

t = 8192 time steps (generations). First, we have performed some preliminary computer

runs starting from a population with only 0-bits (no harmful mutations), storing at the

end the corresponding populations in order to use them later, as starting points. We ob-

served the same probability distribution of 0 and 1-bits, for all these final populations, after

t = 8192 generations, in spite of the different randomnesses during their past evolutions.

This statistical equilibration is always achieved, provided the number of generations is a

few times larger than P0, even starting from different initial populations (with randomly

assigned harmful mutations, instead of only 0-bits).

Now, re-setting t = 0 for the already equilibrated populations obtained from the

preliminary runs, we performed the S = 1000 observation runs. A different family name
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is given to each individual at generation t = 0. Different randomnesses were used during

the time evolution of each sample. For all of them, we observed that all final individuals

at generation t = 8192 share the same family name (inherited without mutations from the

mother). In other words, after t = 8192 generations, all the P ≈ 1000 alive individuals

are relatives of each other, all descendents from the same original grand-grand-. . .mother.

Let’s call this lineage founder individual, which lived at generation t = 0, the Eve. Each

sample has its own Eve, different from sample to sample. Even by starting just from the

same initial population, different randomnesses lead to different Eves. This is not a novelty,

it is in complete agreement with the coalescence theory, a mathematically well established

set of branching-processes theorems concerning genetic behaviour (see, for instance [5],

for a soft an excellent review). Other similar models also present this behaviour [6,7], as

expected. Some results of our computer simulations are in figure 1a. The open circles show

how the number of not-yet extinct family names evolves in time, averaged for all S = 1000

samples. This number monotonically decreases from the initial value (≈ 1000) at t = 0,

reaches the value 1 after ≈ 1000 generations, and remains constant thereafter. The values

on the vertical axis, figure 1a, are normalised (divided) by the initial population. Also,

only the first 64 generations are shown, but the monotonic decay goes on.

The obvious question concerns the population genetic diversity. Is it compromised by

the fact that all final individuals are relatives, belonging to the same family? Is the final

population genetic pool dominated by Eve’s genome in some sense? In order to answer

these questions, we have measured the correlation between each individual’s genome and

that of Eve, during all the time. In order to perform this task, we have profited from the

possibility of repeating the whole evolution again, starting from exactly the same initial

population and following exactly the same randomness, after knowing who was Eve from a

first run. Only computer modeling allows such a procedure. We simply count the number

of coincident bits at the same position in both genomes of Eve and the individual i. We

performed this counting twice, first comparing the first (second) B-string of Eve with the

first (second) B-string of i. Then, we repeated the counting by comparing the first B-

string of Eve with the second B-string of i, and vice-versa. The largest between these

two counters is normalised (divided) by B. The result (a number in between 0 and 2) is

the genome correlation. It measures how much the genome of i is “similar” to Eve’s. At

each generation, we measured the average of this quantity for all alive individuals, and

subtracted this from the restricted average performed only among Eve’s descendents. The

absolute value of this quantity is shown by pluses in figure 1a. It decays to zero much faster

than the number of family names. This means that, within Eve’s family, the same genetic

diversity of the whole population is reached in few generations, far before it becomes the
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only survival family. Nature is smart enough to preserve (and fast restore, if necessary)

genetic diversity, even being forced to follow the coalescence theorems which dictate that

all individuals belong to the same family, at the end.

We invented the above defined (toy) model only in order to analyse the deep math-

ematical differences between the two decaying curves in figure 1a. The reader can forget

the model hereafter. Later, we will return to the much simpler time-evolution defined by

equation (1), which nevertheless presents all the essential features one can study about dy-

namic systems, at least within the purpose of the present work. This purpose is to discuss

how Nature knows to deal with the two possibilities exemplified in figure 1a, profiting from

one or other mathematical behaviour, in what seems to be a universal law governing all

evolutionary systems. This curious mathematical issue attracts the attention of researchers

at least since [8]. The text is divided as follows. In section II, we analyse the mathemat-

ical properties of both “experimental” curves shown in figure 1a, and some implications

in what concerns evolutionary behaviour. In section III, we return to equation (1) which

also presents both mathematical behaviours, depending on the value of the parameter a

fixed by the user. This equation has the advantages of allowing some analytical treatment

and of being much more easily programmed on a computer. In section IV, we present our

main argument. Conclusions are in section V.

II) Fast × Slow Decays, or

Exponential × Power Law Behaviours

Figure 1a shows two decaying quantities, one fast (pluses), and the other slow (circles).

They are different averaged quantities concerning the same dynamic population model, and

were measured from a series of computer simulations. Pluses display the genetic similarity

between a founder individual (Eve) which lived at generation t = 0 and all its descendents

alive at generation t. Let’s call g this quantity. Its fast decay gives rise to a fast spread of

genetic diversity among the whole population. Eve’s descendents fast “forget” their genetic

origin: the in-family differences between their genomes fast become statistically the same

as the whole population. In order to infer the mathematical form of this “experimental”

curve, we adopted the trick of showing the same data in figure 1b, now plotted according

to a logarithmic vertical scale (equally spaced powers of 10). The first obvious effect of this

trick is to enhance for the eyes the g-fluctuations appearing after generation t ≈ 20, hardly

observable in figure 1a. These fluctuations will remain forever, and are due to the simple
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fact that both the population size (P0 = 1000) and the number of statistically distinct

samples (S = 1000) are finite. Indeed, from the product P0S = 106, one can expect

fluctuations around 1/
√
P0S = 10−3, as really observed in figure 1b. These fluctuations

are not important at all in what concerns our conceptual interpretation: would we have

simulated a larger population size with a larger number of samples, they would be pushed

to below any previously defined tolerance one wants.

The really important feature of adopting a non-linear, logarithmic vertical scale in

figure 1b is the straight line observed before the fluctuations dominate the scenario. From

it, we can infer that g follows an exponential decay, i.e.

gt = g0 e
−λt , (4)

where e = 2.718282 . . . is the natural basis for logarithms, and the constant g0 = 1 is

unimportant. From the slope of this plot, fitted between t = 0 and t = 20 (dotted line),

we can also obtain the “experimental” value for the constant λ which depends on the

mutation rate M . In this case, we found λ ∼= 0.21.

Circles display the fraction of yet-alive families (lineages) relative to the founder popu-

lation at t = 0 (each individual at t = 0 is a family founder, and pass its family name to its

descendents). Let’s call f this fraction. It decays much slower than g, and certainly does

not fit to an exponential function. The mere 64 generations shown along the horizontal

axis common to both figures 1a and 1b are not enough to fully observe the decay of f .

Considering the observed fact that only one family eventually survives, among the initial

number P0 = 1000, we can conclude that the current value of f , at t = 64, is still far above

the final, definitive figure 10−3. Thus, in order to better observe the slow decay of f , let’s

adopt the trick once more, now also along the horizontal axis. Figure 1c shows the same

data again, with logarithm scale in both axis. The difference is the much larger number of

generations shown now, in figure 1c, up to t = 8192. This is a too large number of points

for a plot, thus we show only a few of them, namely those corresponding to generations

which are integer powers of 2 (t = 1, 2, 4, 8 . . . 8192), for clarity.

Now, in figure 1c, the fraction f of alive families fits to a straight (continuous) line

after some few initial generations, leading to the mathematical relation

ft = f1 t
−α , (5)

called a power law, where f1 is another unimportant constant. What matters is the

universal value α = 1, predicted by coalescence theory for a very wide class of systems

to which our toy model belongs. Measuring the slope of our “experimental” curve, at
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its inflection point, we get α ∼= 0.98 in agreement with the theory. One can modify the

particular, naive dynamic rules described in last section for our toy model, as one wants,

and the universal value α = 1 will insistently re-appear. More important, it also describes

many actually observed real population data. It is our first example of universality, thanks

to which some naive models can describe real situations. We will return to this fundamental

point, later.

The important concept to be taken into account is the deep difference concerning the

fast exponential behaviour e−λt versus the slow power law t−α. It is so deep, as we will

see later, that it is rather a qualitative distinction, not merely a quantitative difference. It

concerns the distinction between any time interval, no matter how long it is, and eternity.

Any evolutionary process must be eternal (if it stops after some finite time, it no longer

evolves). Thus, evolution is expected to be mathematically described by some power laws.

It is interesting to note that, besides power laws, Nature also uses the fast exponential

behaviours, when necessary within each particular evolutionary system (for instance, in

order to restore genetic diversity in our model). However, the quantities related with

these exponential behaviours are not universal, as the value λ ∼= 0.21, equation (4). It

depends on the mutation rate M : the larger M , the larger is λ and faster Eve’s genome is

“forgotten”. These quantities also depend on the particular rule one adopts. For instance,

would we have considered haploid, asexual populations, then the value of λ would be

smaller: driven only by mutations, without recombination (crossing) within two distinct

parents’ genomes, the genetic diversity spreads slower, although yet exponentially fast.

On the other hand, the exponents defining the power laws, as α = 1 in equation (5),

are insensitive to particular parameters and universally valid for wide classes of different

systems and models.

Also important is to note that a power law, equation (5) for instance, never appears

alone. When a given system presents such a mathematical dependence between two par-

ticular variables, many other quantities also depend on each other by power law relations

with universal exponents. In our model simulations, we have also measured the size of

each family, i.e. the total number of individuals which belonged to this family during all

its history. Then, we classified these families according to their sizes, counting how many

of them presented just 1 individual (no descendents at all, the smallest conceivable size),

how many presented 2 or 3 individuals (second smallest size), how many presented 4, 5,

6 or 7 individuals, and so on. We choose family size intervals increasing as the integer

powers of 2, a traditional procedure usually adopted in order to improve statistics. The

occurrence of families according to their sizes is plotted in figure 2, again a power law.

A similar counting was performed half a century ago by Gutenberg and Richter [9], in
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what concerns the occurrence of earthquakes according to their intensities. The number

of already extinct biological genera as a function of their lifetime [10] is another example.

Many others can be found in [11].

Denoting by s the family size and by n their counter per size, our “experimental” data

in figure 2 leads to

n = n1 s
−β , (6)

where the new exponent β = 1/2 can be related to the previous one, α = 1, by following

the same coalescence theory. By fitting our data (dotted line in figure 2), we find β ∼= 0.50

again in agreement with the theory. Normally, the various exponents α, β, etc, governing

the universal behaviour of a whole class of systems are not independent, but related to

each other by some simple relations.

One can argue that, in practical terms, the power law behaviour in equation (5) cannot

continue eternally, once the number of alive families eventually drops to a single, definitive

one. However, this is only due to the finite population size P0 = 1000 of our example.

Would we have considered a 10-fold larger population, and the waiting time for coalescence

to a single family would also be multiplied by 10. Accordingly, 10-fold larger family sizes

would appear, and the plot of figure 2 (or 1c) would suffer a translation to the right by

adding one more 0-digit to each horizontal axis label. A further equivalent translation

would occur for a 100-fold larger population, and so on. For an “ideal” infinite population,

coalescence will never occur, and all family sizes and lifetimes would be expected to appear.

In other words, the absence of a size scale gives rise to the corresponding absence of a time

scale, and vice-versa. Other quantities also become scaleless. On the other hand, the

finite-size of a given system necessarily limits also its characteristic scales of time, energy,

mass, etc.

III) Lessons from a Simple Example

Let’s return to the logistic map, equation (1), restricting ourselves to the intervals

0 < x0 < 1 for the initial seed, and 0 < a < 4 for the control parameter. This last

restriction forces the dynamic variable xt to stay forever within the same interval 0 < xt < 1

as the initial seed, in agreement with the population problem for which this map was

invented [1]. The reader can easily program equation (1) on her/his pocket calculator,
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and appreciate the many different dynamic behaviours one can get for the variable xt, by

choosing distinct values for the fixed control parameter a. Indeed, this is just what was

done two decades ago by the now-famous physicist M.J. Feingenbaum. Experimenting with

equation (1) on his pocket calculator, Feigenbaum discovered the so-called period-doubling

route to chaos and the universal behaviour valid for a huge class of distinct dynamic

systems [12]. This is another example of universality: precisely the same universal values

obtained by Feigenbaum from equation (1) were later measured in a lot of real, different

systems, as well as a lot of other, more complicated computer models. Reference [13] is

a friendly reading about this discovery. Here, we will use the logistic map as a guiding

example. One can follow all our reasonings through numerical tests performed on a pocket

calculator or computer (indeed, I strongly recommend the reader to do so). The concepts

and conclusions, however, are completely general, independent of equation (1).

A first observation is that the (normalised) population xt vanishes for large values

of t, when one chooses a < 1. On the other hand, xt reaches a stable long-term value if

1 < a < 3. There is a transition between population stability and extinction, by crossing

the critical point a = a0 = 1. In both cases, stability or extinction, the attractor (i.e. the

final destiny) is a single fixed point: x∗ = 0 for a < 1; or x∗ = 1− 1/a for 1 < a < 3. The

transient time roughly corresponds to the number of iterations one needs to perform from

the initial seed x0 until reaching the final fixed point x∗, within the machine accuracy. The

closer the control parameter a is to the critical value a0 = 1, the larger is this transient

time. The particular behaviour at the critical point will be discussed later. For the

moment, let’s choose a near 1. One can verify that xt evolves according to an exponential

decaying function

xt − x∗ ∼ e−|a−1|t , (7)

where ∼ means proportionality, and | . . . | represents the absolute value. This form can be

obtained numerically, for instance by plotting the logarithm of xt − x∗ versus t, verifying

that this corresponds to a straight line (for large values of t), then measuring its slope and

comparing the result with |a−1|. We have already followed this numerical recipe in figure

1b and the corresponding equation (4). In the present case, alternatively, one can rewrite

equation (1) as

dy

dt
= −|a− 1|y − ay2 , (8)

by introducing a new variable yt = xt − x∗, where the difference yt+1 − yt was identified

with the derivative dy/dt (this procedure is valid for large values of t). Provided a 6= 1,
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i.e. the system is near but not at the critical point, one can neglect the quadratic term

ay2 in (8), compared with the other, larger term |a−1|y. Then, the solution of this simple

differential equation is just expression (7).

The exponential decay (7) allows us to define precisely the transient time

τ =
1

|a− 1| = |a− 1|−1 , (9)

as the time during which the difference xt−x∗ decays by a factor of e ≈ 2.7. Alternatively,

we can resort to an analogy with a radioactive sample, for which τ corresponds also to the

mean lifetime

τ =

∫∞

0
dt t e−|a−1|t

∫∞

0
dt e−|a−1|t

=
1

|a− 1| , (10)

i.e. the time one needs to wait for the radioactive emission from a particular nucleus to

occur, on average. In practice, τ is roughly the time one needs to wait for the radioactive

sample become dangerless. In general, any system obeying an exponential decay has a

characteristic time τ well defined by equation (10), representing its natural time scale,

during which all important phenomena occur. One does not need to consider times much

larger than τ , because they have no effect on the system behaviour. In other words, τ

roughly measures the system’s lifetime, after which all activities cease.

Nature was kind enough to choose the exponential mathematical form for radioactive

decays: because of that, the integrals in equation (10) converge, and we get a finite value

for τ (maybe large, but finite). This is not the case for other dynamic systems at critical

situations, for instance the logistic map with a = a0 = 1. In this case, one can no longer

neglect the quadratic term y2 in equation (8), because the other term |a − 1|y vanishes,

and the solution of this differential equation is now the power law decay

xt − x∗ ∼ t−1 , (11)

instead of the exponential form (7) valid for non-critical situations. Trying to replace

the exponential form appearing twice in equation (10) by the power law (11), one would

be in trouble because the integrals no longer converge to finite values. Accordingly, one

can no longer perform the division in equation (9): the transient time is now infinite.

These critical dynamic systems do not have a characteristic time: all time scales are

important. Nature is not always so kind as in the case of radioactivity. For instance,

the probability of having an earthquake decays for increasing intensities, obeying a power

law (in this case, earthquake intensity replaces the time). This means that there is not
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a characteristic earthquake intensity beyond which the probability of occurrence can be

neglected. All intensities are expected to occur some day. Would this distribution be an

exponential, engineers could design buildings strong enough to support the characteristic

intensity, and earthquakes would be not such a big problem as they are. Unfortunately, this

characteristic earthquake intensity does not exist, according to the power law behaviour

reported by Gutenberg and Richter [9]. Again, due to the fact that the Earth itself is finite,

some earthquake intensity upper bound certainly exists, beyond which the Gutenberg and

Richter law is no longer valid. However, nobody knows what could be this finite-size

characteristic intensity: large, extremely destructive earthquakes could occur still below

this unknown bound.

The distinguishing feature of the isolated critical point a = a0 = 1, among all con-

tinuous distributed possibilities 0 < a < 3, is the eternal transient followed by the

dynamic system, equation (1). Mathematically, instead of an ordinary exponential decay

which limits the system history to a finite lifetime, at critical situations one has power

law decays without time limits. This mathematical feature is completely general for all

dynamic systems, and is indeed taken as the definition of criticality. At these situations,

the system presents long-term memory, i.e. its current state is a consequence of many

features accumulated during a long past history. Many “strange” properties appear only

at these situations. For instance, a widespread class of numerical devices called relaxation

methods consist in finding the true solution of some problem by gradually performing small

modifications (or mutations) on an initially posed approximation. It is a dynamic path to

the solution. In principle, it would be enough to design a dynamic rule whose attractor

has been previously shown to coincide with the desired solution. However, if the chosen

dynamic rule is critical, the user will be in trouble. First, because the critical slowing

down forces the computer time to be prohibitively large. Second, and much worse, be-

cause the final (finite precision) numeric answer will be wrong! The reader can verify both

characteristics within the logistic map with a = a0 = 1. In particular, in case the reader

is patient enough to wait for convergence, the final reached value x∞ will differ from the

right answer x∗ = 0 by half the digit precision of her/his pocket calculator — half of the

digits will be wrong because of the square in equation (8). Also, the wrong digits depend

on the initial seed introduced at the very beginning, a symptom of the long-term memory.

The concepts of short versus long-term memory can be better understood by perform-

ing a simple exercise on both equations (4) and (5): try to express the next value gt+1

(or ft+1) as a function of only the current one, gt (or ft). In the exponential case (4),

this is possible, and the result is simply gt+1 = e−λgt. This means that g0, g1, g2, . . . is a

Markovian sequence, i.e. each term depends only on the previous one, not on remote past
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terms like g0. The system “remembers” only one past step. In the power law case (5),

however, the exercise is fruitless: the best one can do is to write ft+1 = [f
−1/α
t +f

−1/α
1 ]−α,

i.e. the next term ft+1 depends not only on the previous one, ft, but also on the very

first, f1. The system always “remembers” its birth, no matter how old it is. Note, how-

ever, that both g and f are quantities concerning the same dynamic system, namely our

toy population model treated before. Note also that the system itself is Markovian, be-

cause the next generation is constructed exclusively from the current one. Thus, even a

Markovian system can exhibit long-term memory behaviour concerning some particular

quantities which follow power law decays. Other exponentially decaying quantities could

also coexist within the same system, for which the memory is instead short term. Of

course, this simultaneous occurrence of both forms is not possible for simple systems as

the logistic map, which presents only one varying quantity, xt: for some values of the fixed

parameter a its memory is short, as in equation (7), for others it is long-term, as in (11).

Critical, long-term memory situations normally occur at precisely tuned transition

points where the system behaviour changes qualitatively, such as the temperature above

which a magnet can no longer retain its spontaneous magnetisation, or a fluid can no longer

be found in both (coexisting) liquid and vapour forms. These examples are static, in the

sense that thermal equilibrium is supposed to be already reached for both the magnet and

the fluid: universal power laws in space (instead of time) govern the system behaviour.

Of course, also the path previously followed towards thermal equilibrium was governed

by a universal power law decay in time. As before, the term “universal” means the same

numerical values for some characteristic exponents, like the −1 in equation (11), holding for

completely distinct systems. Both the fluid compressibility and the magnetic susceptibility

diverge at the critical point according to the same critical exponent, valid for a huge class

of fluids and magnets. This universality is a consequence of the lack of both a characteristic

time and length scales: most microscopic or short term details are not important for those

scaleless (critical) systems. Often, a very simplified model is enough to reproduce, even

in a quantitative sense, the complex behaviour observed in a much more complicated, real

system. For instance, as we have already treated, simplified mathematical models based

on Darwin’s principles could allow one to follow evolution features step by step, in real

time — see [14] for a review.

The theoretical explanation for the universality observed in equilibrium critical phe-

nomena is due to the Nobel laureate K.G. Wilson [15]. Concerning critical dynamics, an

equivalent complete theory is still lacking. Nevertheless, it is well known that systems

evolving according to a critical dynamics (i.e. a time decay to equilibrium according to a

power law) normally also present static critical behaviour (i.e. power law relations between
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quantities other than time). Due to the long times involved in such situations, the dynamic

critical behaviour of many systems can only be observed indirectly, through these other

timeless power law relations. Biological evolution is an example, where the already quoted

statistics of mass extinction are found to obey power laws, both from fossil records data

[10] and mathematical models [16]. Earthquakes intensity distribution is another example.

In most cases the dynamical criticality is the fundamental one, although hard or impos-

sible to follow step by step. The long-term memory of the system is responsible for its

whole critical behaviour. Although very interesting and important, the universal features

found in critical systems are not directly linked to our main argument concerning evolution

strategies. Before entering into this point, let’s stress that many dynamic systems are able

to adapt themselves according to the environment, by self organizing some of their own

control parameters, with no need to resort to external tuning mechanisms. In particular,

a very common feature is the so-called self organized criticality, where the system keeps

itself at critical situations [17]. Among others, biological evolution was proposed to belong

to this class of system [18] (see also [19] for an excellent explanation).

Back to the logistic map, there are other critical points. The next one is a = a1 = 3,

beyond which the attractor is no longer a single fixed point. Instead, for 3 < a < 1+
√
6 the

attractor is a cycle with period 2, i.e. a sequence of two alternating values x∗
1, x

∗
2, x

∗
1, x

∗
2, x

∗
1,

x∗
2 . . .. The next critical point is a = a2 = 1+

√
6 ≈ 3.449, after which the attractor become

a 4-period cycle. There is a cascade of critical points a0, a1, a2, a3 . . ., where successive

period doublings occur. This cascade ends at a∞ ≈ 3.570, after which one can find chaotic

behaviour, with no longer periodic repetitions. Even inside the chaotic region a∞ < a < 4

some periodic “windows” appear again, as one just after a = A3 = 1 +
√
8 ≈ 3.828 where

a period-3 cycle holds. Thus, one has a series of transitions from one kind of attractor

to another (vanishing population, fixed point, periodic cycles, chaotic attractors, odd-

periodic cycles, chaotic again, and so on). The system is critical only at these transition

points, but still presents exponential decays (and thus finite transients) in between two

such transition points, including the chaotic intervals. The chaotic behaviour concerns the

diverging character of two initially neighbouring trajectories, having nothing to do with

how fast both reach the attractor. In what concerns the transient lifetime, both regular

(fixed points or periodic cycles) and chaotic systems are not critical, both approaching the

corresponding attractor exponentially fast, according to short term memories. So, we are

not interested in classifying dynamic systems in chaotic or regular, but in distinguishing the

very particular critical, long-term memory situations among the whole set of possibilities.

For the logistic map, for instance, these situations occur only at the very precise values

a0, a1, a2, a3 . . . a∞ . . . A3 . . . of the control parameter. Figure 3 shows the so-called
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Lyapunov exponent measuring the exponential rate of convergence (negative values) or

divergence (positive) of two initially slightly different trajectories, as a function of the

control parameter a. The critical situations correspond to zero Lyapunov exponent, at

the particular positions where the plot crosses (or touches) the horizontal axis. At these

situations, the rates of convergence or divergence no longer follow the fast exponential

way. Instead, it is replaced by the power law way, and further mathematical analysis [20]

is needed. This analysis is similar to what we have done by keeping explicitly the term

−y2 in equation (8) for the particular case a = 1, obtaining the power law (11). For most

values of a, however, the system is either regular (below the horizontal axis, in figure 3) or

chaotic (above), both cases corresponding to non critical, short term memory behaviour.

IV) Why do Evolutionary Systems Stick to the Edge of Chaos

Evolution is an eternal, endless process. Thus, it cannot occur in a closed, finite system

because size limits correspond also to time limits, according to our previous analysis. Any

dynamic activity occurring within a finite system completely isolated from the rest of

the universe will eventually cease, after a finite time. This ephemeral activity is rather

a transient before reaching final static equilibrium, not evolution. A single species never

evolves in isolation, it is always under the influence of other species. Nevertheless, it is

hard to conceive the whole universe as the evolving system to be studied. The practical

approach is to follow only the behaviour of a small part of the universe. Then, one needs

to consider also the environment in which this finite system is embedded. Such a system

is finite, but not closed. Instead, it is an open dynamic system, constantly fed from

outside with mass, energy, heat, information, etc. It also constantly throws away these

same entities, after processing them in some way. It is a dissipative system. One needs to

have always in mind that this separation of a small part of the universe is only a working

procedure, an artificial approximation which could be very good up to certain limit scales

of time, size, energy, etc. Beyond these limits, this approximation fails, and some parts of

the former “environment” must be included into a new, enlarged “system” to be studied.

Being dissipative, this kind of dynamic evolution tends to converge to some attractor,

becoming irreversibly trapped there forever. One of the dissipated quantities during this

process is the entropy, which measures the number of available states, related to the current

options the system could follow from now on. Considering the whole initial space of states,

only a shrinking subset of them remain available, as time goes by. The system continuously
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looses its ability to explore the whole space of states. Eventually reaching the attractor, it

becomes restricted to a subspace of the whole initial set of possibilities. Compared with the

whole, this subspace is a null measure set, like a needle in a haystack: by tossing a random

state among all the initially available options, the probability to become inside the final

subspace is null. In other words, the dimension of the final subspace of states is smaller

than the dimension of the initially available space, like a line inside a plane, or a plane

inside the 3-dimensional space. Note that such a dimensional reduction is much drastic

than a finite-fraction decrement, because what remains at the end is a null fraction of the

whole. The final attractor may also be a fractal, i.e. it may have a non-integer dimension,

anyway smaller than that of the whole space.

Within the mathematical description of evolutionary systems, the dimension of the

space of states is normally very high, as we have exemplified in section I. Even the simplest

approach of counting the frequencies of all possible alleles for each gene, storing the results

on an array, would correspond to a high dimension, namely the total number of possible

alleles. In order to study also correlations between these alleles, a larger yet dimension

arises. By storing separate informations concerning each individual, as in our population

dynamic model discussed before, the dimension increases even more. As time goes by,

the mere extinction of a single allele would correspond to a dimension reduction with its

huge and irreversible trapping effect. Concerning evolution strategies, such a dissipative

dynamics is not convenient. Indeed, after being trapped into the tiny attractor, the prob-

ability of exploring the remainder set of possibilities (searching for forms better than the

current one) is null. On the other hand, evolution within a limited size system cannot be

described by a non-dissipative, conservative dynamics which theoretically could solve the

problem by keeping it forever visiting all possible options. This situation would correspond

to a closed object, isolated from the rest of the universe, not to a finite-but-open dynamic

system we need in order to take the environment into account.

How Nature solves this puzzle? Let’s consider a wonderful example, extracted from

[21], an amazing text which treats exactly the same subject as the present work, namely the

importance of diversity, from a completely distinct (and much more interesting) point of

view. A recessive genetic disease affects homozygous individuals carrying twice the defec-

tive allele. An example is phenylketonuria, for which the current frequency of the defective

allele p in France is estimated to be x = 0.95%. Let’s suppose that all homozygous pp

individuals die before reproduction, and that heterozygous Np individuals do not present

any handicap at all (N represents the normal allele). It is obvious that the frequency x

of this harmful allele p will decrease, eventually becoming extinct. However, only after 6

generations, i.e. one and a half century from now, the current french figure would drop
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to x = 0.90%. Moreover, after 95 generations, i.e. more than twenty centuries from now,

the defective allele frequency would drop to x = 0.50%, still a very small “improvement”.

This extremely slow time decay for the frequency of a defective allele could seem paradox-

ical, if one adopts the restricted reasoning of considering the evolution of this allele alone,

separated from the whole set of genes within each individual. Natural selection, however,

acts on each individual as a whole, according to its global characteristics. Within this ex-

ample, pp individuals die but the much more numerous Np individuals remain untouched,

avoiding the extinction of allele p (by delaying it sine die). Taking the opposed reasoning

of considering the survival of the whole species, one can argue that instead of a paradox,

the slow frequency decay of p is just the expected behaviour, because this allele could have

some beneficial function in some far future, under unpredictable modified environment

conditions. Indeed, some examples of imune behaviour against some diseases are known

to hold among individuals affected by other genetic diseases. According to this reasoning,

Nature adopts the precaution of preserving these (nowadays) “bad” genes.

The figures given by Albert Jacquard [21] concerning the frequency x of phenylke-

tonuria allele p came from the Hardy-Weinberg fundamental law of genetics. He simply

supposes random parent pairings, according to the frequencies (1 − xt)
2 for NN and

2xt(1 − xt) for Np individuals, at the current generation t, composing from these pair-

ings the next generation. For instance, one can sum up the probabilities corresponding to

all pp-offspring possibilities, equating the result to x2
t+1, from which one can obtain the

frequency

xt+1 =
xt

1 + xt

∼= xt (1− xt) (12)

for the p allele at the next generation t + 1. The Lyapunov exponent of this equation is

exactly zero, i.e. it corresponds to a critical dynamics. The approximation on the right-

hand side of (12) is valid for small values of x. It is amazing, but not a surprise, to verify

that it is just the logistic map (1) at its critical point a = a0 = 1. Thus, Nature’s

strategy to avoid the extintion of p consists in adopting a critical dynamic evolution for

it, according to which its frequency power law decay is very slow, following an infinite

transient time. Within the genetic high-dimensional space of the evolving population, the

particular direction corresponding to p allele remains always available, due to a small but

never null occupation. The critical dynamics avoids the dimensional reduction which would

be caused by an eventual p extinction. Under a practical point of view, as the population

is finite, the extinction time for p would be also finite, nevertheless proportional to the

average number of individuals, as we have already analysed, and so very large.

For evolutionary purposes, it is imperative to avoid the tiny attractor provided by the
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dissipative dynamics, and this is an automatic feature at the critical situations for which

the system evolves forever in transients. The evolutionary system naturally tune their

internal parameters in order to stay at such a critical situation. The tiny attractor can

be interpreted as the current “best” form, in singular. However, the selection mechanism

needs diversity in order to obtain the current “best” forms, in plural, i.e. some enlarged

neighbourhood around the tiny attractor. Critical dynamics provides just this feature: one

stays forever near the current “best”, but never trapped into their tiny cage. In this way,

any environment modification which slightly changes the “best” position of the space of

possibilities, is likely to match some other neighbouring form kept alive together the former

“best”. Any eugenic attempt to de-tune the evolving system out from its critical situation,

performed in order to accelerate the selection of the “best” form, again in singular, could be

disatrous [22]. Indeed, this procedure would replace a broad, critical distribution of many

coexisting forms by a sharp distribution of only one “best” form. The de-tuned non-critical

dynamics drives the system to this optimized, single form, according to a fast exponential

decay. This process could be considered an efficient, short term optimization strategy, but

it definitely does not correspond to evolution. The selection mechanism cannot proceed

from this point on, due to the lack of diversity: the now-extinct neighbouring forms could

miss under some future environment change. Critical dynamics provide the degree of

diversity the selection process needs. If the dynamic process is not critical, one has no

diversity, thus no selection, and finally no evolution.

In short, evolutionary systems stick to critical situations (the edge of chaos), because

within all other possibilities (regular or chaotic regimes) they rapidly become trapped into

low-dimensional attractors, loosing diversity. This trapping feature forbids the system

to explore the whole set of available possibilities inside its higher-dimensional space of

states. Although being of fundamental importance, this feature is only the beginning of

the whole story about evolutionary strategies. In order to design an efficient dynamic

evolutionary strategy, one must first be sure to stay always at critical situations. But this

is not enough! By simply following a critical one-dimensional trajectory, one would not

explore the whole space of possibilities. It would be very hard to explore a high-dimensional

space by following one-dimensional trajectories: infinitely many of them must be tested.

In order to overcome this difficulty, a lot of alternative optimization strategies exist: some

famous are simulated annealing [23], its generalizations [24] and genetic algorithms [25].

Among these and many others, we will quote only the one Nature has chosen for biological

evolution, namely the endless mutation/selection approach discovered by Darwin more

than a century and half ago [2] — see also [26].

According to Darwin, random mutations occur during reproduction, the offspring
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being slightly different from their parents. Translated to our language, and considering

only asexual reproduction for simplicity, this means a single point (the parent) in our space

of possibilities generating many other neighbouring points (the offspring), in a branching

process. Considering the offspring’s offspring, and so on, this would generate a ramified

tree eventually covering the whole space of possibilities in parallel, optimizing the search

for better forms. However, this would cause population explosion, and some branches

of this tree are actually cut by natural selection, i.e. the individuals best adapted to

the current environment have more offspring (growing branches), while the worst adapted

ones tend to die without generating offspring (dangling branches). Instead of a single one-

dimensional trajectory, this tree is a low-dimensional object avoiding populations explosion,

the growing branches exploring the most promising parts of the whole space of possibilities.

The dimension of this tree is itself a varying quantity, allowing the occurrence of suddent

large events. Of course, this evolution strategy would not work at all if the dynamic would

not be a critical one. Thus, the natural selection process also acts in driving the dynamic

evolution to critical situations, avoiding trappings. This can be done in many ways. Within

an evolving population, for instance, the average birth rate (equivalent to the logistic map

parameter a) can be self-organized into critical values. Other parameters can also play

the same role, and after some external modification, they can be re-tuned according to

the new environment conditions. This automatic re-tuning mechanism towards criticality

introduces a new level into the whole dynamic process. However, this re-tuning must

be performed according to a fast rate, not to be confused with the low rate observed

when criticality is already achieved. Once more, Nature is challenged to deal with both

exponential (fast) and power law (slow) decaying rates.

As we have already discussed, the reasoning of last paragraph is not complete. The

particular evolving species we considered is not alone. Think about the coevolution of

many species. The space of possibilities where one particular species evolves is not a static

landscape. This search is a branching process performed over an evolving landscape,

because the environment itself depends on the evolution of other species. Thus, the search

for better forms is an endless process: one can be comfortably sit on an optimum state

today, i.e. the best possible situation among the whole neighbourhood, but tomorrow this

same state may be worse than some neighbouring competitor, due to the slow movement

of the underlying landscape. Under the global point of view, the above quoted re-tuning

mechanism of parameters within each species is actually an internal job belonging to the

evolution of the global system. They are not parameters controling the behaviour of

each species separately, they are dynamic variables internal to the whole set of coevolving

species. Under a larger yet point of view, a whole system of interacting species, for instance
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the ones living in Madagascar, is also influenced by other similar systems. Thus the very

particular set of “parameters” allowing for the odd wildlife observed in Madagascar is

only, actually, part of the current state of the flora and fauna evolving in larger Africa.

Moreover, the oddness of Africa itself is part of the current state of the evolving Earth or

Gaia, again increasing once more the time and size scales, and so on (instead, we would

have written earth and gaia). That is why evolution occurs in a scaleless, critical way,

both in time and space.

Together with random mutations and natural selection, this self-organized criticality

in now considered as a third leg needed to keep stable the basis for biological evolution

theory, as reviewed in [19]. Although catastrophic events are crucial for the behaviour of

critical dynamic systems, they do not play any special role as compared to small events

(both follow the same scale-free probability distribution power law). However, the study

of this amazing subject goes beyond the scope of the present work. Indeed, only recently

it was recognized as an inportant new scientific deep stuff, as beautifully presented in [11].

The important role played by extremal dynamics is reviewed in [27].

Nevertheless, this third leg is not a further ingredient, being a consequence of the

other two. Mutations and selection act on the individual, microscopic level, following

a gradual smooth rate. However, it is not correct to conclude that their effect on the

macroscopic level of the whole population would be also gradual and smooth. This wrong

conclusion is based on the usual linear reasoning according to which the sum of small

increments will be also small. However, this reasoning does not hold when one adds

infinitely many small increments, whose sum may be very large. This is just the case of

long-term memory systems, which “remember” infinitely many small steps from the past.

Evolution is not a linear system. Indeed, this is an old puzzle since Darwin, due to the

fact that fossil data show some catastrophic biological extinctions as well as periods of

large speciation activity, the so-called punctuated equilibrium [28]. Due to the long-term,

critical memory, small modifications at the microscopic level can accumulate themselves

during long periods of time, suddently overflowing into a fast catastrophic event. This

feature, however, is not due to a third, independent ingredient which would be missing

in original Darwin’s principles. On the contrary, criticality is a long-term consequence of

the short-term mutation/selection process repeated ad infinitum. Of course, the idea of

catastrophic, fast events being a consequence of infinitely many small steps, accumulated

during an infinite past, has emerged only after computers allow us to follow evolution

models step by step, in real time. Darwin could not imagine such a non-linear mechanism

at his time, not because it would not be a consequence of his principles (it is!), but because

he missed the right instrument, i.e. the computer, to drive his imagination a little bit
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further.

A very common argument against evolution theory is based on some estimates of the

time needed to get the biological complexity observed nowadays, comparing them with

the age of the universe. The counter-argument is that, in performing such estimates, one

cannot take into account all the set of potential possibilities, but only the ones already

selected by the critical branching process, at each step. As a consequence, the estimated

times are actually much smaller [19].

V) Conclusions

We have proposed here that evolutionary strategies must follow critical dynamics

in which slow power law decays replace the wide spread fast exponential way to reach

equilibrium. Equilibrium situations, even in chaotic systems, represent a tiny fraction of

the whole set of possibilities. Thus, any system which rapidly reaches its equilibrium looses

the chance of searching for new, better forms in the high-dimensional space of possibilities.

On the other hand, by following a critical dynamics, the system actually never reaches its

equilibrium situation, staying forever in transients. This opens for the system the chance of

eternal search for better forms, i.e. opens the whole space of possibilities instead of only the

tiny fraction represented by the equilibrium states. This is a pre-condition for any efficient

evolutionary strategy, and can be fulfilled by self-organization of the parameters controling

the system’s behaviour. The evolutionary strategy itself starts at this point (the dynamic

criticality already assured), and deals with the problem of efficiently walking around a

high-dimensional space through low-dimensional trajectories. Many such strategies exist,

including the biological one discovered by Darwin, which naturally leads to a critical

dynamics. The important here is that none of these strategies would be efficient if the

corresponding dynamic rule would not be a critical one.

Natural selection is based on the available diversity of options. Both regular and

chaotic dynamics drive the system quickly to its tiny attractor, where diversity is then

irreversibly lost. Critical dynamics, on the other hand, keep the system forever near but

never restricted to the tiny attractor, providing the necessary diversity which allows the

selection process to goes on, eternally. In practical terms, for a finite system, “eternity”

means some large time of the same order of magnitude of the populations itself. Within a

non-critical dynamics, however, any activity ceases much before such a time, independently

of the population size.

21



Aknowledgements
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Figure Captions

fig. 1 Time decaying of two different quantities f and g, both concerning the same popu-

lation dynamics. Each founder individual at generation t = 0 inaugurates a family,

and all its descendents carry its family name: f (circles) measures the still alive frac-

tion of families. After thousands of generations, only one family remains alive, all

current individuals being descendents from the same family founder, Eve. The corre-

lation (similarity) between Eve’s genome and all other individuals were also measured.

Genetically, Eve is more similar to its own descendents than the average among all

individuals of the same generation. The difference g (pluses), however, decays with

time much faster than the number of families. Genetic diversity evolves very fast, even

within a very slow family number decay. 1a) linear scale in both axis; 1b) vertical

logarithm scale, same data; 1c) logarithm scale in both axis, same data again, within

a much larger time scale.

fig. 2 For the same population dynamics corresponding to figure 1, we measured the number

n of families classified according to their sizes s (total number of individuals sharing

the same family name).

fig. 3 Lyapunov exponent for the logistic map, equation (1), as a function of the control

parameter a. Below, a detail inside the interval 3 < a < 4. This dynamic system is

regular below the horizontal axis (negative exponents), and chaotic above (positive).

Instead, the present text concerns only the relatively few critical situations where the

plot crosses (or touches) the horizontal axis.
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