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Abstract

In most natural sciences there is currently the insight that it is necessary
to bridge gaps between different processes which can be observed on different
scales. This is especially true in the field of chemical reactions where the abili-
ties to form bonds between different types of atoms and molecules create much
of the properties we experience in our everyday life, especially in all biological
activity. There are essentially two types of processes related to biochemical re-
action networks, the interactions among molecules and interactions involving
their conformational changes, so in a sense, their internal state. The first type
of processes can be conveniently approximated by the so-called mass-action
kinetics, but this is not necessarily so for the second kind where molecular
states do not define any kind of density or concentration. In this paper we
demonstrate the necessity to study reaction networks in a stochastic formula-
tion for which we can construct a coherent approximation in terms of specific
space-time scales and the number of particles. The continuum limit procedure
naturally creates equations of Fokker-Planck type where the evolution of the
concentration occurs on a slower time scale when compared to the evolution
of the conformational changes, for example triggered by binding or unbind-
ing events with other (typically smaller) molecules. We apply the asymptotic
theory to derive the effective, i.e. macroscopic dynamics of the biochemical
reaction system. The theory can also be applied to other processes where en-
tities can be described by finitely many internal states, with changes of states
occuring by arrival of other entities described by a birth-death process.

1 Introduction

Systems formed by a large number of biochemical reactions are often considered
paramount examples of complex systems. Such systems are formed by a set of
interactions among various species of molecules forming new, larger species. More-
over there are interactions involving conformational changes coinciding with bind-
ing/unbinding events of typically smaller molecules. It is important to note that
the description of interactions depends on the choice of the scales at which the en-
tire system is analysed. The microscopic description of a reaction system is usually
fairly well understood in its general features. At atomic scale the necessary theory
is provided by Quantum Mechanics, at molecular level there are different types of
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kinetic theories. After a heuristic up-scaling most reaction systems can be suffi-
ciently well described by mass-action kinetics, which is a mean-field approximation
of the fully stochastic description [7],[2].

We now consider systems at scales to be considered mesoscopic. These are pre-
cisely the scales of any kinetic theory. Let us denote with ~δ a vector describing the
selected space scale and the number of particles in the system, whereas τ denotes
the system time scale. With fixed ~δ, τ we can typically look at reactions specified
by the reaction rates k(~δ, τ), where we incorporated scale dependence. Given these
reaction rates it is possible to construct the associated dynamics in terms of the
master equation (ME), which is the appropriate probabilistic description of the dy-
namics precisely at the given scales ~δ, τ . If the system contains both interactions
among particles and interactions involving conformational changes possibly with
additional binding/unbinding events of smaller molecules, then the ME turns out
to be a combination of two types of operators: one describing birth-death processes
with infinite possible states, and the other one governing the evolution in the finite
state space. This finite state space (denoted by Σ) describes conformational changes
and mutual binding/unbinding of molecules.

The process of removing the scales (~δ → 0 and τ → 0) under the condition
to keep finite reaction rates k(~δ, τ) is called continuum limit. This process pro-
duces a Fokker-Planck equation (FPE) that describes the effective time evolution
of the probability distribution of the state of the system. The continuum limit is
dependent on fixing a relation among ~δ, τ . A better known and typical case is the
derivation of a diffusion equation, where |~δ|2/τ = D > 0 is kept finite. We shall
show that the choices involved in the continuum limit determine a FPE where the
time scale of the evolution of molecular concentrations is larger, i.e. longer than
the time scale at which the evolution in finite state space Σ takes place. The for-
mulation of the continuum limit will be done following the Trotter approximation
method, see [13], or [10]. We shall illustrate how the limit for ~δ → 0 and τ → 0 leads
naturally to the use of asymptotic analysis and an adiabatic theory to study the
FPE. Previous applications of these ideas to study chemical reaction networks can
be found in [3] and [1]. The multi-scale analysis for such systems has been studied
extensively, see for example [8] and [9]. In this paper we present the asymptotic
solution of the FPE motivated by the continuum limit. We give a general formu-
lation of the approach where the stochastic processes involved are not necessarily
Markovian. Nevertheless our main results will deal only with reaction systems in-
volving elementary processes which are Markovian. In this setting the particles will
undergo diffusion and the finite states will evolve according to a Markov chain logic.

A set of reactions can naturally be described as a network and more precisely
as a graph. Indeed in this paper we show that graph-theoretic notions can be used
at the very beginning of modelling as a tool to understand the possible processes.
The associated graph is generally called the Interaction Graph (IG), its vertices
are the possible states and its edges correspond to the interactions leading to state
switches. The IG is then modified throughout the analysis, in fact the continuum
limit produces variations in the vertices and in the edges. In particular it turns
out that the leading order term of the asymptotic expansion is a deterministic dy-
namics termed average dynamics. The average dynamics is determined by a vector
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field resulting from the average of a finite family of vector fields {X (σ)}σ∈Σ taken
against the invariant measure of the finite Markov chain (MC) on Σ. The IG as-
sociated to the average vector field will result as a combination - resembling an
average - of the IGs associated to vector fields describing each single finite state.
The construction of the average dynamics and its IG can be seen as a first step to
connect the stochastic description to the classical differential equations approach.
To explore the possible applications of graph theory to reaction systems given in
terms of differential equations the reader could look at the review [4].This paper
deals with different graph theoretic methods giving information on the qualitative
behaviour of the reaction system once it has been established on the mesoscopic or
macroscopic scale.

The continuum limit and the asymptotic analysis will be illustrated by three
simple examples: a particle with two internal states diffusing on a line, and two
possible schemes for a molecular switch. In these systems we show how to identify
the scaling regimes which characterise the dynamics and the adiabatic expansion for
the associated Fokker-Planck equations. We also show how the network structure of
the reactions affects the expansion, in particular with respect to the leading order
term, i.e. the average vector field and the appearance of noise.

2 General formulation

Let us consider N species n1, ..., nN of particles each of which can take any value
in a N dimensional lattice L and a variable σ which can assume values in a fine set
Σ with |Σ| = M . At any time t the system has its configuration determined by

(~n, σ) ∈ L× Σ.

Remark 1. Note that we did not include explicitly the space variable. This can
be easily done by a suitable enlargement of the lattice L.

The time evolution of the system is stochastic and therefore the main object of
interest is the probability measure

P (~n, σ, t), normalised by
∑
~n∈L

∑
σ∈Σ

P (~n, σ, t) = 1.

Dynamical processes

The time evolution of P (n, σ, t) is determined by certain processes which affect the
state of the system. It is their nature and characteristics which prescribe the form
of the dynamical equations. The dynamical processes are strongly related to the
scale at which the system is considered. Let us fix N + 1 scales, i.e.

• τ , the time scale,

• a vector ~δ = (δ1, ..., δN ), the natural length scales of the generators of L.

The possible processes we shall consider have a general diffusive behaviour, that
is each process is characterised by having a specific waiting time probability distribu-
tion, generically denoted by ψ(t). It is important to note that many application will
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require that ψ(t) is not necessarily exponential, for example in processes generating
sub-diffusive behaviour. With fixed ψ(t) and a given process we know that the
dynamical transition produced by that process will take place in the time interval
[t1, t2] with a probability given by ∫ t2

t1

dt ψ(t).

The knowledge of the waiting time distribution is in general related to the under-
standing of the processes and their relevant interactions at the scale identified by τ
and ~δ, therefore it is expected that the functions ψ are dependent on such scales.
Upon these observations we can now set up the microscopic reaction schemes linked
to the processes. These are classified according to the following list:

(P1) (n1, ..., ni, ..., nN , σ) 7→ (n1, ..., ni ± δi, ..., nN , σ), with waiting time distribu-
tion ψni(t; δi, τ);

(P2) (n1, ..., nN , σ) 7→ (n1, ..., nN , σ
′), with waiting time distribution ψσ(t; τ);

(P3) (n1, ..., ni, ..., nN , σ) 7→ (n1, ..., ni ± δi, ..., nN , σ′), with waiting time distribu-
tion ψσ,ni(t; δi, τ).

Here (P1) describes the appearance or annihilation of particles, without changes
of any of the internal states as described by σ, (P2) describes a transition of the
internal states from σ to σ′ while fixing the number of particles in the system, and
(P3) describes the simultaneous transition of internal states linked with the ap-
pearance or disappearance of a particle of a certain type. Here we must distinguish
two cases for the interpretation of L. If we model a spatially averaged system we
only consider L as representing the species number, so appearance or disappearance
models whether particles enter or leave the system. If L includes spatial positions
then appearance or disappearance is interpreted with respect to any local position.
See also Figure 2.

General Master Equation

Each process can in principle occur with a specific waiting time governed by its
own distribution function. This implies that the evolution is described through a
general master equation (GME) (see [3]). The discrete form of this equation is

P (~n, σ, t+ τ) =
∑
σ′∈Σ

∫ t

0

dt′ Lσσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′)+

+
∑
σ′∈Σ

∫ t

0

dt′Kσσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′),
(1)

where
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• L is a M ×M matrix whose entries depend on ~n, ~δ, t and on the waiting time
distributions defined in (P1) and (P3). In particular it will be useful to write
L by means of the operators E±i defined by

E±i f(n1, ..., nN ) = f(n1, ..., ni ± δi, ..., nN ) for any f : L→ R.

• K is a M ×M matrix whose entries depend on ~n, ~δ, t and on waiting time
distributions defined in (P2).

Remark 2. The structure of the GME is essentially the one introduced in [3] and
[14] to describe the continuous time random walk (CTRW). It is worth noting that a
standard random walk (RW) can always be considered as a special case of a CTRW.

Note that the normalisation condition for the probability requires

∑
~n∈L

∑
σ′,σ∈Σ

∫ t

0

dt′
{
Lσσ′ [~n, ~δ, τ, t− t′] +Kσσ′ [~n, ~δ, τ, t− t′]

}
P (~n, σ′, t) = 1

for any P (~n, σ, t).

A graph for the General Master Equation

The structure of equation (1) allows a useful interpretation in terms of associated
graphs.

Definition 1. We denote by ~I(L,K) the graph whose vertex set is V = L×Σ and
edge set E(L,K), where the directed link (arrow) ~e(~ni,σi),(~nj ,σj) is present if both
L and K allow the transition (~ni, σi) 7→ (~nj , σj). In general this graph will have
loops.

An illustration of this graph can be seen in Figure 1.
If one wants to include that the configuration space is the product L×Σ, then the
graph can be thought to be as in Figure 2.

2.1 Formulation of the double limit τ → 0, ~δ → 0

We are interested in the GME that results by taking the limits

τ → 0 and δi → 0 for all i.

First we expand P (~n, σ, t+ τ) up to the first order in τ . This can be written as

∂P (~n, σ, t)
∂t

τ = −P (~n, σ, t) +
∑
σ′∈Σ

∫ t

0

dt′ L∗σσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′)+

+
∑
σ′∈Σ

∫ t

0

dt′KTσσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′) + o(τ)
(2)

or equivalently

5
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Figure 1: A small portion of a general graph ~I(L,K)
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Figure 2: A simple description of the the product L× Σ and the graph links. Dif-
ferent types of state transitions result in vertical, horizontal or diagonal movements
in the finite and infinite state sets.
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∂P (~n, σ, t)
∂t

=
1
τ

∫ t

0

dt′ (L∗σσ[~n, ~δ, τ, t− t′]− δ(t− t′))P (~n, σ, t′)

+
1
τ

∑
σ′ 6=σ

∫ t

0

dt′ L∗σσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′)

+
1
τ

∑
σ′∈Σ

∫ t

0

dt′KTσσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′) + o(τ).

(3)

To proceed further it is necessary to study the following three limits:

lim
τ→0,~δ→0

1
τ

∫ t

0

dt′ (L∗σσ[~n, ~δ, τ, t− t′]− δ(t− t′))P (~n, σ, t′), (4)

lim
τ→0,~δ→0

1
τ

∑
σ′ 6=σ

∫ t

0

dt′ L∗σσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′), (5)

lim
τ→0,~δ→0

1
τ

∑
σ′∈Σ

∫ t

0

dt′KTσσ′ [~n, ~δ, τ, t− t′]P (~n, σ′, t′). (6)

2.2 Multiscale analysis: simplified assumptions

The study of the limits (4), (5) and (6) in this general form is very difficult. In
order to proceed and to analyse equation (1) some simplifying assumptions are in
order. We shall consider two main sets of such assumptions which identify two
classes of systems that are called Infinite MC coupled with finite MC and Infinite
MC coupled with finite CTRW, respectively. We introduce them in this order and
simultaneously discuss the continuum limit procedure.

Infinite MC coupled with finite MC

The first set of assumptions is:

(A1) On L, we have δi = δ for all i.

(A2) Each waiting time is exponentially distributed.

(A3) Each L∗σσ′ is the adjoint of a generator of a Markov process valued in L.

(A4) For fixed ~n, ~δ, the transpose of the kernel KT generates a Markov chain on Σ.

Under these conditions we have

L∗σσ′ [~n, ~δ, τ, t− t′] = L∗σσ′ [~n, δ] δ(t− t′) and KTσσ′ [~n, ~δ, τ, t− t′] = KTσσ′ [~n, δ] δ(t− t′).

Here δ(.) denotes the Dirac delta distribution. The limits (4), (5), (6) reduce re-
spectively to

lim
τ→0,δ→0

1
τ

(L∗σσ[~n, δ]− 1)P (~n, σ, t), (7)
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lim
τ→0,δ→0

1
τ

∑
σ′ 6=σ

L∗σσ′ [~n, δ]P (~n, σ′, t), (8)

lim
τ→0,δ→0

1
τ

∑
σ′∈Σ

KTσσ′ [~n, δ]P (~n, σ′, t). (9)

We can give a meaning to these limits by assuming that the two scales τ and δ go
to zero in a prescribed manner. A typical interesting regime is the diffusive one,
namely when δ2/τ ' D > 0, with D being the diffusion coefficient. Note that the
limit process transforms the lattices L into RN into a limit state space given by

RN × Σ.

The continuum limit is based on the approximation method developed by Trotter
in [13], later also worked into [10], [8]. We shall now outline this approach. The
ME is in general constructed as an operator acting on probability measures. One
has to observe that the natural setting to construct the continuum limit is the
space of functions, rather than the space of measures. We have seen that the ME
is constructed by fixing the space-time scales ~δ and τ . Let us introduce an index
to enumerate the scales: ~δn, τn. The nth scale corresponds to the lattice Ln. We
denote the result by Xn = `∞(Ln,RM ), with norm

‖φ‖n = sup
k∈ZN

|φ(k)|,

where φ(k) = φ(k1, ..., kN ) is an element in the set Xn. Each Xn is a Banach
space and can be see as an ”approximation” of X = C0(RN ,RM ). In fact we can
define the projection

Pn : X 7→ Xn,
f 7→ Pn(f). (10)

In particular, for any f ∈ C0(RN ,RM ), we have Pn(f)(k) = f(k~δn) = f(k1δn, ..., kNδn).
The following properties hold:

(i) ‖Pn‖n ≤ 1,

(ii) limn→∞ ‖Pn(f)‖n = ‖f‖0 for all f ∈ C0(RN ,RM ).

See [10] for more details. Using [13], we state a condition defining whether a se-
quence of functions in the collection {Xn}n of functions in Xn approximate a func-
tion in X:

Definition 2. Let fn ∈ Xn. The sequence (fn) converges to f ∈ X if and only if

lim
n→∞

‖Pn(f)− fn‖n = 0.

This convergence is denoted here by fn ≈ f .

This allows us to define the continuum limit:
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Definition 3 (Continuum limit of operators). Let Ln : Xn 7→ Xn. The sequence
(Ln) of linear operators has a continuum limit L̂ : X 7→ X if an only if there exist a
choice of ~δn and τn such that ~δn → 0, τn → 0 and

lim
n→∞

‖LnPn(f)− PnL̂(f)‖n = 0, for all f ∈ X. (11)

As before this limit is denoted by Ln ≈ L̂. The domain of L̂ is formed by all
f ∈ X such that the sequence LnPn(f) ∈ Xn converges.

Remark 3. It is worth emphasising that the continuum limit of an operator is not
unique. In fact relation between ~δn and τn is crucial in definition 3. We shall see
in the examples that the scaling relations among the parameters in Ln identify the
possible continuum limits.

For every fixed n the dual of Xn is the space X∗n, formed by the measures P such
that

〈P, φ〉n =
∑
k

φ(k)(·)P (k) =
∑
k

(
M∑
i=1

φi(k)Pi(k)

)
(12)

is finite. The ME is defined on the dual space X∗n. Using the pairing (12) one
can transfer the ME to be defined on Xn by using

〈L∗nP, φ〉n = 〈P,Lnφ〉n and 〈KTnP, φ〉n = 〈Pn,Kφ〉n.

On the Banach space X the standard duality is given by

〈ρ, f〉 =
∫

RN
dxf(x)(·)ρ(x) =

∫
RN

dx
M∑
i=1

fi(x)ρi(x). (13)

Given the continuum limits L̂ and K̂ we can therefore define their adjoints

〈ρ, L̂ f〉 = 〈L̂∗ ρ, f〉 and 〈ρ,Kf〉 = 〈KT ρ, f〉.

We now give some basic examples. First let us state

Definition 4. Let L = δN, and let φ be φ : L→ R. Then the couple of operators
∆± acts on Xn:

∆±(φ(k)) = (E± − id)(φ(k)) = φ(k ± δn)− φ(k).

One can easily show that (∆+)∗ = −∆−, namely

〈∆+P, φ〉n = −〈P,∆−φ〉n, for every n.

Also clearly the operator ∆+ + ∆− is symmetric. We compute the continuum
limit of L+

n = (1/τn)∆+ and take a sequence Pnf with f ∈ X. The aim is to
compute

L+Pn(f)(k) =
1
τn

(f(kδn + δn)− f(kδn)).

This can be rewritten as
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L+Pn(f)(k) = Pn
(

1
τn

(f(x+ δn)− f(x))
)
.

For n large enough, δn, τn are arbitrary small. Taking f in a suitable dense
subspace of X we can write

L+Pn(f)(k) = Pn
(
δn
τn

∂f

∂x
+
δ2
n

τn

∂2f

∂x2

)
+

1
τn
o(δ2

n).

Now (11) can be verified by taking the limit. We have that

L̂+ = c
∂

∂x
for δn/τn → c > 0.

Once the continuum limit of L is constructed on X we can take the adjoint
operator with respect (13). Then, for example, (L̂+)∗ = (c∂/∂x)∗ = −c(∂/∂x). In
this sense we assume that the limits (7), (8) and (9) are

1
τ

(L∗σσ[~n, δ]− 1)P (~n, σ, t) ≈ L̂∗σσ[~x]ρσ(~x, t), (14)

1
τ

∑
σ′ 6=σ

L∗σσ′ [~n, δ]P (~n, σ′, t) ≈
∑
σ 6=σ′

L̂∗σσ′ [~x]ρσ′(~x, t), (15)

1
τ

∑
σ′∈Σ

KTσσ′ [~n, δ]P (~n, σ′, t) ≈
∑
σ′∈Σ

K̂Tσσ[~x]ρσ′(~x, t), (16)

where L̂∗ is a matrix with entries differential operators and K̂T is the transpose
of the infinitesimal generator of a finite Markov chain on Σ. An interesting further
simplification is obtained if processes of type (P3) do not occur. This implies that

(i) L∗σσ′ ≡ 0 for σ 6= σ′,

(ii) L∗σσ are Fokker-Planck operators.

In this case we have that the degrees of freedom are represented by ~x diffuse
in RN , while the discrete states σ’s evolve in Σ according to a finite Markov chain
generated by K.

We now look at a second set of assumptions:

Infinite MC coupled with CTRW

The second set of assumptions is

(A1) On L, δi = δ for all i.

(B2) The waiting times ψσ,ni(t; τ, δi) are exponentially distributed, independent of
~δ and τ .

(B3) Each Lσσ′ is a generator of a Markov process valued in L.
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(B4) For fixed ~n, ~δ the kernel K generates a continuous-time random walk (CTRW)
on Σ.

Under these conditions we have

Lσσ′ [~n, ~δ, τ, t− t′] = Lσσ′ [~n, δ] δ(t− t′) and Kσσ′ [~n, ~δ, τ, t− t′] = τ Kσσ′ [~n, δ, t− t′].

The possible form of the limit τ → 0, δ → 0 can be written as

1
τ

(L∗σσ[~n, δ]− 1)P (~n, σ, t) ≈ L̂Tσσ[~x]ρσ(~x, t), (17)

1
τ

∑
σ′ 6=σ

L∗σσ′ [~n, δ]P (~n, σ′, t) ≈
∑
σ 6=σ′

L̂∗σσ′ [~x]ρσ′(~x, t), (18)

1
τ

∑
σ′∈Σ

KTσσ′ [~n, δ]P (~n, σ′, t) ≈
∑
σ′∈Σ

∫ t

0

dt′ K̂Tσσ[~x, t− t′]ρσ′(~x, t− t′). (19)

Remark 4. The main reason to use Trotter approximation is that it was proven in
[13], [8] and [10] that if each operator Ln defined on Xn is an infinitesimal generator
of a (strongly continuous contraction) semigroup Tn(t), then the limit operator L̂
is also the generator of (strongly continuous contraction) semigroup T (t) on X.
This fact guarantees us that the continuum limit procedure produces a meaningful
approximation of the real dynamics. For more details see [11] and [12].

3 General Fokker-Planck equation and the adia-
batic condition

Upon the condition that limits (7), (8) and (9) exist, the probability density ρ(~x, t)
satisfies a general Fokker-Planck equation of the form:

∂ρ(~x, t)
∂t

= L̂∗[~x] ◦ ρ(~x, t) + K̂T [~x] ρ(~x, t). (20)

If the limits (17), (18) and (19) exist, equation (20) can be modified into

∂ρ(~x, t)
∂t

= L̂∗[~x] ◦ ρ(~x, t) + K̂T [~x, t] ∗ ρ(~x, t), (21)

where K̂[~x, t] ∗ ρ(~x, t) is a time convolution.

Adiabatic condition

The construction of the continuum limit involves a choice in which way δn and τn
tend to zero. This implies that the operators L̂ and K̂ may have a pre-factor which
is a function of δn and τn. These coefficients determine the different time scales at
which the operators L̂ and K̂ influence the dynamics. We shall see in the examples
that the continuum limit procedure often results in an FPE of the form
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∂ρ(~x, t)
∂t

= L̂∗[~x] ◦ ρ(~x, t) +
1
ε
K̂T [~x] ρ(~x, t), (22)

where ε = ε(~δn, τn) ∈ (0, 1]. This corresponds to the assumption that the Markov
chain dynamics is faster than the diffusion process.

The condition ε = ε(~δn, τn) small is called adiabatic, because it determines a
separation between the dynamics of K and of L. In fact for ε = 0 the dynamics of
the system is dominated by the Markov chain at equilibrium. This is given by a
linear combination of stationary measures of the Markov chain defined by

µ(~x)K[~x] = 0.

Intuitively one can see that for ε small the time evolution of the whole system will
organise itself around the steady state of the Markov chain. In order to introduce
the result we need to define:

Definition 5. Let CbK ⊂ RM be the convex cone of stationary measures of K̂[~x].

Consider the operator

〈1µ, L̂∗~µ(~x)(·)〉 =
∑

σ′,σ∈Σµ

L̂σ′σ[~x]µσ(~x) (·) where Σµ = {σ ∈ Σ : µσ(~x) 6= 0}. (23)

In [11] the following has been proved:

Theorem 3.1. Upon the condition that

∂f(~x, t)
∂t

= 〈1µ, L̂∗~µ(~x)f(~x, t)〉+ F (~x, t) (24)

yields a probability density which is differentiable w.r.t. x and t ∈ [0, T0] ⊂
[0, T ], for any smooth initial data and smooth F (~x, t), equation (22) can be solved
by an asymptotic expansion of the form

ρε(~x, t) =
∑
k=0

εn ρ(n)(~x, t).

Proof. Here we only present a sketch of the proof. This is essentially based on the
adiabatic theory developed in [9]. In [11] we show that a solution of the ????? can
be constructed asymptotically in ε. The main steps of the proof are the following:

1. Take ~µ(~x) ∈ CbK and fix an initial ρ(~x, 0) such that supp(ρ(~x, 0)) ⊂ supp(~µ(~x)).

2. Consider an expansion of the form: ρε(x, t) =
∑m∗

n=0 ε
n ρ(n)(x, t).

3. Construct the equation at each order n.

4. Decompose each ρ(n)(x, t) using the projection Π~µ:

ρ(n)(x, t) = ~ξ(n)(~x, t) + ~µ(n) f (n)(~x, t),

where

12



~ξ(n)(x, t) = Π~µ(ρ(n)(~x, t)), f (n)(~x, t) = 〈1µ, ρ(n)(~x, t)〉 =
∑
σ∈Σµ

ρ(n)
σ (~x, t).

5. Construct the hierarchy of equations: for n = 0:
~ξ(0)(~x, t) = 0

∂f (0)(~x, t)
∂t

= 〈1~µ, L̂∗[~x](~µ(~x) f (0)(~x, t))〉
, (25)

and for n ≥ 1 we have


~ξ(n)(~x, t) = (K̂T~µ )DI~µ

[
∂~ξ(n−1)(~x, t)

∂t
− L̂∗(~ξ(n−1)(~x, t) + ~µ(~x) f (n−1)(n, t))

]
∂f (n)(~x, t)

∂t
= 〈1~µ, L̂∗(~µ(~x) f (n)(~x, t))〉+ 〈1~µ,L∗(~ξ(n)(~x, t))〉,

,

(26)

where (K̂T~µ )D is the Drazin inverse of K̂.

6. The evaluation of the remainder of the asymptotic series is then carried out
as in [11].

If the adiabatic condition holds then the asymptotic approximation can also be
constructed for a ME of the form

∂P (~n, t)
∂t

= L∗[~n] ◦ P (~n, t) +
1
ε
KT [~n]P (~n, t). (27)

In this case the hierarchy of equations has to be modified accordingly. For the
benefit of the reader we include the the hierarchy of equations.
For n = 0: 

ξ(0)(~n, t) = 0

∂f (0)(~n, t)
∂t

= 〈1µ,L∗[~n](µ(~n) f (0)(~n, t))〉
(28)

and for n ≥ 1 we have


ξ(n)(~n, t) = (KT [~n]µ)DIµ

[
∂ξ(n−1)(~n, t)

∂t
− L∗[~n](ξ(n−1)(~n, t) + µ(~n) f (n−1)(~n, t))

]
∂f (n)(~n, t)

∂t
= 〈1µ,L∗[~n](µ(n) f (n)(~n, t))〉+ 〈1µ,L[~n]∗(ξ(n)(~n, t))〉.

(29)
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3.1 Reduction of the Interaction Graph

Equations (20), (21) allow again an interpretation in terms of graphs. In fact the
operators L̂∗ and K̂T describe the rates at which the transitions of type

(~x, σ)→ (~x′, σ′)

occur. We can define:

Definition 6 (Interaction Graph for the FPE). We term ~IG(V,E) the graph whose
vertex set is V = RN×Σ and edge set is E(L̂, K̂) where the directed link ~e(~x,σ),(~x′,σ′)

is present if L̂ and K̂ allow the transition (~x′, σ′) 7→ (~x′, σ′).

Remark 5. One can think that a representation of this graph can be obtained by
looking at the Figures 1 and and 2, where instead of ~n’s there are ~x’s. This is only
partly true because it might happen that the continuum limit procedure removes
some states and is thus changing the graph topology.

We can observe different levels of reduction and simplification of the Interaction
Graph IG. If L̂∗ is such that

(i) L̂∗σσ′ ≡ 0 for σ 6= σ′,

(ii) L̂∗σσ are Fokker-Panck operators,

then the only possible processes have the form:

(a) (~x, σ)→ (~x′, σ),

(b) (~x, σ)→ (~x, σ′).

In particular (a) corresponds to a diffusive Markov process and (b) corresponds
to a finite Markov chain. We can think to the following scheme: on each point of RN
where the diffusion take place there is a ”fibered” Markov chain whose transition
rates are functions of ~x, see Figure 3.

σi

σj

!
σj

Σ

σi

!x !x′

RN
diffusion

Markov chain

Figure 3: A Markov chain ”fibered” over RN .

This reduction takes place also in equation (27).
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3.1.1 The average dynamics and its Interaction Graph

Let us now consider the zero order approximation of the ε expansion. This is given
by

∂f (0)(~x, t)
∂t

= 〈1~µ, L̂∗[~x](~µ(~x) f (0)(~x, t))〉. (30)

This is called average dynamics. The average dynamics is a Liouville equation
for a deterministic vector field given by

d~x(t))
dt

= −
∑
σ′∈Σµ

∑
σ∈Σµ

L∗σ′σ[~x(t)]µσ(~x(t)). (31)

We can give a description of the average vector field by using the notion of an
interaction graph. We define:

Definition 7 (Interaction Graph for deterministic dynamics). For a given vector
field ~X (~x), the Interaction Graph ~IσG

.= ~IG( ~X ) is the couple (V,E ~X ) where:

(i) V is the set equal to the collection {x1, ..., xN},

(ii) E ~X is the set of edges ~eij . The edge ~eij is associated to the couple of vertices
(xi, xj) if

∂Xi(~x)
∂xj

is not identically zero.

(iii) The edge ~eij is directed from j to i.

Note that for each fixed σ ∈ Σ we can associate a vector field

X (σ)(~x(t)) .= −
∑
σ′∈Σµ

L∗σ′σ[~x(t)], (32)

and therefore an interaction graph ~IG( ~X (σ)). A graphical description is presented
in Figure 4.
It is simple to note that the average vector-field (31) can also be written as

d~x(t))
dt

= ~X~µ(~x) .= −
∑
σ∈Σ

X (σ)(~x)µσ(~x). (33)

This vector field is the average of all ~X (σ) taken against the invariant measure
~µ(~x). This implies that the associated interaction graph IG( ~Xµ) has a new structure.
The vertices V = {x1, ..., xN} will not contain reference to the specific Markov chain
state σ and new edges will appear as a result of new interaction terms resulting from
the averaging procedure.

Remark 6. It is worth noting that if { ~X (σ)}σ∈Σ are all polynomial vector fields
with integer coefficients, then the average vector field can be rewritten as

~X (~x) = N ~ν(~x). (34)
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x2
x1

x3

x4

!I
σ
G

Figure 4: The Interaction Graph for a fixed state σ ∈ Σµ in the Markov chain

x1

x2

x3

x4

x1

x2

x3

x4

Average !IG

x1

x2

x3

x4

!I
σ1

G

!I
σ2

G

Figure 5: An example where Σµ = {σ1, σ2} and ~x = (x1, x2, x3, x4). The averaging
process gives rise to an new Interaction Graph depending on the combination of
~Iσ1
G and ~Iσ2

G . The edges that are present in ~Iσ1
G (dashed arrow lines) are eventually

also present in ~IG, and so do the edges (point arrow lines) present in ~Iσ2
G . Note

that there might occur compensations that delete some links.
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Here ~ν(~x) is a vector field whose entries are in general rational functions. At
this point the analysis could proceed along the lines of exploiting all the graphic
structure present in (34). A review of the results in this direction is presented in
[4].

In the next section we shall look at some simple examples. We restrict ourselves
to the case of models where all the waiting times are exponentially distributed.
Therefore we consider an infinite Markov coupled to a finite one and we show that
also in this simple setting many interesting properties and question arise.

4 Examples

Let us first fix our setting. To avoid cumbersome notation we drop the index from
δn and τn and the projection Pn. We shall consider the following cases

(i) L = δ Z a random walk with an internal two-state space Σ (switch).

(ii) L = δN a single particle regulating a two-state switch.

(iii) L = δN × δN two particles A and M . A regulates a two-state switch which
in turn regulates M .

The finite set Σ is always a collection of states modelling ”molecular” operators
and for this reason the elements of Σ will be denoted by Oσ with σ = 1, ...,M . The
processes will be given in terms of reactions that will be interpreted as reaction
rates. In the examples we formulate the problem using the reactions to construct a
Master equation of the following form

∂Pσ(~n, t)
∂t

=
1
τ

∑
σ′∈Σ

Lσσ′ [~n, δ]Pσ′(~n, t) +
1
τ

∑
σ′∈Σ

Kσσ′ [~n, δ]Pσ′(~n, t), (35)

where Lσσ′ [~n, δ] is function of E±ni . In the various examples we want to illustrate
how to define the continuum limit. For equation (35) the limit can be obtained by
defining (14), (15) and (16). In particular we shall consider cases where

1
τ

∑
σ′∈Σ

Kσσ′ [~n, δ]P (~n, σ′, t) ≈ 1
ε

∑
σ′∈Σ

K̂∗σσ[~x]ρσ′(~x, t), (36)

with ε = ε(δ, τ) for δ, τ → 0. Upon this condition we shall show that a master
equation has limit of the form (22).

4.1 Effective diffusion

In the first example we consider a particle performing a random walk on L = δ Z
with rates depending on an internal state Oσ ∈ Σ = {O0, O1}. The internal state
dynamics is a Markov chain whose rates are dependent on the point where the
particle is at time t. We assume exponentially distributed waiting times. The aim
is to show the various scaling regimes when δ, τ → 0. In the adiabatic regime the
motion of the particle will be given by an effective diffusion equation. The processes
can be described through the following reactions
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Diffusion with random rates

N
vi(δ,τ)−−−−⇀↽−−−−
ui(δ,τ)

N + 1 for i = 0, 1

O0

k0(N,δ,τ)−−−−−−⇀↽−−−−−−
k1(N,δ,τ)

O1

The state a time t is determined by the probability distribution

P (n, t) = (P0(n, t), P1(n, t)).

The Master equation is given by:



∂P0(n, t)
∂t

=

particle motion︷ ︸︸ ︷
(u0(δ, τ)/τ) (P0(n− 1)− P0(n, t)) + (v0(δ, τ)/τ)(P0(n+ 1, t)− P0(n, t)) +

Markov chain: rates dynamics︷ ︸︸ ︷
−(k1(n, δ, τ)/τ)P0(n, t) + (k0(n, δ, τ)/τ)P1(n, t)

∂P1(n, t)
∂t

=

particle motion︷ ︸︸ ︷
(u1(δ, τ)/τ) (P1(n− 1)− P1(n, t)) + (v1(δ, τ)/τ)(P1(n+ 1, t)− P1(n, t)) +

Markov chain: rates dynamics︷ ︸︸ ︷
+(k1(n, δ, τ)/τ)P0(n, t)− (k0(n, δ, τ)/τ)P1(n, t)

(37)
This can be rewritten as



∂P0(n, t)
∂t

= (u0(δ, τ)/τ)∆−n (P0(n, t)) + (v0(δ, τ)/τ)∆+
n (P0(n, t))+

−(k1(n, δ, τ)/τ)P0(n, t) + (k0(n, δ, τ)/τ)P1(n, t)

∂P1(n, t)
∂t

= (u1(δ, τ)/τ)∆−n (P1(n, t)) + (v1(δ, τ)/τ)∆+
n (P1(n, t))+

+(k1(n, δ, τ)/τ)P0(n, t)− (k0(n, δ, τ)/τ)P1(n, t)

(38)

By applying (11) Pi(n, t) = P(ρi(x, t)), for δ, τ → 0., we get

(k1(n, δ, τ)/τ)P(ρ0(x, t)) = P((k1(x, δ, τ)/τ) ρ1(x, t)),

(k0(n, δ, τ)/τ)P(ρ1(x, t)) = P((k0(x, δ, τ)/τ) ρ0(x, t))

and

(ui(δ, τ)/τ)∆−nP(ρi(x, t)) ≈ (ui(δ, τ)/τ)P
([
−δ ∂ρi

∂x
+
δ2

2
∂2ρi
∂x2

])
(vi(δ, τ)/τ)∆+

nP(ρi(x, t)) ≈ (vi(δ, τ)/τ)P
([
δ
∂ρi
∂x

+
δ2

2
∂2ρi
∂x2

])
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We now chose the scaling for δ → 0, τ → 0:

(ui(δ, τ)/τ) ' ui/ε, (vi(δ, τ)/τ) ' vi/ε, (k0(x, δ, τ)/(δτ)) ' k0(x)/ε, (k1(x, δ, τ)/τ) ' k1(x)/ε

for i = 0, 1 and some ε = ε(δ, τ). Then we can take the continuum limit and
obtain: 

∂ρ0(x, t)
∂t

=
δ (v0 − u0)

ε

∂ρ0(n, t)
∂x

+
δ2 (v0 + u0)

ε

∂2ρ0(n, t)
∂x2

+

−k1(x)
ε

ρ0(n, t) +
k0(x)
ε

ρ1(x, t) +
1
τ
o(δ2)

∂ρ1(x, t)
∂t

=
δ (v1 − u1)

ε

∂ρ0(n, t)
∂x

+
δ2 (v1 + u1)

ε

∂2ρ1(n, t)
∂x2

+

+
k1(x)
ε

ρ0(n, t)− k0(x)
ε

ρ1(x, t) +
1
τ
o(δ2).

(39)

It is useful to check the compatibility. First note that to simplify o(δ2)/τ term
we need that τ → 0 such that

1
τ
o(δ2)→ 0.

Next we explore some further consequences of the choice of ε.

(i) If ε ' ε0 > 0 then the system reduce to a simple Markov chain.

(ii) If ε ' δ then, as δ, τ → 0 the system reduces to a drift plus a ”fast” Markov
chain. In fact

L̂∗ =
(

(v0 − u0)∂x(·) 0
0 (v1 − u1)∂x(·)

)
and KT =

1
ε

(
−k0(x) k1(x)

k0(x) −k1(x)

)
,

(ii) If ε ' δ2 and
(vi(δ, τ)− ui(δ, τ))δ

ε
' Vi for i = 0, 1

for some Vi as δ, τ → 0, then the system reduces to an effective diffusion plus
a ”fast” Markov chain. In fact L∗ and KT read

L̂∗ =
(
V0∂x(·) + (v0 + u0)∂2

x(·) 0
0 V1∂x(·) + (v1 + u1)∂2

x(·)

)
and KT =

1
ε

(
−k0(x) k1(x)

k0(x) −k1(x)

)
,

In the adiabatic regime the average dynamics appears to be an effective diffusion.
In fact the invariant measure of the Markov chain is

µ =
(

k1(x)
k1(x) + k0(x)

,
k0(x)

k1(x) + k0(x)

)
.
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Equation (30) then becomes

∂f (0)(x, t)
∂t

=
∂

∂x

[(
V0k

1(x)
k1(x) + k0(x)

+
V1k

0(x)
k1(x) + k0(x)

)
f (0)(x, t)

]
+

+
∂2

∂x2

[(
(u0 + v0)k1(x)
k1(x) + k0(x)

+
(u1 + v1)k0(x)
k1(x) + k0(x)

)
f (0)(x, t)

] (40)

Remark 7. Before introducing the switch reactions we make a comment about the
continuum limit in the case in which a term∫ t

0

dt′
1
τ
Kσσ′ [~n, δ, t− t′]P (~n, σ′, t′)

is present. One can observe that in this case the continuum limit depends on
how the time scale τ is related with the scale at which the waiting time is defined.
Possibly there might be regimes where if τ is small enough. Then

∫ t

0

dt′
1
τ
Kσσ′ [~n, δ, t− t′]P (~n, σ′, t′) ≈

∫ t

0

dt′
1
τ
K̂σσ′ [~x, t− t′]ρσ′(~x, t′),

where K̂σσ′ [~x, t − t′] a new operator. The main problem is to identify some
general minimal properties for such classes of scaling.

4.2 Switch reactions

We now consider a set of reactions that form an elementary ”switch”. This is
essentially a system formed by two types of particles (two chemical species) A and
M interacting with a two-state system Σ = {O0, O1}. Particle A regulates the
switching and the two-state system which in turn regulates M . First we consider a
single switch. Its defining reactions are:

A+O0

k1(δ,τ)−−−−⇀↽−−−−
k0(δ,τ)

O1.

We show that if the dynamics of A is included in the Master equation (ME), the
continuum limit and the adiabatic theory (the time scale of the process involving
the finite states {O0, O1}) imply that the noise is not Gaussian at order O(ε). This
is related to the fact the the operator L∗ in the ME is not diagonal, because there
are reactions involving transition in L and Σ. Let us consider the following two
systems of reactions:

System n.1

A+O0

k1(δ,τ)−−−−⇀↽−−−−
k0(δ,τ)

O1,

O1 →ν(δ,δ) O0 +M +A,

M →γ(δ,τ) ∅.

System n.2

A+O0

k1(δ,τ)−−−−⇀↽−−−−
k0(δ,τ)

O1,

O1 →ν(δ,τ) O1 +M,

M →γ(δ,τ) ∅.
The dynamics of the two reaction systems can be expanded asymptotically in ε.

It turns out that the systems have the same deterministic limit but with different
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noise terms. Namely the dynamics n.1 and n.2 have same O(1) (average dynamics)
but differ from order O(ε). We further analyse this point in System n.1 by including
the A dynamics.

4.3 A more detailed analysis of a switch reaction

Consider the reactions

A+O0

k1(δ,τ)−−−−⇀↽−−−−
k0(δ,τ)

O1. (41)

We are interested in describing the reactions without assuming that A particles are
constant. We assume that there is a pool of A from which particles are ”created”
and ”annihilated”. The annihilation from the pool corresponds to the absorption
of an A particle by O0 and the transition to O1. The creation corresponds to the
releasing of an A particle from O1 and the transition to O0. In order to simplify the
notation it is useful to introduce the following operators. The state is identified by

P (a, t) = (P0(a, t), P1(a, t)).

Using reaction (41) its ME reads


∂P0(a, t)

∂t
= −(k1(δ, τ)/τ) aP0(a, t) + (k0(δ, τ)/τ)P1(a− 1, t)

∂P1(a, t)
∂t

= (k1(δ, τ)/τ) (a+ 1)P0(a+ 1, t)− (k0(δ, τ)/τ)P1(a, t)

(42)

Now using the definition of ∆±a the ME can be rewritten as follows


∂P0(a, t)

∂t
=

Markov chain︷ ︸︸ ︷
−(k1(δ, τ)/τ) aP0(a, t) + (k0(δ, τ)/τ)P1(a, t) +

one a is released︷ ︸︸ ︷
∆−a ((k1(δ, τ)/τ)P1(a, t))

∂P1(a, t)
∂t

=

Markov chain︷ ︸︸ ︷
(k1(δ, τ)/τ) aP0(a, t)− (k0(δ, τ)/δ)P1(a, t) +

one a is absorbed︷ ︸︸ ︷
∆+
a ((k0(δ, τ)/τ) aP1(a, t)).

(43)
The ME can be recast as in (27) by defining

L∗[a, δ, τ ] =

(
0 ∆−a ((k1(δ, τ)/τ)(·))

∆+
a ((k0(δ, τ)/τ) a (·)) 0

)
,

and

KT [a, δ, τ ] =

(
−a k0(δ, τ)/τ k1(δ, τ)/τ

a k0(δ, τ)/τ −k1(δ, τ)/τ

)
.

Remark 8. L∗ is non-diagonal and depends on the Markov chain parameters. For
the adiabatic limit the continuum limit is needed. The operators ∆−((k1(δ, τ)/τ)(·))
and ∆+((k0(δ, τ)/τ) a (·)) can have a finite limit as δ, τ → 0.
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4.4 Continuum limit

Let us assume that for δ, τ → 0 we take

k0(δ, τ)
δ τ

' 1
ε
k0,

k1(δ, τ)
τ

' 1
ε
k1.

for some ε = ε(δ, τ) and k0, k1 > 0. Then the difference operators will have the
following asymptotic exapnsions:

∆−a ((k1(δ, τ)/τ) (·)) ≈ −k
1 δ

ε

∂(·)
∂x

+
k1 δ2

ε

∂2(·)
∂x2

,

and

∆+
a ((k0(δ, τ)/τ) a (·)) ≈ k0 δ

ε

∂(x(·))
∂x

+
k0 δ2

ε

∂2(x (·))
∂x2

Taking τ, δ → 0 such that

1
τ
o(δ2)→ 0,

the limit of the ME reads

∂ρ

∂t
= L̂∗ρ+

1
ε
KT ρ.

The form of the operators L̂ and K̂ is identified by the following two cases:

(i) if ε(δ, τ) ' ε0 as δ, τ → 0 then

L̂ = 0 and KT =

(
−x k0 k1

x k0 −k1

)
,

(ii) if ε(δ, τ) ' δ as δ, τ → 0 then

L̂∗ =

(
0 −∂x( k1 (·))

∂x(k0 x (·)) 0

)
and KT =

(
−x k0 k1

x k0 −k1

)
.

We like to consider the case (ii). In this condition we can apply adiabatic theory.
First note that KT invariant measure is

µ =
(

k0

k0x+ k1
,

k1x

k0x+ k1

)
.

The adiabatic limit can be computed. In particular at order O(1) we found

∂f (0)

∂t
= 〈1, L̂∗(µf (0))〉 =

∂

∂x
((−k1µ1 + k0xµ0)f (0)).

Using the explicit form of the invariant measure it is easy to verify that

(−k1µ1 + k0xµ0)

identically vanish, which means that the concentration x = [A] is constant along
the average dynamics.
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4.4.1 Noise at order O(ε)

As shown in [11], at order O(ε) the noise can be evaluated by computing

〈1, L̂∗(ξ(1))〉 = −〈1, L̂∗ (KT )D L̂∗(µf (0))〉.
Now

(KT )D L̂∗(µf (0)) =
1

(k0 x+ k1)2

(
−k0 x k1

k0 x −k1

) (
−∂x(k1 µ1 f

(0))
∂x(k0 xµ0 f

(0))

)
which is equal to

(KT )D L̂∗(µf (0)) =
1

(k0 a+ k1)2

(
k0 x ∂x(k1 µ1 f) + k1 ∂x(k0 xµ0 f

(0))
−k0 x ∂x(k1 µ1 f)− k1 ∂x(k0 xµ0 f

(0))

)
.

Using µ0 + µ1 = 1 the expression

k0 x ∂x(k1 µ1 f
(0)) + k1 ∂x(k0 xµ0 f

(0))

can be rewritten as

k0 k1 x ∂xf
(0) + k0 k1 µ0 f

(0),

so

(KT )D L̂∗(µf (0)) =
1

(k0 a+ k1)2

(
k0 k1 x ∂xf

(0) + k0 k1 µ0 f
(0)

−k0 k1 x ∂xf
(0) − k0 k1 µ0 f

(0).

)
.

Finally the noise term can be computed. It is equal to

−〈1, L̂∗ (KT )D L̂∗(µf (0))〉 = − ∂

∂x

(
k0 (k1)2 x

(k0 x+ k1)2

∂f (0)

∂x
+

k0 (k1)2 µ0

(k0 x+ k1)2
f (0)+

+
(k0 x)2 k1

(k0 x+ k1)2

∂f (0)

∂x
+

(k0)2 x k1 µ0

(k0 x+ k1)2
f (0)

)
.

It is not difficult to show that the noise term determines an elliptic operator which
is negative definite. We can therefore conclude that the noise at order O(ε) does
not determine a genuine Fokker-Planck equation and therefore the time evolution
of the concentration x cannot be described - on short time scales (see [5], [6], [7]) -
through an Ito stochastic differential equation.

4.5 Analisys of systems n.1 and n.2

Let us consider reactions in system n.1:

A+O0 →k0(δ,τ) O1,

O1 →k1(δ,τ) O0 +A,

O1 →ν(δ,τ) O0 +M +A,

M →γ(δ,τ) ∅.
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The state of the system is defined by the probabilities

P (m, a, t) = (P0(m, a, t), P1(m, a, t)).

Remark 9. Without loss of generality we can assume that the number of A particles
a is considered large: a± 1 ' a.

The ME reads



∂P0(m, a, t)
∂t

=

Markov chain︷ ︸︸ ︷
−a (k1(δ, τ)/τ)P0(m, a, t) + (k0(δ, τ)/τ)P1(m, a, t) +

degradation︷ ︸︸ ︷
−(γ(δ, τ)/τ)mP0(m, a, t) + (γ(δ, τ)/τ (m+ 1)P0(m+ 1, a, t) +

creation of a m and transition to O0︷ ︸︸ ︷
+(ν(δ, τ)/τ)P1(m− 1, a, t)

∂P1(m, a, t)
∂t

=

Markov Chain︷ ︸︸ ︷
a (k1(δ, τ)/τ)P0(m, a, t)− (k0(δ, τ)/τ)P1(m, a, t)+

degradation︷ ︸︸ ︷
−(γ(δ, τ)/τ)mP1(m, a, t) + (γ(δ, τ)/τ) (m+ 1)P1(m+ 1, a, t) +

creation of a m and transition to O0︷ ︸︸ ︷
−(ν(δ, τ)/τ)P1(m, a, t)

(44)

In matrix form the ME reads

∂P (m, a, t)
∂t

= L∗ P (m, a, t) +KT P (m, a, t),

where P (m, a, t) = (P0(m, a, t), P1(m, a, t)) and the operator L∗ is

L∗ =
1
τ

(
γ(δ, τ) ∆+

m(m (·) ) ν(δ, τ) E−m

0 γ(δ, τ) ∆+
m(m (·) )− ν(δ, τ) id

)
.

Remark 10. Note that the matrix of the operator L∗ is not diagonal, but the
theory developed in [11] still applies.

The Markov chain has transpose generator given by

KT =
1
τ

(
−a k0(δ, τ) k1(δ, τ)

a k0(δ, τ) −k1(δ, τ)

)
.

Its invariant measure is

µ =
(

k1(δ, τ)
k0(δ, τ) a+ k1(δ, τ)

,
k0(δ, τ) a

k0(δ, τ) a+ k1(δ, τ)

)
.
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Assumption 1 (Adiabatic assumption). We now assume that without performing
the scaling δ → 0 and τ → 0 the time on which the Markov chain on Σ reaches
its equilibrium measure is faster than the time evolution of m, a. Therefore we can
make the following formal substitution

K̂ → 1
ε
K̂.

At this state we can construct the solution by the asymptotic expansion in ε
according to the scheme developed in [11].

Average dynamics

The leading order term of the expansion is given by

∂f (0)(n, t)
∂t

= 〈1µ,L∗(µ(n) f (0)(n, t))〉,

This is the average dynamics. In the present example note that 1µ = 1 = (1, 1)
for there is a unique invariant measure. Using the expression of L∗. An explicit
calculations yield

〈1µ,L∗(µ(n) f (0)(n, t))〉 =

= (γ(δ, τ)/τ)∆+
m(µ0mf (0)(m, a, t)) + (γ(δ, τ)/τ)∆+

m(µ1mf (0)(m, a, t))+

+(ν(δ, τ)/τ) E−(µ1 f
(0)(m, a, t))− (ν(δ, τ)/τ)µ1 f

(0)(m, a, t).

Now use µ0 + µ1 = 1 and the explicit expression of µ1 to obtain

〈1µ,L∗(µ(n) f (0)(n, t))〉 = (γ(δ, τ)/τ)∆+
m(mf (0)(m, a, t))+

+(ν(δ, τ)/τ) ∆−m

(
k0(δ, τ) a

k0(δ, τ) a+ k1(δ, τ)
f (0)(m, a, t)

)
.

Therefore the average dynamics is given by the following Master equation

∂f (0)(m, a, t)
∂t

= (γ(δ, τ)/τ)∆+
m(mf (0)(m, a, t))+

+(ν(δ, τ)/τ) ∆−m

(
k0(δ, τ) a

k0(δ, τ) a+ k1(δ, τ)
f (0)(m, a, t)

)
.

(45)

An important observation is the following:

Remark 11. Note that by taking a reaction (like in system n.2)

O1 →ν(δ,τ) O1 +M (46)

instead of

O1 →ν(δ,τ) O0 +M +A, (47)

we would obtain the an average dynamics equal to equation (45).
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From the previous remark one can show that the continuum limit of the average
dynamics for a system containing reaction (46) coincides with the one containing
reaction (47). Let us observe that the difference in the two systems of reactions
appear only in the operator L∗. For systems with reaction (46) the operator L∗
is a diagonal matrix with entries difference operators. For a system with reaction
(47) the operator L∗ is a no longer a diagonal matrix. In order to see the differ-
ence between the two systems it is necessary to look at higher order terms in the
expansion. The generic order O(ε) corrections are

ξ(1)(n, t) = −(KTµ )DL∗(µ(n) f (0)(n, t))

∂f (1)(n, t)
∂t

= 〈1µ,L∗(µ(n) f (1)(n, t))〉+ 〈1µ,L∗(ξ(1)(n, t))〉.
(48)

Consider the two systems of reactions

System n.1

A+O0 →k0(δ,τ) O1,

O1 →k1(δ,τ) O0 +A,

O1 →ν(δ,τ) O0 +M +A,

M →γ(δ,τ) ∅.

System n.2

A+O0 →k0(δ,τ) O1,

O1 →k1(δ,τ) O0 +A,

O1 →ν(δ,τ) O1 +M,

M →γ(δ,τ) ∅.

These systems differ only in the form of the operator L∗. For system n.1

L∗1 =
1
τ

(
γ(δ, τ) ∆+

m(m (·) ) ν(δ, τ) E−m((·))

0 γ(δ, τ) ∆+
m(m (·) )− ν(δ, τ) id

)
,

and for system n.2

L∗2 =
1
τ

(
γ(δ, τ) ∆+

m(m (·) ) 0

0 γ(δ, τ) ∆+
m(m (·) )− ν(δ, τ) ∆−m((·))

)
.

The two systems have the same Markov chain therefore same invariant measure,
and the same Drazin inverse (KTµ )D. We have already pointed out that the average
dynamics is the same for both systems, but now let us look at the first order
corrections in (48). Both systems have the same solution f (0)(n, t) to the average
equation. It is sufficient to consider the equation for ξ(1)(n, t). In fact for system
n.1

ξ
(1)
1 (n, t) = −(KTµ )DL∗1(µ(n) f (0)(n, t)),

and for system n.2

ξ
(1)
2 (n, t) = −(KTµ )DL∗2(µ(n) f (0)(n, t)).

Now take the difference of the equations to obtain

ξ
(1)
1 (n, t)− ξ(1)

2 (n, t) = −(KTµ )DL∗1(µ(n) f (0)(n, t)) + (KTµ )+L∗2(µ(n) f (0)(n, t)).
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We then use the linearity of the operators to write

ξ
(1)
1 (n, t)− ξ(1)

2 (n, t) = (KTµ )D(L∗2 − L∗1)(µ(n) f (0)(n, t)).

Now using the explicit expression of L∗ operators, one finds:

L∗2 − L∗1 =
1
τ

(
0 −ν(δ, τ) E−m((·))

0 −ν(δ, τ) (∆−m − id)((·))

)
.

The difference L∗1−L∗2 is not identically zero, therefore we can conclude that system
n.1 and n.2 have adiabatic limits which generate two stochastic processes which differ
at order O(ε).
Now suppose that we take the continuum limit. Clearly it can be shown (from [11])
that up to order O(ε) the dynamics is described by a stochastic differential equation
(SDE), whenever L∗ is diagonal. The noise term is essentially related to the formula
for ξ(1)(n, t), which contains at order O(ε) the differences between system n.1 and
n.2.

4.5.1 Explicit construction of the noise

We now compute the noise term (up to order O(ε)) for the systems n.1 and n.2.
First recall that in both cases

(KTµ )D =
τ

(a k0(δ, τ) + k1(δ, τ))2

(
−a k0(δ, τ) k1(δ, τ)

a k0(δ, τ) −k1(δ, τ)

)
.

System n.1

The noise is
〈1,L∗1(ξ(1))〉 = −〈1,L∗1 (KT )D L∗1(µf (0))〉.

After some lengthy but simple calculations one finds

−〈1,L∗1 (KT )D L∗1(µf (0))〉 =

=
−τ

(a k0 + k1)2

[
(−k1µ1νγ + ak1µ0νγ)∆−m(∆+

m(mf (0)))

+ak0µ1ν
2∆−m(E−m(f (0)) + k1µ1ν

2∆−m(f (0))
]

It is not hard to see that the noise term gives rise to a parabolic operator which is
not always positive definite.

System n.2

For system n.2 performing the same calculations one finds

−〈1,L∗2 (KT )D L∗2(µf (0))〉 =
2ak0k1γ2 τ

(a k0 + k1)3
∆+
m(m∆+

m(mf (0)))+

+
ak0k1νγ τ

(a k0 + k1)3
[∆−m(∆+

m(mf (0))) + ∆+
m(m∆−m(f (0)))] +

ak0k1ν2 τ

(a k0 + k−)3
(∆−m(∆−m(f (0))))

Remark 12. For system n.2 it is crucial that L∗2 is diagonal.
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5 Detailed analysis of system n.1

In this section system n.1 is analysed assuming that also A molecules have a dy-
namics. Now the ME reads



∂P0(m, a, t)
∂t

= −(k1(δ, τ)/τ) aP0(m, a, t) + (k0(δ, τ)/τ)P1(m, a− 1, t)+

+(ν(δ, τ)/τ)P1(m− 1, a− 1, t) + ∆+
m((γ(δ, τ)/τ)mP0(m, a, t))

∂P1(m, a, t)
∂t

= (k1(δ, τ)/τ) (a+ 1)P0(m, a+ 1, t)− (k0(δ, τ)/τ)P1(m, a, t)+

−(ν(δ, τ)/τ)P1(m, a) +D+
m((γ(δ, τ)/τ)mP1(m, a, t)).

(49)
The ME is not in the form of an operator plus a Markov chain. To rewrite it in
that form one can use the operators ∆± and E±:



∂P0(m, a, t)
∂t

= −(k1(δ, τ)/τ) aP0(m, a, t) + [(k0(δ, τ)/τ) + (ν(δ, τ)/τ)]P1(m, a, t)+

+∆−a ([(ν(δ, τ)/τ) + (k1(δ, τ)/τ)]P1(a,m, t)) + ∆+
m((γ(δ, τ)τ)mP0(m, a, t))+

+∆−m((ν(δ, τ)/τ) E−a (P1(m, a, t)))

∂P1(m, a, t)
∂t

= (k1(δ, τ)/τ) aP0(m, a, t)− [(k0(δ, τ)/τ) + (ν(δ, τ)/δ)]P1(a, t)+

+∆+
a ((k0(δ, τ)/τ)P0(m, a, t)) + ∆−m((γ(δ, τ)/τ)mP1(m, a, t))

(50)
Now the form (27) is obtained by taking

KT =
1
τ

(
−a k0(δ, τ) k1(δ, τ) + ν(δ, τ)

a k0(δ, τ) −k1(δ, τ)− ν(δ, τ)

)
,

and

L∗ =
1
τ

(
∆+
m(γ(δ, τ)m (·) ) ∆−a ([ν(δ, τ) + k1(δ, τ)] (·)) + ∆−m(ν(δ, τ) E−a ((·)))

∆+
a (a k0(δ, τ) (·)) ∆+

m(γ(δ, τ)m (·) )

)
,

5.1 Continuum limit

Looking at the terms in the operators KT and L∗ it is possible to guess a limit
behaviour. We chose a scaling as follows

k0(δ, τ)
δ τ

' k0

ε
,
δ k1(δ, τ)

τ
' k1

ε
,
ν(δ, τ)
τ

' ν

ε
,
γ(δ, τ)
δ τ

' γ

ε
.

Then proceeding as in the examples above we take ε ' δ as δ, ε→ 0 and we obtain

KT ≈ KT =
1
ε

(
−a k0 k1 + ν

a k0 −k1 − ν

)
,
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and

L∗ ≈ L̂∗ =

(
∂m(γ m (·) ) −∂a([ν + k1] (·))− ∂m(ν((·)))

∂a(a k0 (·)) ∂m(γ m (·) )

)
,

Then the limit ME have the form

∂ρ(m, a, t)
∂t

= L̂∗(ρ(m, a, t)) +
1
ε
KT ρ(m, a, t) (51)

Remark 13. Note that also in this case there is no diffusion term in L̂∗.

Upon the validity of (51) the theory in [11] applies and an average dynamics can
be computed. The new invariant measure is

µ =
(

k1 + ν

k0 a+ k1 + ν
,

k0 a

k0 a+ k1 + ν

)
.

The ME at order O(ε0) is

∂f (0)

∂t
= 〈1, L̂∗(µ f (0))〉,

which turns out to be

∂f (0)

∂t
=

∂

∂m
[(γ m (µ1 + µ0)− ν µ1)f (0)] +

∂

∂a
[−(k1 + ν)µ1 + µ0 k

0 a)f (0)].

This corresponds to an average dynamics being equal to: ṁ(t) = −γ m(t) +
ν k0 a(t)

k0 a(t) + k1 + ν
,

ȧ(t) = 0.

As in the switch reaction (section 4.3) the average dynamics of a is trivial. Let a(0)
the initial value of A molecules. Then the steady state value for M molecules is

m =
ν k0 a(0)

γ (k0 a(0) + k1 + ν)
.

6 Conclusions

This paper shows a possible way to model reactions networks containing possibly
more than standard mass-action kinetics. We used finite states which can model
conformational changes of larger molecules, like proteins and corresponding bind-
ing/unbinding events of smaller molecules, typically substrates binding to the pro-
tein. The finite number of such larger proteins can be included in the structure of
the finite state Markov chain, as it has been illustrated in [11] and [12]. The ap-
proach is based on the analysis of the different scales (spatio-temporal and number
of particles) present in the system. The multiscale analysis leads naturally to the
idea to compare the dynamics of the discrete states with the dynamics governed
by mass-action kinetics. This comparison is done through adiabatic theory. The
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theory has many applications, primarily in cell biology to describe both the spatial
and spatially averaged dynamics of macro-molecular interaction with substrates,
ions or transcription factors. Obviously it can also be used in completely different
branches of science where a similar setting can be defined in a meaningful way.
Some simple examples show this large potential of the approach. In future work
the theory will be extended to systems whose underline stochastic dynamics is not
Markovian. This is especially relevant for different cellular transport processes. As
we could derive macroscopic equations from microscopic interactions, for example
also capturing all classical enzyme kinetics, the next task in the analysis is to find
ways of analysis how large systems of macroscopic reaction kinetics behave qual-
itatively, given their interaction is described by a graph containing the essential
information of these interactions. Such approaches are reviewed in [4].
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