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Abstract

Motivation: Predicting secondary structures of RNA molecules is one of the fundamental prob-
lems of and thus a challenging task in computational structural biology. Over the past decades,
mainly two different approaches have been considered to compute predictions of RNA secondary
structures from a single sequence: the first one relies on physics-based and the other on probabilistic
RNA models. Particularly, the free energy minimization (MFE) approach is usually considered the
most popular and successful method. Moreover, based on the paradigm-shifting work by McCaskill
which proposes the computation of partition functions (PFs) and base pair probabilities based on
thermodynamics, several extended partition function algorithms, statistical sampling methods and
clustering techniques have been invented over the last years. However, the accuracy of the corre-
sponding algorithms is limited by the quality of underlying physics-based models, which include a
vast number of thermodynamic parameters and are still incomplete. The competing probabilistic
approach is based on stochastic context-free grammars (SCFGs) or corresponding generalizations,
like conditional log-linear models (CLLMs). These methods abstract from free energies and instead
try to learn about the structural behavior of the molecules by learning (a manageable number of)
probabilistic parameters from trusted RNA structure databases.
In this work, we introduce and evaluate a sophisticated SCFG design that mirrors state-of-the-art
physics-based RNA structure prediction procedures by distinguishing between all features of RNA
that imply different energy rules. This SCFG actually serves as the foundation for a statistical sam-
pling algorithm for RNA secondary structures of a single sequence that represents a probabilistic
counterpart to the sampling extension of the PF approach. Furthermore, some new ways to derive
meaningful structure predictions from generated sample sets are presented. They are used to com-
pare the predictive accuracy of our model to that of other probabilistic and energy-based prediction
methods.
Results: Particularly, comparisons to lightweight SCFGs and corresponding CLLMs for RNA struc-
ture prediction indicate that more complex SCFG designs might yield higher accuracy but eventually
require more comprehensive and pure training sets. Investigations on both the accuracies of predicted
foldings and the overall quality of generated sample sets (especially on an abstraction level, called
abstract shapes of generated structures, that is relevant for biologists) yield the conclusion that the
Boltzmann distribution of the PF sampling approach is more centered than the ensemble distribu-
tion induced by the sophisticated SCFG model, which implies a greater structural diversity within
generated samples. In general, neither of the two distinct ensemble distributions is more adequate
than the other and the corresponding results obtained by statistical sampling can be expected to
bare fundamental differences, such that the method to be preferred for a particular input sequence
strongly depends on the considered RNA type.

1 Introduction

The function of an RNA molecule in the cell’s metabolism is often to a large extend determined by
its structure. Since the experimental determination of the complete 3D structure of a molecule, called
its tertiary structure, is usually time-consuming and expensive, and its prediction is computationally
complex, it has proven convenient to first search for its 2D structure, called the secondary structure of
the molecule. In fact, most of the 3D conformation is given by the intramolecular base pairings in the
plane and thus, it is customary for prediction algorithms to allow only non-crossing (nested) base pairs
given by the secondary structure, such that the molecule can be modeled as a planar graph [Wat78].
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In structural biology, the most successful and still most appreciated techniques for the computational
prediction of RNA secondary structure from a single sequence are based on thermodynamic models and
use the free energy minimization (MFE) paradigm to identify candidate structures for the given RNA
sequence. All these algorithms are realized by dynamic programming (DP) routines that run inO(n3) time
and require O(n2) storage for a sequence of length n. While early methods, like [NPGK78, NJ80, ZS81],
computed only one structure (the MFE structure of the molecule), several efficient algorithms have been
developed over the years for generating a set of suboptimal foldings (see e.g. [WFHS99, Zuk89]). Widely
used implementations of such MFE based algorithms are for instance the Mfold software [Zuk89, Zuk03]
or the Vienna RNA package [HFS+94, Hof03]. However, the quality of such physics-based methods is
strongly dependent on and thus limited by the used thermodynamic models.
For the standard sequence-dependent thermodynamic model for RNA secondary structures, usually
called Turner model, free energy parameters and rules have been estimated for basic structural mo-
tifs [XSB+98, MSZT99], but there are still substantial uncertainties in the corresponding comprehensive
free energy parameters. Actually, since the considered thermodynamic parameters are mostly estimated
from experimental results the rules for computing the energies of particular substructures are still incom-
plete. In particular, extrapolations are currently used for large loops.
Moreover, it is practically impossible to incorporate information on folding kinetics, as certain important
chemical aspects (like for example the influence of proteins/enzymes or the effect of co-transcriptional
folding) can simply not be measured in terms of free energy. As a consequence, although the Turner
model is considered valid for any type of RNA, it encounters specific problems for particular types of
RNA (e.g., for tRNAs where it is well-known that modified nucleotides introduce problems for structure
prediction [RCM99]).
One way to overcome these problems is to estimate the thermodynamic parameters from RNA structure
databases via Bayesian statistical inference (where the experimentally derived Turner parameter values
can be used for prior specification) [Din06]. In fact, such a Bayesian inference approach not only makes it
possible to derive energy estimates that are suited for structure prediction. If applied to a training set of
RNA data from a single biological class it may also manage to indirectly incorporate non-energetic effects
(like, e.g., modified nucleotides) into the model, since those are observed in the trusted training set and
thus may alter the energy parameters derived. In any case, the accuracy of the estimated parameters
strongly depends on the quality of the employed data.
Another way to overcome difficulties in connection with MFE structures is the partition function (PF)
approach for computing base pair probabilities as introduced in [McC90], providing a statistical charac-
terization of the equilibrium ensemble of RNA secondary structures. On its basis, a statistical sampling
algorithm as implemented in the Sfold software [DL03, DCL04]) can be used to generate a structurally
diverse set of suboptimal foldings which – compared to the set of structurally quite similar suboptimal
structures usually computed by MFE based DP algorithms – can be much closer to the structure deter-
mined by comparative analysis [Din06]. Note that Sfold actually predicts suboptimal foldings as centroids
of clusters of candidate structures obtained from statistical sampling (by employing precomputed base
pairing probabilities) rather than from an MFE based DP traceback. However, if only the optimal (MFE)
structure is needed, a strict DP variant should be preferred in terms of the running time. Nevertheless,
since the PF – and thus sampling based on it – is dependent on free energies, it is however also limited
by the underlying thermodynamic model. In fact, as the most probable structures in the Boltzmann-
weighted ensemble are equal to the MFE (or something close to it) structures, this approach inherits some
of the problems associated with traditional MFE approaches. As one consequence, Bayesian inference of
energy parameters is also used in connection with PF based sampling approaches.

An alternative methodology towards single sequence RNA secondary structure prediction is based on
modeling the class of all feasible secondary structures (that obey to certain structural constraints like for
example the non-existence of isolated base pairs) by stochastic context-free grammars (SCFGs), which
induce a (non-uniform) probability distribution on the considered class. Particularly, being an extension
of usual context-free grammars (CFGs), SCFGs do not only model the class of objects (language) to be
generated, but also define a joint probability distribution on them. In a sense, this SCFG approach can
be seen as a generalization of hidden Markov models, which are widely and successfully used in the large
field of bioinformatics. In fact, when using SCFG based approaches, the main focus of attention is laid
on the typical structural composition of foldings and free energies are disregarded. An example for a
popular SCFG based prediction tool for RNA secondary structure is Pfold [KH99, KH03].
As there is no lab-based prior to the grammar parameters like the Turner model for MFE and PF ap-
proaches, the corresponding distribution has to be derived from a collection of real-life RNA data (RNA
sequences with known secondary structures) when using probabilistic1 approaches to RNA structure pre-

1In this paper we call an approach probabilistic if it makes no use of free energy based models; even if a PF based
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diction. This for example can be done by counting the observed frequencies of applications of the distinct
production rules of an unambiguous SCFG (yielding a maximum likelihood estimator), by expectation
maximization or similar methods from machine-learning. That way, the resulting estimates of the gram-
mar parameters are adapted to the considered data set. Again, we have two different choices: First, we
may consider a training set where only structures of a single biological class (e.g., tRNA) are contained.
Here, we may expect that all structural properties (including aspects which are caused by interaction
with proteins or by other non-energetic details of RNA folding) typical to this class are trained into the
respective parameter values. For a general model of RNA folding, this may lead to lack of generalization
since we cannot be sure that the model adapts well to new data from a different class. Second, we may
use a rich training set of mixed biological classes. Here, the before mentioned danger is much smaller but
we lose the chance to capture some class-specific properties of the structures within our model. In both
cases, the main problem that comes inherently with the SCFG approach for modeling RNA structures
and limits the performance of the corresponding computational prediction methods is that it is obviously
highly dependent on the availability of a rich, reliable training set. This is especially the case when using
a complex SCFG design that distinguishes between all different features in RNA structure aiming at a
highly realistic model for there a large number of parameters needs to be determined.

Early probabilistic approaches such as [KH99] seem to have chosen the structure of their SCFG rather
arbitrarily; at least, there is almost no discussion about the motivation for the choice of the productions.
This problem has first been addressed in [DE04] where nine different SCFGs have been evaluated in
connection with RNA secondary structure prediction. Aiming at an exploration on how different SCFG
designs affect the accuracy of single sequence RNA secondary structure prediction methods, the authors
observed that fairly simple SCFGs achieve respectable prediction accuracies, but – despite the uncer-
tainties in Turner’s energy model – the best physics-based methods still generally perform significantly
better than the best SCFGs. Therefore, the authors of [DE04] raised the following questions, which will
be addressed by this article:

1) Could an appropriately designed sophisticated SCFG be able to outperform the existing MFE
methods for single sequence prediction?

2) How would an (unambiguous)2 SCFG mirroring state-of-the-art physics-based algorithms (i.e. a
grammar with specific productions for all structural motifs for which there are different thermody-
namic parameters or energy rules) perform?

As already noted, in order to improve the predictive accuracy of energy-based algorithms, (some of) the
corresponding thermodynamic parameters might be estimated or improved via statistical inference meth-
ods, by taking advantage of a particular RNA database. This obviously strongly relates to the estimation
of the grammar parameters of a sophisticated SCFG design as described in question 2). Actually, if a
certain energy parameter value for a specific structural motif can be statistically estimated from a given
set of real-world RNA data, then the corresponding grammar parameter for the production that gener-
ates this motif can effectively be trained from the same data set, yielding a one-to-one correspondence
between estimated thermodynamic and grammar parameter values. Hence, it might be assumed that a
sophisticated SCFG satisfying the conditions formulated in question 2) has a similar predictive power
than modern physics-based algorithms that employ elaborate free energy models.
According to these aspects, it should also be mentioned that recently, a new RNA secondary structure
prediction tool named CONTRAfold [DWB06] has been introduced, which is based on a flexible prob-
abilistic model, called conditional log-linear model (CLLM). CLLMs are a generalization of traditional
SCFGs according to the following facts: While SCFGs (like hidden Markov models) are generative prob-
abilistic models, which are intuitive and allow convenient generative parameter training via maximum
joint likelihood techniques, CLLMs are discriminative probabilistic models, where the parameters are
learned by discriminative training which maximizes the conditional likelihood. As stated in [DWB06],
any SCFG has an equivalent representation as an appropriately parameterized CLLM. The prime advan-
tage of using CLLMs instead of vanilla SCFGs (i.e. discriminate instead of generative training) is that
CLLMs have the power to represent more complex scoring schemes than the corresponding SCFG can
represent. In fact, CONTRAfold uses a simplified Mfold-like scoring scheme for the underlying CLLM
providing a rather high single sequence prediction accuracy and closing the performance gap between the
best physics-based and the best probabilistic RNA structure prediction methods.

Boltzmann sample is a random event, we accordingly do not assume it probabilistic.
2A structurally ambiguous SCFG mirror of modern energy-based algorithms for single sequence structure prediction has

already been described in [RE00].
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Moreover, due to the previously mentioned benefit caused by departing from the common MFE approach
to considering the sampling extension of the PF approach, it seems reasonable to rely on Boltzmann sam-
ples rather than on single MFE structures in order to address question 1). Accordingly, we decided to
oppose the Boltzmann samples to corresponding samples obtained by a SCFG version of Sfold’s statisti-
cal sampling strategy based on an appropriately designed grammar that actually meets the requirements
raised in question 2). This means we will employ an efficient statistical sampling algorithm that incorpo-
rates comprehensive structural features and – instead of the recent thermodynamic Turner parameters –
additional information obtained from trusted databases of real-world RNA structures in order to gener-
ate probabilistic counterparts of the Boltzmann samples. Actually, just like in the PF variant, secondary
structures are sampled rigorously from the ensemble distribution of all feasible foldings for a given input
sequence, but the distribution will be induced by the parameter values of the underlying SCFG.
Altogether, due to the before mentioned connection of thermodynamic parameters and probabilities of
a sophisticated grammar (especially if both are estimated statistically), it seems adequate to put the
following hypothesis which will be examined within this article:

H0: The Boltzmann distribution implied by a thermodynamic PF approach and the ensemble distri-
bution induced by a corresponding (sophisticated) SCFG are similar and thus yield comparable
statistical sampling results (i.e. no significant differences of the generated sample sets can be ex-
pected).

According to the preceding explanations, the main objectives of this paper are given as follows: We
will answer the two important questions 1) and 2) already raised in [DE04] (according to the previously
mentioned aspects) and essentially check whether hypothesis H0 can be verified. Therefore, we will first
define a sophisticated SCFG that represents a probabilistic mirror to the optimization schemes applied
in modern MFE based dynamic programming routines and statistical sampling approaches based on free
energies and PFs. Actually, that SCFG is designed to represent an exact probabilistic mirror to the
diverse recursions and formulae for calculating all equilibrium PFs and sampling probabilities that are
needed for the elaborate statistical sampling procedure applied in the Sfold software.
Another take on the same kind of problems but with slightly different intensions can be found in [RLE11].
There, in order to explore a range of probabilistic models of increasing complexity, and to directly compare
probabilistic, thermodynamic, and discriminative approaches, a computational tool is created that can
parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model
and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or
arbitrary scores. The authors put forward that discriminative training is not required, simple ML learn-
ing is enough. Therefore, their tool uses only generative training, not discriminative. Parameters can,
however, be imported from other sources. Using their tool Rivas et al. show that probabilistic nearest-
neighbor models perform comparably to (but not significantly better than) discriminative methods and
that complex statistical models are prone to overfitting RNA structure.
The rest of the present paper is organized as follows: Section 2 describes the SCFG model for secondary

structures that will be used as the foundation for the probabilistic sampling approach. The complete
sampling strategy is introduced in Section 3 and Section 4 proposes several appropriate ways for deriving
particular predictions from generated structure samples. Notably, some of them deal with a new mech-
anism for controlling the prediction accuracy (by a sensitivity/PPV trade-off parameter γt−o) similar
to the one implemented in the CONTRAfold software. Section 5 examines the benefits and potential
drawbacks of using a sophisticated SCFG like ours compared to lightweight SCFGs and corresponding
CLLMs for RNA structure prediction. We find that using a more complex SCFG design might actually
yield a higher prediction accuracy but requires a more comprehensive and pure training set to ensure that
all parameters are appropriately estimated. To address hypothesis H0, Section 5 additionally discusses
the potentials and pitfalls of the SCFG based sampling method compared to the sampling extension of
the PF approach as implemented in the Sfold software, where both the quality of generated sample sets
and their applicability to the problem of RNA structure prediction are investigated. These comparisons
include results on an abstraction level (abstract shapes of sampled structures, as introduced in [JRG08])
that is of great interest and relevance for biologists. One of the prime observations is that the SCFG
induced distribution implies a greater structural diversity within generated samples, as it seems to be less
centered than the Boltzmann energy distribution. Moreover, the distinct comparisons indicate that using
a lean database of mixed RNA classes results in improper estimators of the needed grammar parameters,
such that in these cases the PF approach usually generates more realistic samples. The SCFG approach
generally produces more accurate sample sets if a rich and pure training set is available. In summary, free
energy based samplers are proven to have stronger abilities for generalization or vize-versa, approaches
based on a sophisticated SCFG can be fitted to a specific class of RNA (where they show high predictive
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accuracy possibly implied by non-energetic effects which find their way into the parameter set) without
generalization to other biological classes (maybe because there those effects behave differently) and thus
may be assumed overfitted. However, in Paragraph 5.2.3 we disprove this assumption in the context of
tRNA data by showing that our sophisticated SCFG approach does not tend to predict significantly more
often a cloverleaf structure than the PF variant. Finally, Section 6 summarizes our findings and hints at
some interesting matters for further research.

2 Used SCFG Model

While RNA sequences are usually modeled as strings over the alphabet {a, c, g, u}, for secondary struc-
tures, lots of different representations and corresponding definitions are used in literature. Here, we
decided to rely on the following definition:

Definition 2.1 ([ZMT99]). A secondary structure of size n is a finite set (possibly empty) of base pairs.
A base pair between i and j, 1 ≤ i < j ≤ n, is denoted by i.j (or ri.rj to stress that the secondary
structure is for sequence r). A few constraints are imposed:

1. Two base pairs, i.j and i′.j′ are either identical, or else i 6= i′ and j 6= j′.

2. Pseudoknots (given by two base pairs i.j and i′.j′ such that i < i′ < j < j′) are prohibited.

3. Hairpin loops of size less than minHL ≥ 1 are prohibited, i.e. (j − i− 1) ≥ minHL for any pair i.j.

RNA secondary structures according to Definition 2.1 can be modeled as strings over the alphabet {(((, ))), ◦◦◦},
where a dot ◦◦◦ represents an unpaired nucleotide and a pair of corresponding brackets ((( ))) represents two
bases in the RNA molecule that are paired (see [VC85]). Using this dot-bracket representation, we can
easily model sequences and secondary structures3 as formal languages Lr and Ls, respectively, defined
by corresponding (stochastic) context-free grammars that generate them. Usual CFGs are only capable
of modeling the elements of a formal language, whereas SCFGs can be used to additionally define a
probability distribution on its words (or their derivation trees). A formal definition is given as follows:

Definition 2.2 ([FH72]). A stochastic context-free grammar (SCFG) is a 5-tuple G = (I, T,R, S,Pr),
where I (resp. T ) is an alphabet (finite set) of intermediate (resp. terminal) symbols (I and T are
disjoint), S ∈ I is a distinguished intermediate symbol called axiom, R ⊂ I × (I ∪ T )∗ is a finite set
of production rules and Pr is a mapping from R to [0, 1] such that each rule f ∈ R is equipped with
a probability pf := Pr(f). The probabilities are chosen in such a way that for all A ∈ I the equality∑
f∈R pf · δQ(f),A = 1 holds. Here, δ is Kronecker’s delta and Q(f) denotes the source of the production

f , i.e. the first component A of a production rule (A,α) ∈ R. In the sequel, we will write pf : A → α
instead of f = (A,α) ∈ R, pf = Pr(f).

We assume the reader to be familiar with the basic definitions and concepts regarding SCFGs. For a
fundamental introduction on stochastic context-free languages, see for example [HF71]. Nevertheless,
it is worth mentioning that if a formal language is modeled by a so-called consistent SCFG, then the
probability distribution on the production rules of the SCFG implies a probability distribution on the
words of the generated language and thus on the modeled structures4.
For the prediction of RNA secondary structures, SCFGs are used in the following way: a suitable (ambigu-
ous) grammar models the combinatorial class (language) of all RNA sequences (i.e., this SCFG generates
all possible primary structures), while each derivation tree for a given sequence uniquely corresponds
to one possible secondary structure. Therefore, a grammar at least has to distinguish between paired
and unpaired positions by using different productions to generate the corresponding symbols of the RNA
sequence. However, it is possible to use a grammar which generates paired and unpaired positions located
in different kinds of substructures (like hairpin loops or bulges) by different production rules. That way
one aims at a more realistic model since it becomes possible to use different probabilities within the
different contexts (substructures).
According to our objectives motivated in Section 1, our SCFG should be constructed to represent a mirror
to the free energy model employed in Sfold’s sampling procedure, which means we have to take care of the

3Note that in order to avoid ambiguity, we will denote a particular sequence by r and the corresponding secondary
structure by s in the sequel.

4To ensure that a SCFG gets consistent, one can for example assign relative frequencies to the productions, which are
computed by counting the production rules used in the leftmost derivations of a finite sample (RNA database) of words
from the generated language [CPG83].
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fact that all distinct structural features of RNA for which there are different energy rules and free energy
parameters according to the underlying thermodynamic model have to be modeled by corresponding
distinct production rules. Briefly, at any point, the desired SCFG must be capable of distinguishing
between exactly the same mutually exclusive and exhaustive cases that have to be considered in the
recursions for calculating the equilibrium PFs as defined in [DL03]. Then, the inside and outside values
derived for a given sequence on the basis of that SCFG can be used in a straightforward fashion – along
with the corresponding SCFG parameters (rule probabilities) – in order to define the needed conditional
sampling probabilities that directly correspond to those applied in Sfold’s elaborate PF based sampling
algorithm. By using different intermediate symbols for the distinct loop types and their respective
substructures, we obtain the following sophisticated SCFG design for modeling the formal language Ls
of all RNA secondary structures:

Definition 2.3. The (unambiguous) SCFG Gs generating exactly the language Ls is given by Gs =
(IGs ,ΣGs ,RGs , S), where IGs = {S, T, C,A, P, L, F,H,G,B,M,O,N,U, Z} , ΣGs = {(((, ))), ◦◦◦} and for
mh := minHL ≥ 1 and ms := minhel ≥ 1, RGs contains exactly the following rules:

p1 : S → T,  initiate exterior loop

p2 : T → C, p3 : T → A, p4 : T → CA, p5 : T → AT, p6 : T → CAT,  composition of exterior loop

p7 : C → ZC, p8 : C → Z,  strands in exterior loop

p9 : A→ (((msL)))ms ,  initiate helix

p10 : P → (((L))),  extend helix

p11 : L→ F, p12 : L→ P, p13 : L→ G, p14 : L→M,  initiate any loop

p15 : F → Zmh−1H,  start hairpin loop

p16 : H → ZH, p17 : H → Z,  extend hairpin loop

p18 : G→ BA, p19 : G→ AB, p20 : G→ BAB,  type of bulge/interior loop

p21 : B → ZB, p22 : B → Z,  strands in bulge/interior loop

p23 : M → UAO,  first substructure of multiple loop

p24 : O → UAN,  second substructure of multiple loop

p25 : N → UAN, p26 : N → U,  kth substructure of multiple loop, k ≥ 3

p27 : U → ZU, p28 : U → ε,  strands in multiple loop

p29 : Z → ◦◦◦ .  unpaired base

The unambiguity of that grammar can be proven along the lines of [NS]. Note that the productions
F → Zmh−1H and A→ (((msL)))ms ensure that neither hairpin loops of less than mh unpaired nucleotides
nor helices of less than ms consecutive base pairs are generated.
Obviously, the (unambiguous) grammar Gs can immediately be transformed into a second (ambiguous)
SCFG Gr that models the language Lr of all RNA sequences: we only have to replace ΣGs = {(((, ))), ◦◦◦}
by ΣGr := {a, c, g, u} and the three rules A → (((msL)))ms , P → (((L))) and Z → ◦◦◦ by corresponding
new productions generating valid5 base pairs and unpaired bases, respectively. Finally, in order to
guarantee that appropriate probabilities are used for the production rules of the SCFG Gr, we can assign
relative frequencies (which can be derived from an arbitrary training set of known RNA sequences with
corresponding secondary structures) to the elements in RGr , yielding a consistent SCFG.
However, we can equivalently only consider the initial grammar Gs with transition probabilities for the
productions in RGs and – in order to be able to model structures on RNA sequences – two additional
sets of emission probabilities for unpaired bases (i.e., for each x ∈ ΣGr ) and for base pairs (i.e., for every
x1x2 ∈ Σ2

Gr ). Accordingly, the probability of each production rule in Gr that generates one or more
base pairs ((( ))) or an unpaired base ◦◦◦ is given by the product of the corresponding transition probability
(for A → (((msL)))ms , P → (((L))) or Z → ◦◦◦ in RGs) and the respective emission probabilities (for base

5Here, we decided to consider any possible pair as valid base pair, where non-canonical ones are mostly prohibited due
to small probabilities. Thus, in contrast to the thermodynamics based PF approach which can only handle canonical base
pairs, our algorithm is able to deal with arbitrary base pairs, in a convenient way: when using appropriate probabilities,
canonical base pairs will be very likely and non-canonical ones will be very unprobable (but not necessarily impossible) to
be formed. However, since non-canonical base pairs are usually not permitted in secondary structure models (to limit the
number of possible foldings), it would also be adequate to allow only canonical ones. The probabilities for non-canonical
base pairs would then be equal to zero.
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pairs or unpaired bases)6. For example, if ms = 2, then Pr(A → acLgu ∈ RGr ) = Pr(A → ((((((L)))))) ∈
RGs) · Pr(pair au) · Pr(pair cg).
For grammar training this means that instead of using the derivation tree that corresponds to the correct
secondary structure s for a given sequence r to determine the relative frequency of each production among
all productions with the same premise, we simply have to count the relative frequencies of applications
of the production rules of Gs and the corresponding relative frequencies of emissions of unpaired bases
and base pairs that are observed in the training set. The relative frequencies that are obtained in this
manner are still a maximum likelihood estimator for the grammar probabilities.
It should be mentioned that the trained transition and emission probabilities are obviously linked in
the straightforward mathematical sense, that is the probabilities of the different transitions with same
left-hand side, as well as the emissions for unpaired and paired bases, respectively, must sum up to
unity. Moreover, all emission probabilities come from the same distribution, that is for any considered
loop type, we use the same emission probabilities for unpaired bases located within and base pairs
closing a corresponding loop. Consequently, the number of free parameters that have to be trained is
given by card(RGs)− card(IGs) + card(ΣGr )2 + card(ΣGr ) = 29− 15 + 16 + 4 = 34. Note that this rather
moderate number (compared to the heavyweight grammar design) effectively results from linking together
the emissions of base pairs generated with different rules instead of going strictly with the grammar
definition which implies using different trained distributions for any such rule (here p9 : A → (((msL)))ms

and p10 : P → (((L)))). This simplification obviously reduces the dimensionality of the parameter space in a
significant way (especially for minhel > 1), and is also justified due to observations made from considering
trusted RNA databases (trained distributions usually are very similar) and having a closer look at the
Turner energy parameters (many tables, excluding the stacking table and some others, contain only a
few different values in total).

3 Sampling Strategy

In this section, we give a complete derivation of all results needed for a probabilistic statistical sampling
algorithm for RNA secondary structures according to the SCFG model defined in the last section. Just
like the PF variant, the sampling algorithm has two basic steps: Its forward step computes the inside and
outside probabilities for all substrings of an RNA sequence based on the considered SCFG. These inside
and outside values are used for calculating conditional sampling probabilities for all considered cases. The
backward step is basically the same as with PFs, which means it takes the form of a recursive sampling
algorithm to randomly draw secondary structures according to the sampling probabilities derived in step
one. By applying the algorithm to a biological RNA sequence, a statistically representative sample of
secondary structures can quickly be generated once the forward step for deriving the inside and outside
values is completed.

3.1 Computing Inside and Outside Probabilities

A detailed description on how the inside and outside variables can be computed with a special variant
of an Earley-style parser based on the SCFG Gr can be found in Section Sm-I7. Applying this method
to a sequence r of size n, there results cubic time complexity and quadratic memory requirement for
the computation of all inside probabilities αA(i, j) = Pr(A ⇒∗lm ri . . . rj) and all outside probabilities
βA(i, j) = Pr(S ⇒∗lm r1 . . . ri−1 A rj+1 . . . rn), A ∈ IGr and 1 ≤ i, j ≤ n.
It should be noted that for the derivation of sampling results presented in Section 5, we actually employed
the separation of the grammar parameters into transition and emission probabilities (as explained in
Section 2), but for the sake of simplicity, the formal description of the inside and outside algorithms
given in Section Sm-I relies on the equivalent unseparated rule probabilities for Gr.

3.2 Sampling Structures According to SCFG Model

Before we will define sampling probabilities for mutually exclusive and exhaustive cases that correspond
to those derived in [DL03] with the PF approach, note that when using the PF method, one has to
choose a constant value for the parameter maxBL which defines the maximum allowed size of single-
stranded regions in bulge and interior loops (for applications, maxBL = 30 is a common choice) to

6Note that this separation into transition and emission probabilities corresponds to the standard treatment applied in
hidden Markov models.

7All references starting with Sm are references to the supplementary material available at
http:///wwwagak.cs.uni-kl.de/publications/.
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ensure that the worst-case time complexity remains cubic. However, such restrictions are not necessary
to improve the performance of an SCFG based sampling algorithm (see Section Sm-II.1.2), but the
corresponding sampling strategy can easily be implemented to deal with maxBL, such that (the default
value) maxBL =∞ has to be chosen to avoid restrictions on bulge and interior loops.
Nevertheless, we decided to make use of two parameters minHL and minhel to be able to avoid hairpin
loops of less than minHL nucleotides and helices of less than minhel consecutive base pairs (such that each
paired substructure consists of at least minps := 2 ·minhel + minHL bases). This enables us to compare
the different results obtained for each combination of the commonly used values minHL ∈ {1, 3} and
minhel ∈ {1, 2} to the corresponding results derived with the PF approach (which always implicitly uses
minhel = 1 and minHL = 3).

3.2.1 Sampling Probabilities for Exterior Loops

In the sequel, given an RNA molecule consisting of n nucleotides, we denote the corresponding sequence
fragment from position i to position j, 1 ≤ i, j ≤ n, by Rij = riri+1 . . . rj−1rj .
We start by considering a fragment Rij that does not lie within any regular loop, i.e. that consists only
of free bases of the exterior loop. Obviously, we can either leave the whole fragment unfolded or else, we
can choose a first free base pair rh.rl of the exterior loop (that starts a paired substructure on Rij). As
we have to take into account all possible cases for choosing and combining rh and rl on the considered
fragment, we define PE0 (i, j) as the sampling probability for leaving Rij single-stranded, PEij (i, j) as that

for pairing ri with rj (i.e., case h = i and l = j), {PEhj(i, j, h)} as those for cases where i < h < l = j

and {PEil (i, j, l)} as those for cases h = i < l < j. Moreover, let {PEhl(i, j, h)} be the probabilities for first

sampling h for cases where i < h < l < j and {P̂Ehl(j, h, l)} be those for sampling l after h is sampled (in
any case i < h < l < j). Using inside outside values and rule probabilities, we find:

PE0 (i, j) =
1

pE(i, j)
· βT (i, j) · (αC(i, j) · Pr(T → C)) ,

PEij (i, j) =
1

pE(i, j)
· βT (i, j) · (αA(i, j) · Pr(T → A)) ,

PEhj(i, j, h) =
1

pE(i, j)
· βT (i, j) · (αC(i, h− 1) · αA(h, j) · Pr(T → CA)) ,

PEil (i, j, l) =
1

pE(i, j)
· βT (i, j) · (αA(i, l) · αT (l + 1, j) · Pr(T → AT )) ,

PEhl(i, j, h) =
1

pE(i, j)
· βT (i, j) · (αC(i, h− 1) · αAT (h, j) · Pr(T → CAT )) ,

P̂Ehl(j, h, l) =
1

αAT (h, j)
· (αA(h, l) · αT (l + 1, j)) ,

where

αAT (i, j) =
∑(j−1)

l=(i−1)+minps

(αA(i, l) · αT (l + 1, j))

and
pE(i, j) = βT (i, j) · αT (i, j).

Since the probabilities of all mutually exclusive and exhaustive cases sum up to 1, we have PE0 (i, j) +

PEij (i, j)+
∑(j+1)−minps

h=(i+1) PEhj(i, j, h)+
∑(j−1)
l=(i−1)+minps

PEil (i, j, l)+
∑j−minps

h=(i+1) P
E
hl(i, j, h) = 1, and, under the

condition that PEhl(i, j, h) > 0, also
∑(j−1)
l=(h−1)+minps

P̂Ehl(j, h, l) = 1.

3.2.2 Sampling Probabilities for Other Substructures

In the same way, we can derive equations for computing the needed sampling probabilities for the mutually
exclusive and exhaustive cases of any other substructure type, where in any case, the respective equations
only depend on the underlying SCFG model and the corresponding inside outside values for the input
sequence. The resulting sampling probabilities and their usages directly correspond to those defined and
described in [DL03], as in principle the sole difference is that those equations all depend on PFs and free
energy values. However, details on all remaining SCFG based sampling probabilities and how they have
to be used can be found in Section Sm-II.1.
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3.2.3 Sampling Process

A secondary structure for a given RNA sequence r ∈ Lr of length n is sampled recursively by starting with
the entire RNA sequence R1n and consecutively computing the adjacent substructures (single-stranded
regions and paired substructures) of the exterior loop (from left to right), where any paired substructure is
completed by successively folding nested substructures. For a formal description of the sampling process
(strongly resembling that employed in the Sfold tool), see Algorithms 3 to 6 in Section Sm-II.2.
Note that the sampling process for a secondary structure of a given input sequence r is similar to the
traceback algorithm employed in MFE based dynamic programming algorithms. Actually, the main
difference is that in those algorithms, base pairings are selected by the minimum energy principle for
the fragments Rij , whereas here, base pairs are randomly sampled according to conditional probability
distributions for the corresponding fragments, defined by the precomputed inside and outside probabilities
and the probabilities of the grammar rules (in contrast to PF approach the where these are derived from
precomputed equilibrium PFs and energy values).
We can hence conclude that the considered SCFG based approach and the corresponding PF variant
can produce a statistical sample for a given input sequence with similar time and space requirements8,
but the SCFG method can be used with less restrictions (one can allow minHL < 3, non-canonical base
pairs and bulge / interior loops of arbitrary length, due to the departure from thermodynamic models).
However, when comparing the results of both sampling strategies, significant differences can be observed,
as we will see in Section 5.

4 Extension to Structure Prediction

The sampling algorithm sketched in the last section can easily be extended to a prediction algorithm for
RNA secondary structures of a single sequence. In principle, after a sample set of possible secondary
structures for a given RNA sequence has been constructed, we can derive a corresponding prediction from
those (more or less) different candidate structures. Obviously, we can either pick one particular structure
from the generated sample as prediction (according to a preliminary defined selection procedure) or
we can compute a new structure as predicted folding (according to a preliminary defined construction
scheme), where the predicted structure itself must not necessarily be contained in the considered sample.
Notably, for the latter variant, there exist elegant ways to incorporate a trade-off parameter γt−o in order
to provide the user with a mechanism for controlling the sensitivity (Sens.) and the positive predictive value
(PPV)9 of the predicted foldings. These two measures were introduced in order to quantify the accuracy
of RNA secondary structure prediction methods and are usually defined as follows (see e.g. [BBC+00]):

• Sens. is the relative frequency of correctly predicted pairs among all position pairs that are actually
paired in a stem of native foldings, whereas

• PPV is defined as the relative frequency of correctly predicted pairs among all position pairs that
were predicted to be paired with each other.

Formally, they are given by Sens. = TP · (TP +FN)−1 and PPV = TP · (TP +FP )−1, where TP is the
number of correctly predicted base pairs (true positives), FN is the number of base pairs in the native
structure that were not predicted (false negatives) and FP is the number of incorrectly predicted base
pairs (false positives).
Note that in [DWB06], the idea of a parameter γt−o to control the sensitivity/PPV tradeoff has been used
in connection with a dynamic programming optimization scheme. According to its value, the algorithm
either tends to predict only those base pairs with rather strong signals for them to belong to the native
folding or it is encouraged to predict more pairings even if they might be no part of the native structure.
Here, we will show how γt−o can be incorporated in connection with sampling algorithms.

4.1 Most Frequent Structure

Since for a sufficiently large sample size, the generated samples are statistically representative, the most
frequently observed structure within a given sample set can be assumed to be equal to the most probable
folding for the given input sequence (under the considered model, that is according to the corresponding

8Both methods can be implemented to run in O(n3) time and with O(n2) space requirements for a sequence of length
n, where a single secondary structure can be drawn in O(n2) time.

9Note that the positive predictive value is often called specificity, like for example in [DWB06], which will be extensively
referenced in the sequel.
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distribution on the entire ensemble of feasible structures for that sequence). Consequently, for an adequate
prediction choice, we simply have to sample a sufficiently large number of possible foldings and choose
the most frequently sampled one as prediction. If there are more than one structures sampled with the
same highest observed frequency, then the one with the highest probability among all of them should be
chosen. This can be considered the standard selection method, as it intuitively yields the “best” sampled
structure, which will be denoted by most frequent (MF) structure in the sequel.
Obviously, this selection inevitably corresponds to and is thus effectively comparable to the outputs of
conventional SCFG based prediction methods for RNA secondary structures from a single sequence. In
fact, these methods traditionally determine the most likely parse tree for a given input sequence (under
the considered stochastic model) and for structurally unambiguous SCFGs, the most likely parse tree is
actually equal to the most probable secondary structure for the given sequence.

4.2 Maximum Expected Accuracy Structures

For so-called maximum expected accuracy structures (MEA structures) we employ a rather simple proce-
dure for constructing a particular prediction from a given sample set that uses the trade-off parameter
γt−o as introduced above. Briefly, the MEA structures for a given sequence are the ones among all can-
didate structures that maximize the number of correctly unpaired positions plus γt−o times the number
of correctly paired positions with respect to the true folding of that sequence. In our case, γt−o may take
on any positive real value and the choice of γt−o = 1 serves as the neutral element with respect to the
prediction, i.e. the prediction is neither biased towards a better sensitivity nor to a better PPV. More
precisely, γt−o may take on values in [0,∞), where for the considered sequence fragment Rij , 1 ≤ i, j ≤ n,

• γt−o < 1 restricts the procedure to produce pair i.j only if it is extremely confident,

• γt−o = 1 has no impact on the decision whether i.j should be paired or not,

• γt−o > 1 encourages the algorithm to produce pair i.j, even if it is not confident,

that this pair belongs to the native folding.
In [DWB06], this parameter is actually used in the DP algorithm for computing the predicted folding –
the MEA structure. More precisely, γt−o was incorporated into the recursion scheme for calculating the
maximum expected accuracy M1,n for an input sequence of length n. In particular, the corresponding
DP matrix M is computed according to the following recurrence:

Mi,i = qi, for 1 ≤ i ≤ n, and

Mi,j = max


qi +Mi+1,j ,

Mi,j−1 + qj ,

γt−o · 2 · pi,j +Mi+1,j−1,

maxi<k<j−1Mi,k +Mk+1,j ,

for 1 ≤ i ≤ j − 1 and 1 ≤ j ≤ n,

where pi,j denotes the probability that i pairs with j and qi denotes the probability that i remains
unpaired. The traceback step of the corresponding DP algorithm can thus be employed to identify the
MEA structures of the input sequence according to the given setting of γt−o. If only one MEA structure is
recovered in the traceback step, the complete algorithm obviously requires O(n3) time and O(n2) space.
Note that for the default setting γt−o = 1, the algorithm only maximizes the expected number of correct
(unpaired and paired) positions and is actually identical to the DP technique used in Pfold.
According to [KH03] (supplemental material), a corresponding MEA parser for our sophisticated SCFG
and ms = 1 could actually precompute the pairing probabilities pi,j , 1 ≤ i, j ≤ n, based on the formula10

pi,j =βA(i, j) · Pr(A→ (((msL)))ms) · αL(i+ms, j −ms)+

βP (i, j) · Pr(P → (((L)))) · αL(i+ 1, j − 1), (1)

as A→ (((msL)))ms and P → (((L))) are the only rules that can create paired bases at positions i and j. The
respective qi values, 1 ≤ i ≤ n, can then immediately be derived according to

qi = 1−
∑

j 6=i
pi,j .

10It should be clear that this formula would only be correct for ms = 1. For choices of ms > 1, however, it would only
yield approximate results.
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However, contrary to the Pfold [KH03] and CONTRAfold [DWB06] programs, we don’t need to derive
the pi,j ’s and qi’s explicitly from our grammar and therefore it is not necessary to find a corresponding
formula valid for any possible choice of ms. In our case, we can easily deduce the needed probabilities from
the sample set. This way, we consider the distribution implied by the sample instead of the distribution
of the entire structure ensemble of the given input sequence. For a representative sample set however this
will make no difference. Accordingly, we will compute the probabilities pi,j by counting the frequencies
of all observed base pairs in the particular sample set generated by the sampling algorithm instead of
considering the corresponding inside outside values and grammar parameters as done in formula (1).
Consequently, the sole difference of our way to compute a MEA structure compared to the CONTRAfold
approach lies in the precomputation step, where we will calculate the pairing probabilities according to

pi,j =
number of occurrences of pair i.j within sample

sample size
,

such that they depend only on the sampled structures rather than on the entire structure ensemble for the
given input sequence. Note that in a clever implementation, pi,j can be determined while constructing
the sample. Accordingly, our approach gets rid of the computational overhead needed in cases where
(1) is used. Note further that we can make use of this idea in connection with arbitrary sample sets,
especially those generated by a PF based approach. MEA structures derived from particular sample sets
of candidate foldings for a given setting of the sensitivity/PPV trade-off parameter γt−o will be called
γt−o-MEA structures (of the respective sample) in the sequel.

4.3 Centroid Structures

The previously proposed selection procedures are especially adequate if one attempts to compare the
results to that of other probabilistic prediction methods like the one employed for lightweight SCFGs
in [DE04] or those implemented in Pfold and CONTRAfold. This is due to the fact that for a given
input sequence, all these algorithms propose only one folding (the one that is assumed to be the “best”
under the corresponding model, i.e. the most likely or the MEA structure for the sequence) instead of
producing a statistically representative set of candidate structures.
Nevertheless, one benefit of taking on a sampling approach that draws a number of possible foldings from
the considered structure ensemble is that we can easily consider alternative schemes for constructing
corresponding predictions. Particularly, we can make use of the fact that many (more or less) different
secondary structures have been generated by the repeated execution of the sampling procedure and
compute a suitable single prediction from the entire sample set. This can be done for example by
constructing a particular consensus structure like the centroid [DCL05] structure of the sample which
can be considered as the single structure that best represents the central tendency of the generated sample
set.
As the centroid reflects the overall behavior of the structures in the sample, this choice possibly represents
an appropriate alternative to the best sampled structure, i.e. the most probable structure according to the
considered ensemble distribution implied by the used probabilistic or energy-based11 approach. Therefore,
computing centroids has become custom for applying sampling approaches to single sequence structure
prediction. In analogy to the Sfold software we could derive both, ensemble centroids, i. e., centroids
computed from the entire set of sampled structures, and cluster centroid, i. e., centroids derived only from
a subset of structurally similar samples. However, in order to have a single prediction to be compared to
the native folding resp. to the output of other tools we decided to make only use of the first. Furthermore,
the ensemble centroid characterizes the central tendency of the entire (representative) sample set and thus
is the right choice for what we have in mind, namely for studying the distribution implied by our SCFG.
Formally, the centroid for a given sample set is the structure in the entire structure ensemble that has
the minimum total base-pair distance to the structures in the set. It can efficiently be computed as
the unique consensus structure formed by all base pairs with a frequency of more than 50%, where the
essential matter of fact is that any two base pairs with frequencies > 50% can not form a pseudoknot.
For details, we refer to [DCL05].
In accordance with γt−o-MEA structures as defined in the last section, we now introduce centroid struc-
tures (constructed from sample sets of secondary structures) according to particular settings of the
sensitivity/PPV trade-off parameter γt−o, which will be named γt−o-centroids (of the respective sam-
ple) in the sequel. Note that this generalized version of the centroid is very similar to the concept of
γt−o-centroid estimators proposed in [HKS+09], which predict the secondary structure maximizing the

11Note that the most probable structure is assumed to be (nearly) the MFE structure when sampling is realized via PFs.
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expected weighted true predictions of base pairs in the predicted structure on the basis of a particu-
lar ensemble distribution for a given RNA sequence (such as for example the Boltzmann distribution
or the one implied by a considered SCFG model). In fact, both versions are equivalent to the unique
centroid proposed in [DCL05] for γt−o = 1, but the one introduced in [HKS+09] determines the structure
that optimizes the expected numbers of base pairs of TP, TN12, FP and FN with respect to the entire
ensemble distribution, whereas we only consider the generated sample set for deriving a corresponding
γt−o-centroid.
Formally, a γt−o-centroid for a given set of m structures that all have length n is calculated by determining
all base pairs i.j, 1 ≤ i, j ≤ n, which satisfy

ci,j = (Number of occurrences of pair i.j within sample) · γt−o >
m

2
. (2)

These pairs are then used for constructing a corresponding consensus structure, where we have to take
care of the fact that the inclusion of any of these pairs into the consensus could eventually result in a
pseudoknot or a base triplet which are both prohibited according to our definition of RNA secondary
structure.
Therefore, we define the γt−o-centroid as the consensus structure that is formed by successively including
base pairs i.j with ci,j >

m
2 according to their observed frequencies in the sample set (in decreasing

order), where i.j is included if and only if it yields a compatible combination (that is, it causes neither a
pseudoknot nor a base triplet in the partially formed consensus).
An alternative interpretation of the centroid estimators as introduced in [HKS+09] is the following:
The predicted secondary structure maximizes the sum of base-pairing probabilities larger than 1

γt−o+1 .

According to eq. (2) and the strategy just described this is quite similar to our prediction; ci,j >
m
2

can be rewritten as ĉi,j := (Number of occurrences of pair i.j within sample)/m > 1
2γt−o

, where ĉi,j
corresponds to a base-pairing probability. By choosing the base pairs according to their decreasing
observed frequencies, our strategy to construct a γt−o-centroid aims for maximizing the sum of the
ĉi,j >

1
2γt−o

.

The time complexity for computing one possible γt−o-centroid is bounded by O(n3), since any (partially
formed) structure of size n can have O(n) base pairs and we potentially have to check for any of the
O(n2) possible base pairs whether it can be added to the partially formed centroid or not (i.e. whether
it yields a compatible or incompatible combination).
It should be noted that contrary to γt−o-MEA structures, where reasonable values are γt−o ∈ [0,∞),
γt−o-centroids by definition might only yield meaningful predictions for γt−o ∈ ( 1

2 ,
m
2 ). Particularly,

• γt−o ≤ 1
2 leads to ci,j ≤ m · γt−o ≤ m

2 , 1 ≤ i, j ≤ n, such that the corresponding centroid contains
no base pairs at all,

• 1
2 < γt−o < 1 results in a unique centroid formed by pairs that have been sampled very often,

• γt−o = 1 produces the unique centroid structure formed by all pairs with a frequency > 50%,

• 1 < γt−o <
m
2 might produce distinct centroids containing even such pairs that have rarely been

sampled,

• γt−o >
m
2 implies ci,j ≥ 1 ·γt−o > m

2 for any pair i.j occurring in the sample, such that the centroid
might entirely consist of pairs which have been sampled only once.

However, just like the MF structure, both the γt−o-MEA and γt−o-centroid structures can be calculated
from any given set of secondary structures. This means they can not only be employed for obtaining
predictions from samples generated with a (sophisticated) SCFG approach, but also from sets of pos-
sible foldings created with a corresponding statistical sampling strategy based on PFs. Consequently,
this allows for a direct and well-defined comparison of the produced samples with respect to prediction
accuracy.
Finally, it might be important to mention that with any of the previously proposed distinct selection
processes, the predicted structure can be recovered in O(n3) time and with O(n2) space requirements,
such that the worst-case complexities of the corresponding overall prediction algorithms are equal to
those of the respective sampling procedures.

12TN is the number of base pairs which were correctly predicted as non-matching (true negatives).
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5 Evaluation and Discussion

The main objective of this section is to find answers to the two questions from Section 1, and especially
to prove or disprove hypothesis H0. To reach this goal, we will compare our sophisticated SCFG to
lightweight SCFGs and corresponding CLLMs for RNA structure prediction. Furthermore, we will discuss
the potentials and pitfalls of the corresponding SCFG based sampling method and compare it to the
sampling extension of the PF approach as implemented in the Sfold software.
Note that the (purposive) implementation of the statistical sampling strategy sketched in Section 3
(including the corresponding routines for extracting structure predictions as described in Section 4) used
for deriving the results of this paper has been incorporated into a web service, which is accessible to the
scientific community at http://wwwagak.cs.uni-kl.de/ProbStatSample.

5.1 Comparison to Lightweight Grammars and Leading Prediction Methods

In order to see if our sophisticated SCFG can close the performance gap between probabilistic and MFE
based approaches and furthermore whether its rich structure and parameter set allows to compensate the
powerful scoring schemes of CLLMs (outperforming leading prediction methods) derived from lightweight
grammars, we decided to perform a series of cross-validation experiments. Actually, we will compare our
grammar to the nine different lightweight SCFGs proposed in [DE04] (to see if its sophisticated design
is of any advantage), as well as to the corresponding nine CLLMs and a number of leading prediction
methods such as Mfold or ViennaRNA considered in the CONTRAfold paper [DWB06].
It should be mentioned that the nine lightweight SCFGs from [DE04] can be categorized into three groups.
First, two structurally ambiguous grammars: G1 is the most simple one (only 5 rules with same left-hand
side) and G2 extends it to include base pair stacking parameters. Second, four unambiguous ones: G3
(with 3 intermediates and a total of 8 rules), the smaller G4 (with 2 intermediates and 6 rules), the ultra
compact G5 (only one intermediate symbol with 3 alternatives) and G6 (the one utilized in Pfold, with 3
intermediates and 6 rules), where each grammar describes a slightly different class of structures (mainly
according to different minimum allowed hairpin lengths). And third, three unambiguous grammars
capable of including stacking parameters (and thus prohibiting isolated base pairs): G6s (extension of
G6), as well as G7 and G8 (more complex versions of the simple backbones G3 and G4).
Generally, G1 and G5 perform badly, which might be due to the presence of only one nonterminal
symbol. Notably, G5 is an extremely bad choice for RNA secondary structure, but a (very) good choice
for covariance models (CMs), which are probabilistic models for both, the secondary structure and the
primary sequence consensus of an RNA (see, e.g., [RD94]) and are widely used in general approaches to
several RNA analysis problems, such as consensus structure prediction, multiple sequence alignment and
database similarity searching. The reason, overloading of symbols, leads to this behavior, as for CMs one
extends the grammar (by adding rules modeling insertions, deletions and matches), thereby removing the
overloading problem (see G5M in [GzS11] for a corresponding specialization of G5).
Nevertheless, since in [DWB06], for each of the nine original lightweight SCFGs from [DE04], an equiv-
alent CLLM has been constructed and two-fold cross-validation procedures13 have been applied to com-
pare the performances of the respective SCFG and CLLM, we decided to consider the same partition
of the structural data set collected in [DWB06] into two folds, such that results reported there can
be easily opposed to corresponding ones obtained by our sampling method. Note that this data set
contains 151 independent examples of known secondary structures of non-coding RNA from the Rfam
database [GJBM+03, GJMM+05], where each independent example has been taken from a different RNA
family. It will be denoted by S-151Rfam database in the sequel.
For adequate comparisons in case of the lightweight SCFGs and CLLMs, we only considered those princi-
ples to derive a prediction from our sample and only corresponding values of γt−o for which corresponding
results are given in [DWB06]. Accordingly, for every structure used for evaluation, we generated a set
of 1000 candidate structures14 with the sampling algorithm and afterwards computed the correspond-
ing MF structure and γt−o-MEA structures, respectively. These predicted foldings were then opposed

13In order to perform a k-fold cross-validation, k ≥ 2, on the basis of a given probabilistic model and a set of real-
world data, we first have to partition the data randomly into k approximately equal-sized subsets (“folds”). Then, for any
i ∈ {1, . . . , k}, we must estimate the model parameters from all objects that are not contained in fold i (training set) and
validate the results obtained for all objects that actually belong to fold i (benchmark set). The corresponding result of the
cross-validation process is then the average of the results derived for the different folds i, 1 ≤ i ≤ k.

14This sample size has proven to be adequate for most applications, as even for a huge set of possible secondary structures
of a given sequence, a sample of only 1000 structures can yield statistical reproducibility of typical sampling statistics, even
if samples can be entirely different (see [DL03]).
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to the native secondary structure of the molecule (as given in the database) in order to calculate the
corresponding sensitivity and PPV, respectively.

MF struct.
Sampling Parameters

Sens. PPV

minHL = 1,minhel = 1 0.4433 0.5447
minHL = 1,minhel = 2 0.4895 0.5551
minHL = 3,minhel = 1 0.4852 0.5948
minHL = 3,minhel = 2 0.5171 0.5661

(a) Sensitivity and PPV derived by applying the
SCFG based statistical sampling algorithm and
choosing the most frequently sampled structure as
predicted folding. Notably, all results were computed
by two-fold cross-validation procedures, using the
same folds of the S-151Rfam database as in [DWB06]
and a sample size of 1000 structures.

Generative Discriminative
Grammar Viterbi Viterbi

Sens. PPV Sens. PPV

G1 0.41 0.27 0.40 0.28
G2 0.53 0.36 0.63 0.48
G3 0.46 0.48 0.45 0.46
G4 0.21 0.17 0.21 0.17
G5 0.03 0.04 0.02 0.03
G6 0.60 0.61 0.61 0.62
G6s 0.60 0.62 0.62 0.63
G7 0.58 0.63 0.58 0.62
G8 0.58 0.60 0.58 0.61

(b) Corresponding results from [DWB06].

Table 1: Comparison of prediction accuracies, obtained by computing the most likely secondary structure
for a given sequence by distinct approaches.

MEA struct.
Sampling Parameters

Sens. PPV γt−o

minHL = 1,minhel = 1 0.6029 0.6192 4.0
minHL = 1,minhel = 2 0.6325 0.5896 4.0
minHL = 3,minhel = 1 0.6090 0.6230 4.0
minHL = 3,minhel = 2 0.6311 0.5867 4.0

(a) Sensitivity and PPV derived by applying the SCFG
based statistical sampling algorithm and choosing a partic-
ular γt−o-MEA structure as predicted folding. Notably, all
results were computed by two-fold cross-validation proce-
dures, using the same folds of the S-151Rfam database as
in [DWB06] and a sample size of 1000 structures.

Generative Discriminative
Grammar MEA MEA

Sens. PPV Sens. PPV

G1 0.18 0.11 0.48 0.33
G2 0.53 0.36 0.67 0.64
G3 0.56 0.51 0.54 0.53
G4 0.33 0.23 0.34 0.23
G5 0.06 0.04 0.06 0.04
G6 0.62 0.63 0.62 0.67
G6s 0.62 0.64 0.65 0.65
G7 0.63 0.63 0.63 0.67
G8 0.63 0.62 0.65 0.62

(b) Corresponding results from [DWB06].

Table 2: Comparison of prediction accuracies, obtained by determining a single MEA structure for each
given sequence, where the MEA parsing methods are based on the indicated models and γt−o was adjusted
to allow a direct comparison.

The corresponding cross-validation results for the mixed S-151Rfam database are listed in Tables 1 and 2.
As we can see from Table 1a, the MF structure predictions obtained by sampling on the basis of our
sophisticated SCFG become more accurate when considering the realistic value of minHL = 3. Never-
theless, comparing all results from Table 1 yields the observation that our sophisticated SCFG does not
generally outperform any lightweight SCFG and corresponding CLLM, as the most elaborate (genera-
tively or discriminatively trained) grammars G6 to G8 seem to have a greater predictive power when
considering the most likely folding of a given input sequence. This might be caused by the fact that the
SCFG design underlying the sampling algorithm is too comprehensive to allow for a reliable parameter
estimation with respect to the rather sparse but diverse mixed S-151Rfam data set. Table 2 however in-
dicates that when constructing particular γt−o-MEA structures of generated samples, the corresponding
prediction results are not significantly less accurate than those obtained by the considered MEA parsing
algorithms based on (generatively or discriminatively trained) lightweight grammars. Moreover, there
seems to be a slight trade-off between the sensitivity and PPV of the predicted foldings when applying
the sophisticated SCFG sampling approach with different values of minhel, that is when either allowing
or prohibiting isolated base pairs (see Table 2a).

For an even more informative comparison of the predictive powers of the distinct lightweight grammar
parsing techniques and the sophisticated SCFG based sampling method, the performance has also be
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Sampling Parameters MEA struct.

minHL = 1,minhel = 1 0.499491
minHL = 1,minhel = 2 0.506602
minHL = 3,minhel = 1 0.507454
minHL = 3,minhel = 2 0.508762

(a) Estimated AUCs, where the corresponding
ROC curves are found by computing one γt−o-
MEA structure for any considered setting of γt−o

from a particular statistical sample generated by
the SCFG based algorithm. Notably, all results
were computed by two-fold cross-validation pro-
cedures, using the same folds of the S-151Rfam
database as in [DWB06] and a sample size of 1000
structures.

Generative Discriminative
Grammar

MEA MEA

G1 0.0392 0.2713
G2 0.3640 0.5797
G3 0.4190 0.4159
G4 0.1361 0.1350
G5 0.0026 0.0031
G6 0.5446 0.5600
G6s 0.5501 0.5642
G7 0.5456 0.5582
G8 0.5464 0.5515

(b) Corresponding results from [DWB06].

Table 3: Comparison of prediction accuracies by means of areas under ROC curves, found by determining
a set of MEA structures (for reliable choices of parameter γt−o) for each given sequence, where the MEA
parsing methods are based on distinct models.

measured at several different settings of the γt−o parameter. In fact, by determining the (adjusted)
sensitivity and PPV for various values of γt−o, we are able to derive corresponding receiver operating
characteristic (ROC) curves for the γt−o-MEA prediction selecting principle (according to the different
parameter combinations considered for statistical sampling). Here, we decided to consider any value of
γt−o ∈ {1.25k | −12 ≤ k ≤ −1} ∪ {2k | 0 ≤ k ≤ 12} in order to obtain appropriate ROC curves. For each
curve, the estimated area under the curve (AUC) is reported in Table 3a.
Comparing these results to the corresponding values obtained on the basis of the considered lightweight
models (Table 3b), we immediately observe that for 5 out of 9 generatively-trained grammars and 4 out
of 9 discriminatively-trained grammars, the probabilistic sampling approach (and thus the underlying
sophisticated SCFG) yields significantly better results. In all other cases, the sampling variant performs
worse, but the corresponding results actually bare no substantial differences with respect to the observed
prediction quality.
For a comparison of the predictive accuracy of our sophisticated SCFG sampling approach to several
leading probabilistic and physics-based prediction methods, we again considered the S-151Rfam database
together with our various strategies to derive a prediction from our samples.
The observed sensitivity and PPV measures are collected in Table 4. First, we observe that accuracies
similar to those of Mfold and ViennaRNA can be reached by our SCFG based sampling method when
predicting γt−o-MEA and γt−o-centroid structures (for adjusted settings of the trade-off parameter γt−o,
respectively), whereas the worst results are obtained when choosing the MF structure as predicted folding
(see Table 4a). Furthermore, according to the presented results, our SCFG based sampling approach
has been outperformed only by half of the existing probabilistic and energy-based structure prediction
methods.

In conclusion, we observe that our sophisticated SCFG cannot significantly improve the predictive power
of grammar based methods. Contrarily, the usage of γt−o-MEA structures as well as γt−o-centroids
introduced in this paper can improve the quality of predictions derived by a sampling approach. The
highest values for sensitivity resp. PPV have been observed for γt−o-centroids (γt−o = 6.0 resp. γt−o = 1.5)
where we were able to achieve a predictive accuracy close to the one of Mfold and ViennaRNA. However,
these observations have been made in connection with a mixed and lean database which might be too
small to reliably estimate the rich set of parameters of our grammar. Furthermore, as outlined in the
introduction, it might be possible that a sophisticated grammar design is able to capture structural
properties (including aspects which are caused by interaction with proteins or by other non-energetic
details of RNA folding) typical to a single RNA family by the respective parameter values. This possibility
– besides other things – will be investigated in the following section. There, we will compare our sampling
method to a corresponding physics based approach since that for sure is incapable of adapting to a certain
class since its parameters are assumed fixed.

5.2 Comparison of Sample Distributions

Since the considered sampling strategy produces statistically representative sample sets of the complete
structure ensemble for a given sequence, we can not only judge the quality of predictions derived from
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MF struct. MEA struct. Centroid struct.
Sampling Parameters

Sens. PPV Sens. PPV γt−o Sens. PPV γt−o

minHL = 1,minhel = 1 0.4433 0.5447 0.6342 0.5842 6.0 0.6522 0.5612 6.0
0.5083 0.6808 2.0 0.4387 0.7180 1.5

minHL = 1,minhel = 2 0.4894 0.5551 0.6546 0.5593 6.0 0.6624 0.5354 6.0
0.4980 0.6850 1.5 0.4801 0.6977 1.5

minHL = 3,minhel = 1 0.4852 0.5948 0.6348 0.5826 6.0 0.6464 0.5616 6.0
0.4627 0.7044 1.5 0.4487 0.7241 1.5

minHL = 3,minhel = 2 0.5171 0.5661 0.6502 0.5568 6.0 0.6411 0.5700 4.0
0.4342 0.7228 1.0 0.4917 0.7103 1.5

(a) Sensitivity and PPV derived by applying the SCFG based statistical sampling algorithm and selecting the
predicted folding according to any of the described schemes. Notably, all results were computed by two-fold
cross-validation procedures, using the same folds of the S-151Rfam database as in [DWB06] and a sample size
of 1000 structures.

Method References Sens. PPV γt−o

CONTRAfold [DWB06] 0.7377 0.6686 6.0
Mfold v3.2 [Zuk89, Zuk03] 0.6943 0.6063 –
ViennaRNA v1.6 [HFS+94, Hof03] 0.6877 0.5922 –
PKNOTS v1.05 [RE99] 0.6030 0.5269 –
ILM [RSZ04] 0.5330 0.4098 –
CONTRAfold [DWB06] 0.5540 0.7920 0.75
Pfold v3.2 [KH99, KH03] 0.4906 0.7535 –

(b) Accuracies of other methods, as reported in [DWB06].

Table 4: Comparison of the sophisticated SCFG sampling approach to leading secondary structure pre-
diction methods (that are not based on sampling).

a particular sample, but also the quality of the generated sample as it. In this section, we will compare
the sample distribution implied by our sophisticated SCFG to the one induced by the PF based sampling
method as implemented in the Sfold software. For that purpose, we will consider probability profiles as
well as (and most interestingly from the perspective of biologists) a number of different comparisons on
the basis of abstract shapes as introduced in [GVR04, SVR+06, JRG08]. Abstract shapes are morphic
images of secondary structures (which in the sequel will be assumed the level 0 shape), where each shape
comprises a class of similar foldings. The motivation behind this concept is that the predicted set of
suboptimal foldings for a given sequence (as computed by modern secondary structure prediction tools)
usually contains lots of similar structures that obey to (almost) identical structural properties, but for
biologists only those with significant structural differences are of interest.
Briefly, there are five shape types for five different levels of abstraction. Two of them, namely type
1 and type 5 (also called π′ and π shapes, respectively), were formally defined by a tree morphism
in [GVR04]. All five different shape levels were first introduced and informally described in [SVR+06]
and were later redefined (informally) in [JRG08]. Common to all levels is their abstraction from loop
and stem lengths, while generally retaining nesting and adjacency of helices, but disregarding their size
and concrete position in the primary structure. In the most accurate shape type (type 1), all structural
components (except hairpin loops) contribute to the shape representation. The succeeding shape types
are supposed to gradually increase abstraction by disregarding certain unpaired regions or combining
nested helices. For the renewed shape abstraction types as described in [JRG08], it has been proven that
this is the case indeed [NS09].
Finally, before we start our examinations, it should be mentioned that in order to derive all results for
the particular applications that will follow throughout this section, we have implemented our own version
of Sfold’s sampling procedure as described in [DL03]. For this implementation, we decided to use the
common thermodynamic parameters from Mathews et al. [MSZT99], which were also used for version 3.0
of the Mfold software [Zuk03].

5.2.1 RNA Data

For the previously mentioned reasons, we decided to no only consider the mixed S-151Rfam database for
our subsequent comparisons, but also use several other databases that contain more structures having
more similar shapes. In particular, we took the tRNA database from [SHB+98], where we filtered out
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Figure 1: Loop profiles for E.coli tRNAAla. Hplot and Mplot display the probability that an unpaired
base lies in a hairpin and multibranched loop, respectively. Results for the PF approach (for maxBL = 30)
are displayed by the thin black lines. For the SCFG approach, we chose minhel = 1 (thick gray lines) and
minhel = 2 (thick dashed darker gray lines), combined with minHL = 3, respectively. The corresponding
probabilities for the correct structure of E.coli tRNAAla are also displayed (by black points).

all sequences with unidentified bases, yielding a total of 2163 distinct tRNA structures (having lengths
in [64, 93] and an average length of 76). Additionally, we created another set of 1149 distinct sequences
(with lengths in [102, 135] and about 119 on average), retrieved from a 5S rRNA database [SBEB02].
These data sets of tRNA and 5S rRNA structures, along with the mixed S-151Rfam set, will be the basis
for the following studies.

5.2.2 Probability Profiling for Specific Loop Types

A representative sample of all possible secondary structures for a given RNA sequence can be used to
derive estimates for the probability (conditioned to the sequence) of any structural motif to show up at
the different sequence positions. For example, probability profiling of unpaired bases in RNA secondary
structure becomes possible, i.e. paired and unpaired bases are delineated on statistic grounds derived from
the sample set. In detail, for probability profiling, the unpaired bases can either be delineated regardless
of the type of loop (like hairpin, bulges and so so) in which they occur. Or, by keeping track of the loop
type for unpaired bases, an extension that accounts for the different types of loops is possible. For each
nucleotide position i, 1 ≤ i ≤ n, of a given sequence of length n, one computes the probabilities that i is
an unpaired base within a specific loop type. These probabilities are given by the observed frequency in
a sample set of secondary structures for the given sequence.
For a first comparison of the two different sample distributions, we decided to consider the corresponding
probability profiles for Escherichia coli tRNAAla. Using a sample size of 1000 structures, we obtain the
ten profile plots shown in Figure 2 of Section Sm-III. The potentially most interesting ones are presented
in Figure 1 which obviously exhibit the cloverleaf structure of tRNAs.
All these profiles show that the (statistically representative and reproducible) samples generated by the
SCFG approach are significantly more accurate than those obtained with the PF approach. Moreover,
considering the results for this tRNA example under the assumption of minHL = 3 (which is always
implicitly chosen for the PF approach), we see that the quality of sample sets can be further improved by
increasing the minimum allowed helix size minhel. Moreover, under the assumption of the less realistic
minimum hairpin loop size minHL = 1, the generated results are qualitatively not as good as those for
minHL = 3 (see Figure 2 in Section Sm-III).

5.2.3 The Problem of Overfitting and the Lack of Generalization

In this section we will address two possible issues of our sophisticated grammar in connection with this
study: the problem of overfitting and the lack of generalization. With respect to the latter, it might not
be surprising to some readers that the profile plots for Escherichia coli tRNAAla presented in Figure 1
indicate an accuracy gain of the probabilistic SCFG approach over the physics-based PF variant for
the following reasons: First, it seems inevitable that a sophisticated stochastic model that is trained on
trusted tRNAs only produces the typical tRNA cloverleaf shape more often than an alternative variant
that is not tailored to a specific structure class but only relies on free energy, such that the SCFG based
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profiles should inherently show the cloverleaf structure more explicitly. Additionally, it is known that
SCFG based approaches work well for short RNA types whose molecules imply a low structural variety,
whereas the standard thermodynamic model for RNA secondary structures might perform poorly on
some tRNAs [RCM99].
For these reasons, it might be assumed that the higher accuracy reached by the probabilistic sampling
approach could be an artefact caused by a lack of generalization of the underlying SCFG model. To show
that this is not the case, we performed a series of experiments based on (more and less arbitrary) random
sequences. In principle, for any chosen value of minhel ∈ {0, . . . , 7}, we generated a set of random RNA
sequences in the following way: for a considered sequence length n, we randomly created a number of
(not necessarily distinct) secondary structures of size n having the cloverleaf shape, where all four helices
(the stem and the three adjacent helices of the multiloop) are formed by exactly minhel consecutive base
pairs. For any of these cloverleaf structures, we then generated a corresponding sequence by randomly
drawing canonical base pairs for the helical regions and arbitrary unpaired bases for the single-strands.

Approach minhel numd cd cMF cCL numMF

PF 0 36 8333.33 94085 3331 6
1 34 8823.53 87785 5338 6
2 35 8571.43 96083 2745 6
3 37 8108.11 95332 4492 6
4 30 10000. 107881 9967 6
5 29 10344.8 111716 20875 3
6 33 9090.91 102788 49733 2
7 27 11111.1 94859 94859 0

SCFG 0 858 349.65 26341 14114 5
1 916 327.511 22643 15596 4
2 915 327.869 21258 13912 4
3 895 335.196 20175 16207 2
4 914 328.228 19828 17784 2
5 844 355.45 20560 20560 0
6 747 401.606 34753 34753 0
7 658 455.927 59644 59644 0

Table 5: Results derived from random data sets, where minhel has been used for generating random
sequences with corresponding (more or less strong) signals towards a cloverleaf structure. numd denotes
the number of distinct shapes in all samples and cd the average count of one of these distinct shapes.
Furthermore, cMF and cCL represent the count of the most frequent and cloverleaf shape in all sam-
ples, whereas numMF denotes the number of distinct shapes that are observed more frequently than the
cloverleaf. For any setting of minhel, all tabulated values were computed from a corresponding random
data set of cardinality 300 (containing 10 random sequences for any length n ∈ {64, . . . , 93} according to
the length range observed from our tRNA database), respectively. A sample size of 1000 structures and
maxBL = 30 has been chosen for either approach.

Obviously, regardless of the applied sampling approach, the signal towards generating the actual cloverleaf
structure should get stronger with increasing value of minhel and for minhel = 0, there is absolutely no
signal towards the cloverleaf shape, since the corresponding structures have been generated completely at
random (by drawing all nucleotides in the sequence independently). As we can see from Table 5 (where the
corresponding results have been derived for the most abstract shape level 5), both sampling approaches
tend to primarily generating cloverleaf structures if the signals are strong enough, but other shapes are
sampled more often if the signal towards cloverleaf is low or does actually not exist. Basically, the SCFG
based variant seems to react faster to such signals (by preferring the cloverleaf shape over others more
notably already for rather low signals compared to the PF method). However, since for actual random
sequences, the typical cloverleaf shape of tRNAs is neither sampled all the time nor significantly more
often than any other shape (among a vast number of distinct ones that are observed), there is no reason
to believe that the accuracy of the SCFG based sampling strategy (at least for tRNAs) is due to a lack
of generalization (or the other way round is due to a model tailored to a certain shape). Since we most
likely observe such effects in connection with tRNA and its invariant cloverleaf shape, we skipped similar
investigations for the other cases.

To see if overfitting is not a problem for our experiments, i.e. to see if our data sets are rich enough
to reliably derive the parameters of our grammar, we performed the following experiments: For each
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V[·] tRNA 5S rRNA S-151 Rfam
p1 0 0 0
p2 5.747× 10−8 2.232× 10−6 1.613× 10−5

p3 1.223× 10−7 6.635× 10−6 8.673× 10−6

p4 3.745× 10−8 2.718× 10−6 1.012× 10−5

p5 9.954× 10−7 3.437× 10−6 1.983× 10−5

p6 9.579× 10−7 1.697× 10−6 4.120× 10−5

p7 8.853× 10−6 2.849× 10−5 7.766× 10−6

p8 8.853× 10−6 2.849× 10−5 7.766× 10−6

p9 0 0 0
p10 0 0 0
p11 4.541× 10−9 1.385× 10−9 1.362× 10−6

p12 2.645× 10−8 8.330× 10−8 2.264× 10−6

p13 8.500× 10−9 6.674× 10−8 4.074× 10−6

p14 6.762× 10−10 3.464× 10−10 3.270× 10−7

p15 0 0 0
p16 1.234× 10−8 7.211× 10−9 5.812× 10−6

p17 1.234× 10−8 7.211× 10−9 5.812× 10−6

p18 0 1.152× 10−6 5.352× 10−5

p19 0 3.919× 10−7 2.957× 10−5

p20 0 4.502× 10−7 8.094× 10−5

p21 2.695× 10−3 2.997× 10−8 4.429× 10−5

p22 2.695× 10−3 2.997× 10−8 4.429× 10−5

p23 0 0 0
p24 0 0 0
p25 0 0 1.333× 10−4

p26 0 0 1.333× 10−4

p27 4.052× 10−7 1.561× 10−7 1.347× 10−4

p28 4.052× 10−7 1.561× 10−7 1.347× 10−4

p29 0 0 0

Table 6: Truncated variances of parameters derived from 100 iterations of training our grammar on
random subsets of the original training data.

RNA type considered and minhel = 2, minHL = 3 we selected a random 90% portion of the original
database (the resulting sample size equals that of the training sets used for our k-fold cross-validation
experiments) and re-estimated the probabilities of all the grammar rules. This process was iterated 100
times, resulting in a sample of 100 parameter sets. Finally, for each parameter we determined its variance
along this sample of size 100. The corresponding values are presented in Table 6. Note that the variances
0 in most cases result for intermediate symbols without alternatives; for whose productions a probability
of 1 is predetermined. However, all the other variances are rather small too and we can conclude that
overfitting is no issue in connection with our sophisticated grammar and the training sets used.

5.2.4 Prediction Accuracy – Sensitivity and PPV

To compare the quality of predictions derived from samples generated by the PF approach to those
implied by our SCFG, we again performed two-fold cross-validations based on the mixed S-151Rfam
data set. Furthermore, we partitioned the more comprehensive tRNA and 5S rRNA databases into 10
approximately equal-sized folds and derived corresponding 10-fold cross-validations results, respectively.
The determined sensitivity and PPV measures are collected in Tables 7 to 9. Note that for any sequence,
we predicted one structure according to each of the principles introduced in Section 4, where for the sake
of completeness we considered the default choice γt−o = 1 for MEA and centroid structures, as well as
varying values for γt−o (the same ones as considered above) to obtain AUC values (plots of some of the
respective ROC curves can be found in Figures 3, 4 and 5 of Section Sm-III). Obviously, the provided
AUC values allow for a reliable comparison of the accuracies that can be reached by either sampling
approach when calculating γt−o-MEA and γt−o-centroid structures for the produced samples.
Let us first consider the results presented in Table 7. Here, we observe that for the low invariant tRNAs,
the accuracy of predictions computed by statistical sampling methods can be significantly improved when
using the SCFG approach. Moreover, the quality of predictions can be further improved by considering
the realistic value of minHL = 3 (also implicitly chosen for the PF approach) instead of the unrealistic
choice minHL = 1. However, it seems that increasing the value of parameter minhel does not have a
mentionable impact on the resulting prediction accuracy.
According to Table 8, the predictions for 5S rRNAs are less accurate than for tRNAs. In detail, for
5S RNAs the predictive accuracy as measured by sensitivity and PPV is slightly higher for the PF
approach when selecting the most frequently sampled structure as prediction. By constructing a MEA
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MF struct. MEA struct. Centroid
Approach Parameters

Sens. PPV Sens. PPV Sens. PPV

PF maxBL = 30 0.6565 0.5890 0.6434 0.6035 0.6159 0.6344
SCFG minHL = 1,minhel = 1 0.7791 0.8445 0.7324 0.8939 0.6754 0.9158

minHL = 1,minhel = 2 0.8004 0.8457 0.7685 0.8878 0.7113 0.9123
minHL = 3,minhel = 1 0.8545 0.8517 0.7848 0.9021 0.7304 0.9213
minHL = 3,minhel = 2 0.8677 0.8593 0.8182 0.8953 0.7713 0.9168

(a) Sensitivity and PPV (computed by 10-fold cross-validation procedures, using sample size 1000).

Approach Parameters MEA struct. Centroid

PF maxBL = 30 0.482435 0.526743
SCFG minHL = 1,minhel = 1 0.828522 0.833894

minHL = 1,minhel = 2 0.830787 0.839843
minHL = 3,minhel = 1 0.855406 0.861640
minHL = 3,minhel = 2 0.857251 0.867135

(b) AUC values (computed by 10-fold cross-validation procedures, using sample
size 1000).

Table 7: Prediction results for our tRNA database.

MF struct. MEA struct. Centroid
Approach Parameters

Sens. PPV Sens. PPV Sens. PPV

PF maxBL = 30 0.5897 0.5806 0.6015 0.6191 0.5789 0.6508
SCFG minHL = 1,minhel = 1 0.4251 0.5362 0.3403 0.6967 0.2689 0.8044

minHL = 1,minhel = 2 0.4542 0.5435 0.3638 0.6901 0.2727 0.8069
minHL = 3,minhel = 1 0.4728 0.5290 0.3544 0.7033 0.2764 0.8091
minHL = 3,minhel = 2 0.5167 0.5577 0.3860 0.7010 0.2846 0.8140

(a) Sensitivity and PPV (computed by 10-fold cross-validation procedures, using sample size 1000).

Approach Parameters MEA struct. Centroid

PF maxBL = 30 0.481019 0.520171
SCFG minHL = 1,minhel = 1 0.409278 0.408549

minHL = 1,minhel = 2 0.417286 0.418584
minHL = 3,minhel = 1 0.419116 0.417095
minHL = 3,minhel = 2 0.433954 0.431642

(b) AUC values (computed by 10-fold cross-validation procedures, using sample
size 1000).

Table 8: Prediction results for our 5S rRNA database.

structure and especially the unique centroid structure, however, we observe significant differences between
both sensitivity and PPV obtained by either sampling approach. The corresponding AUCs confirm the
advantages of the PF approach on these data. Furthermore, the case γt−o = 1 implies that base pairings
of the native foldings generally occur less frequently in samples generated by the SCFG based algorithm
(FN is greater), but the sampled pairs are more often correct (FP is smaller). Considering the unique
centroid predictions, this means that the SCFG method rarely samples incorrect pairings (otherwise,
those would be part of the prediction), while pairs which are sampled with a high frequency typically are
native ones. This decreased precision may be implied by the comparably high structural diversity of 5S
rRNAs and the corresponding reduced ability of our SCFG model to capture typical structural features
of the considered family within its parameters.
Last but not least, similar results can be observed for the S-151Rfam data set in connection with the
default choice γt−o = 1, as shown in Table 9a. In fact, the performance gap between the two different
sampling approaches remains quite the same as for our 5S rRNA database, although this mixed data
set is less comprehensive and contains structures that not only belong to distinct RNA types but also
partially contained pseudoknots that had to be removed, such that this S-151Rfam set might not be
considered a high-quality training basis. In contrast to the 5S rRNAs however, considering the AUC
values of Table 9b reveals slight advantages of our SCFG over PFs.
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MF struct. MEA struct. Centroid
Approach Parameters

Sens. PPV Sens. PPV Sens. PPV

PF maxBL = 30 0.6652 0.5188 0.6633 0.5450 0.6437 0.5799
SCFG minHL = 1,minhel = 1 0.4433 0.5447 0.3815 0.7386 0.3235 0.7749

minHL = 1,minhel = 2 0.4894 0.5551 0.4263 0.7181 0.3474 0.7743
minHL = 3,minhel = 1 0.4852 0.5948 0.3935 0.7426 0.3352 0.7825
minHL = 3,minhel = 2 0.5171 0.5661 0.4342 0.7228 0.3588 0.7683

(a) Sensitivity and PPV (computed by two-fold cross-validation procedures, using the same folds as
in [DWB06] and sample size 1000).

Approach Parameters MEA struct. Centroid

PF maxBL = 30 0.450688 0.497350
SCFG minHL = 1,minhel = 1 0.499491 0.507125

minHL = 1,minhel = 2 0.506602 0.509403
minHL = 3,minhel = 1 0.507454 0.512327
minHL = 3,minhel = 2 0.508762 0.514958

(b) AUC values (computed by two-fold cross-validation procedures, using the
same folds as in [DWB06] and sample size 1000).

Table 9: Prediction results for the mixed S-151Rfam database.

In conclusion, we have three different scenarios for the three different data sets: for tRNAs our SCFG
performs best for fix and varying γt−o, for 5S rRNA the PF approach is superior in both cases and for
the S-151 Rfam data set the SCFG is beaten by the PF approach for γt−o = 1 while the SCFG gives rise
to better AUCs.

5.2.5 Sampling Quality – Specific Values Related to Shapes

Note that the previously considered measures for assessing the accuracy of secondary structure predictions
(sensitivity and PPV) depend only on the numbers of correctly and incorrectly predicted base pairs
(compared to the native structure). From the perspective of biologists, however, it is usually much
more important to get information on the correct structural properties (described by the corresponding
abstract shapes) of the native folding than to obtain high sensitivity and PPV when using computational
prediction methods.
Therefore, in order to further investigate the sampling quality, we decided to consider the following
specific values related to the shapes of sampled structures:

• Frequency of prediction of correct structure (CSPfreq): In how many cases is the predicted secondary
structure (or its shape) equal to the correct structure (or the correct shape)?

• Frequency of correct shape occurring in a sample (CSOfreq): In how many cases can the correct
shape (on different levels) be found in the generated sample set?

• Number of occurrences of correct shape in a sample (CSnum): How many times can the correct
shape be found in the generated sample set?

• Number of different shapes in a sample (DSnum): How many different secondary structures (or
shapes) can be found in the generated sample set?

To compute the desired values, we considered the predicted structures and the corresponding sample sets
that were derived for the calculation of the sensitivity and PPV measures in the last section (Tables 7a,
8a and 9a). The respective results are collected in Tables 13 to 18 in Section Sm-III. Some of the most
interesting ones are displayed in Tables 10 to 12.
Comparing the corresponding values, we immediately observe that for our tRNA and 5S rRNA databases,
the predicted shapes are in almost all cases significantly more often equal to the correct ones when using
the SCFG based sampling strategy instead of the PF alternative. This means given rich and explicit
training data, the frequency of correct structure predictions (CSPfreq) is basically higher when relying
on the ensemble distribution induced by our sophisticated SCFG. Moreover, the samples generated with
the SCFG method generally contain the correct shapes considerably more often than those obtained with
the corresponding PF algorithm and are thus more accurate as regards the frequency of correct structure
occurrences (CSOfreq).
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Shape Level
Value Approach Parameters

0 1 2 3 4 5

CSPfreq PF maxBL = 30 0.0633 0.1216 0.2071 0.2117 0.2639 0.3694
(MF struct.) SCFG minHL = 3,minhel = 1 0.2450 0.4448 0.6417 0.6417 0.6422 0.7356

CSPfreq PF maxBL = 30 0.0416 0.1049 0.1923 0.1960 0.2496 0.3559
(MEA struct.) SCFG minHL = 3,minhel = 2 0.1008 0.2917 0.5525 0.5525 0.5543 0.6241

CSPfreq PF maxBL = 30 0.0264 0.0800 0.1595 0.1627 0.1932 0.2677
(Centroid) SCFG minHL = 3,minhel = 2 0.0758 0.2150 0.4563 0.4563 0.4568 0.5003

CSOfreq PF maxBL = 30 0.5196 0.6740 0.8160 0.8239 0.8798 0.9556
SCFG minHL = 3,minhel = 1 0.7148 0.9459 0.9875 0.9880 0.9885 0.9991

CSnum PF maxBL = 30 21.073 58.200 136.67 140.63 205.54 328.56
SCFG minHL = 3,minhel = 2 34.898 173.73 513.05 513.06 513.08 595.26

DSnum PF maxBL = 30 355.32 130.22 81.796 33.125 22.585 4.8848
SCFG minHL = 3,minhel = 2 592.84 103.04 18.921 18.921 18.921 12.053

Table 10: Results related to the shapes of selected predictions and sampled structures, obtained from our
tRNA database (by 10-fold cross-validation procedures, using sample size 1000).

Shape Level
Value Approach Parameters

0 1 2 3 4 5

CSPfreq PF maxBL = 30 0.0000 0.0009 0.0078 0.0513 0.0261 0.6353
(MF struct.) SCFG minHL = 3,minhel = 2 0.0009 0.0096 0.0244 0.0609 0.1027 0.8207

CSPfreq PF maxBL = 30 0.0000 0.0052 0.0139 0.0835 0.0696 0.6640
(MEA struct.) SCFG minHL = 3,minhel = 2 0.0000 0.0009 0.0009 0.0035 0.0557 0.5387

CSPfreq PF maxBL = 30 0.0000 0.0026 0.0104 0.0775 0.0731 0.7214
(Centroid) SCFG minHL = 3,minhel = 2 0.0000 0.0000 0.0000 0.0009 0.0139 0.1549

CSOfreq PF maxBL = 30 0.0009 0.1662 0.3063 0.7580 0.6883 0.9817
SCFG minHL = 3,minhel = 2 0.0026 0.4509 0.6372 0.9904 0.9974 0.9991

CSnum PF maxBL = 30 0.0009 0.7571 3.4207 36.641 30.288 600.35
SCFG minHL = 3,minhel = 2 0.0026 1.3795 3.1949 36.673 71.080 609.58

DSnum PF maxBL = 30 710.75 333.72 237.71 93.335 63.661 7.0951
SCFG minHL = 3,minhel = 2 999.68 885.81 762.67 239.28 123.91 13.558

Table 11: Results related to the shapes of selected predictions and sampled structures, obtained from our
5S rRNA database (by 10-fold cross-validation procedures, using sample size 1000).

Shape Level
Value Approach Parameters

0 1 2 3 4 5

CSPfreq PF maxBL = 30 0.0661 0.1255 0.1586 0.2050 0.2183 0.4834
(MF struct.) SCFG minHL = 3,minhel = 2 0.0530 0.1258 0.1522 0.1788 0.1985 0.4240

CSPfreq PF maxBL = 30 0.0660 0.1123 0.1453 0.1984 0.2051 0.4902
(MEA struct.) SCFG minHL = 1,minhel = 2 0.0264 0.1193 0.1391 0.1523 0.1789 0.4239

CSPfreq PF maxBL = 30 0.0793 0.1321 0.1653 0.1917 0.2449 0.5100
(Centroid) SCFG minHL = 3,minhel = 2 0.0197 0.0927 0.1125 0.1390 0.1391 0.3577

CSOfreq PF maxBL = 30 0.3638 0.4433 0.4766 0.5231 0.6488 0.7947
SCFG minHL = 1,minhel = 2 0.2717 0.5630 0.6158 0.7284 0.8079 0.9605

CSnum PF maxBL = 30 40.390 88.886 121.55 158.32 195.83 453.58
SCFG minHL = 3,minhel = 2 15.059 63.707 83.965 125.82 142.99 391.39

DSnum PF maxBL = 30 540.74 304.36 255.40 150.89 117.24 18.795
SCFG minHL = 3,minhel = 2 840.03 522.53 452.04 307.61 273.92 77.536

Table 12: Results related to the shapes of selected predictions and sampled structures, obtained from the
S-151Rfam database (by 2-fold cross-validation procedures, using sample size 1000).

However, having only a lean training set of mixed RNAs like the S-151Rfam database at hand, then the
energy-based sampling approach seems to outperform its probabilistic counterpart, at least with respect
to shape prediction.
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Furthermore, as regards tRNAs and 5S rRNAs, the observed averaged number of correct shapes in a
sample set (CSnum) is greater when using the SCFG approach, whereas for the S-151Rfam set of mixed
structural RNAs, an arbitrary sample obviously contains more instances of the correct shape when using
the PF variant. For 5Sr RNAs, this observation especially holds for the two most interesting shape
types (the most accurate shape type 1 and the most abstract type 5) with the realistic parameter choice
minhel = 2 for the SCFG strategy (see Table 16 of Section Sm-III). Finally, the observed averaged
number of different shapes in a sample (DSnum) is in most cases significantly larger for the SCFG based
sampling method15. This actually means that samples generated according to the distribution induced by
a sophisticated SCFG design imply a greater diversity of candidate structures for a given input sequence
than corresponding Boltzmann samples.
Consequently, the SCFG based statistical sampling approach evaluated within this article effectively over-
comes the main pitfall of MFE based methods addressed in the introduction, namely that the predicted
set of suboptimal foldings for a given sequence usually contains mostly structures without fundamental
differences. However, there is neither clear evidence that the distribution induced by a sophisticated
SCFG generally yields more realistic results than a corresponding energy-based Boltzmann distribution,
nor the other way round. In fact, this seems to strongly depend on the RNA type of the given sequence,
and most importantly on the quality of a corresponding training set and on the performance of the thermo-
dynamic model on such RNAs. Altogether, we conclude that fundamental differences might be expected
between Boltzmann samples and corresponding statistical sample sets obtained by a sophisticated SCFG
approach, which eventually disproves hypothesis H0 proposed in Section 1.

6 Conclusion and Future Work

In this work, we evaluated a sophisticated SCFG that mirrors the standard thermodynamic model ap-
plied in modern physics-based RNA secondary structure prediction methods. Particularly, this rather
complex SCFG represents an exact probabilistic counterpart to the energy model employed for calcu-
lating the needed PFs for the sampling strategy implemented in the Sfold program [DL03, DCL04],
which has become a widely used tool for RNA structure prediction based on statistical characterizations
of the thermodynamic ensemble of suboptimal foldings. We effectively used that elaborate SCFG de-
sign as foundation of a corresponding sampling method that samples possible foldings of a given RNA
molecule rigorously from the induced probability distribution. In principle, that SCFG based sampling
strategy produces a statistically representative sample of secondary structures for a given input sequence
in proportion to the distribution on the entire ensemble of feasible foldings, which is implied by the
learned grammar parameters. Thus, this sampling method represents a probabilistic counterpart to the
energy-based PF variant of Sfold, where structures are sampled in proportion to their Boltzmann weights,
guaranteeing a statistical representation of the Boltzmann-weighted ensemble.
By comprehensive comparisons, we showed that incorporating only additional information obtained from
databases of trusted RNA sequences with annotated secondary structures (SCFG variant) instead of the
recent thermodynamic parameters for RNA secondary structure (PF variant) into a statistical sampling
algorithm results in significant differences with respect to both predictive accuracy and overall quality of
generated sample sets. Actually, we can draw the conclusion that the ensemble distribution induced by the
considered sophisticated SCFG is less centered than the corresponding Boltzmann distribution of possible
structures. This effectively yields more variability during the sampling process and consequently reduces
the problem of getting stuck in local optima (which is inevitably inherited from optimization algorithms),
resulting in a more diverse sample set that might also contain structures which are fundamentally different
to the most probable ones. Thus, the discussed probabilistic sampling approach may be used to address
exactly the critical features of deterministic structure prediction methods and hence eventually realizes
the intentions related to statistical sampling techniques towards RNA structure prediction.
However, there is still room for improvement. For example, when using a so-called length-dependent
stochastic context-free grammar (LSCFG) as recently introduced in [WN10] to model RNA secondary
structures, it is very likely that the performance of the probabilistic sampling strategy employed in this
work can be enhanced, in terms of both accuracy of predictions and overall sampling quality.
Finally, note that despite the potential major quality improvement of the SCFG variant over the PF
approach for certain RNA types, the worst-case time complexity and memory requirement for the con-
struction of a statistically representative and reproducible sample for a given sequence are actually the
same. According to these aspects, the SCFG approach that has been evaluated within this article may

15Note that in the few cases where the PF approach yields more different shapes, we generally further restricted the
possible structures by prohibiting isolated base pairs (minhel > 1), which are in fact allowed in PF calculations.
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inspire the development of new high quality (sampling) algorithms, for example for RNA structures with
pseudoknots or RNA-RNA interactions, due to the following reasons: Despite the fact that RNA structure
prediction including pseudoknots based on thermodynamics is NP-hard, some MFE based algorithms
have been developed to include certain types of pseudoknots [RE99, RG04], but due to their high time
and space complexities, these particular algorithms are not applicable for long sequences. Moreover, the
PF algorithm [McC90] has been extended to include a class of pseudoknots [DP03, DP04], such that
a sampling extension could also be developed for structures including pseudoknots. However, one of
the main problems with these approaches is their dependence on the thermodynamic parameters and
energy functions which limits the performance accuracies in very significant ways, since there exists little
knowledge on the thermodynamic behavior of pseudoknotted structures. Nevertheless, it is known how
to model RNA structures with pseudoknots (and also RNA-RNA interactions) by special more powerful
grammar models, such that one does not have to face the problem that no appropriate energy parameters
are available. Thus, by completely abstracting from thermodynamics and considering only typical struc-
tural information obtained by training a convenient grammar on structural databases, one might be able
to generalize the sampling strategy discussed in this work to an algorithm for predicting pseudoknotted
RNA secondary structures (or RNA-RNA interactions).
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Supplementary Material

Sm-I Computing Inside and Outside Probabilities

In order the determine all inside and outside variables for a given sequence r ∈ Lr, we decided to use
the SCFG Gr as the basis for a special version of Earley’s algorithm. In particular, we chose to rely
on the formalism presented in [Goo98, Goo99] for describing parsers, which is called semiring parsing.
The advantage of using an Earley-style parser description is that the corresponding semiring parser can
handle general grammars, which means we do not have to transform the grammar Gr into Chomsky
normal form (CNF). This is especially useful, since the number of productions of the CNF of grammar
Gr would be huge. For this reason, computing the needed inside and outside values by the usual inside
outside algorithm for grammars in CNF would be less efficient.

Sm-I.1 Notations

In the sequel, we number the nucleotides in a given RNA sequence r of length n in the usual 5′ → 3′

direction (i.e., in the usual reading order from left to right), such that the corresponding RNA sequence
can be written as r1 . . . rn. Equivalently, for a secondary structure s (in dot-bracket representation) of
size n, we can write s1 . . . sn.
Moreover, for A an intermediate (or non-terminal) symbol of the considered grammar Gr, let αA(i, j)
denote the inside variables (computed by the usual inside algorithm) and βA(i, j) denote the outside
variables (computed by the usual outside algorithm) for a given word r ∈ Lr of size n, 1 ≤ i, j ≤ n.
Consequently, αA(i, j) is the probability of a leftmost derivation that generates the subword ri . . . rj (of
a word r ∈ Lr = L(Gr)) from the intermediate symbol A and βA(i, j) is the probability of a derivation16

which, starting with the intermediate symbol S (the axiom of grammar Gr), generates the sentential form
r1 . . . ri−1 A rj+1 . . . rn.
Furthermore, we need to define a new set of productions that has to be used by our semiring parser in
order to compute the desired inside and outside probabilities. This production set contains the so-called
dotted rules that are considered by Earley’s algorithm. It can easily be obtained by modifying the rule
set RGr of the grammar Gr in the following way: Introduce a new symbol • /∈ ΣGr ∪ IGr that is used
to mark the current position up to which the parsing has proceeded; according to the fact that Earley’s
algorithm parses input words from left to right, this symbols must thus be “shifted” from the leftmost
position to the rightmost one in each production rule of the grammar used for parsing. For this reason,
we replace each production rule ∈ RGr of the form rule = A→ α1 . . . αk with αi ∈ IGr ∪ΣGr , 1 ≤ i ≤ k,
by k+1 new productions rule0 = A→ •α1 . . . αk, rule1 = A→ α1 • . . . αk, . . ., rulek−1 = A→ α1 . . .•αk
and rulek = A → α1 . . . αk•; if rule = A → ε, it is replaced by the new production rule0 = A → ε•.
The resulting dotted production set will be denoted by RGr,• in the sequel. Moreover, each set of k + 1
productions that were derived from an original production rule = A → α1 . . . αk ∈ RGr will be denoted
by RGr,•(rule), such that

⋃
rule∈RGr

RGr,•(rule) = RGr,•. Obviously, RGr,• contains exactly the rules
that have to be considered by Earley’s algorithm for grammar Gr.
Last but not least, note that for defining the desired Earley-based semiring parser, we use an item-
based parser description. Therefore, in contrast to the usual inside outside algorithm for the computing
the inside values αA(i, j) and outside values βA(i, j), 1 ≤ i, j ≤ n, for A an intermediate symbol of
the considered grammar and n the length of the input word, the corresponding semiring parser used
in this work computes inside and outside values for so-called items. Here, items are defined by three
components, having the form [i, ind(rule), j], where for a given input word r ∈ Lr of length n, i and
j, 1 ≤ i, j ≤ n + 1, define positions in r (i.e., in front of the first character, in between two characters
or after the last character). Additionally, ind(rule) denotes the index of production rule ∈ RGr,• in
an appropriate ordering (details will follow later) of production set RGr,•. In fact, an item of the form

[i, ind(A → α • β), j] asserts that A ⇒ αβ
∗⇒ ri . . . rj−1β. Consequently, by semiring parsing, the inside

and outside values are computed for each production rule ∈ RGr,• and not as needed for each non-
terminal symbol A ∈ IGr . However, the needed inside and outside values αA(i, j) and βA(i, j) can easily
be derived from the corresponding inside and outside results for items [i, ind(A→ γ•), j], as we will see
later.

16Note that for the computation of this probability, one always summarizes over all corresponding derivation trees.
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Sm-I.2 Deriving the Inside and Outside Values of Items

First, we want to describe how to compute the inside and outside values of all items by semiring parsing,
using a corresponding item-based description of an Earley-style parser.

Sm-I.2.1 Inside Computation

To obtain the inside values of all items [i, ind(rule), j], 1 ≤ i, j ≤ n+ 1 (for an RNA sequence r of size n)
and rule ∈ RGr,•, by semiring parsing based on Earley’s algorithm, we can use the following formulae,
which we derived according to [Goo98, Goo99]:

• Scanning:

IN[i, ind(A→ αwj • β), j + 1] = δwj ,rj · IN[i, ind(A→ α • wjβ), j]

where for wj an arbitrary terminal symbol of the underlying grammar Gr and rj the (terminal)
symbol read at position j of the input string r,

δwj ,rj =

{
1, if wj = rj ,

0, if wj 6= rj ,

according to the definition of Kronecker’s delta.

• Prediction:

IN[j, ind(B → •γ), j] =

{
Pr(B → γ), if S

∗⇒ r1 . . . rj−1Bδ for some δ,

0, else,

where Pr(rule) denotes the probability of production rule ∈ RGr as given by the SCFG Gr.
Note that this top down filtering is usually made by Earley’s algorithm to ensure that only such
items can be predicted that might later be used by the completion rule. However, this is not needed
here, since for any superfluously predicted item, the resulting probability will later be set to 0 by a
scan. Thus, we can simply predict all items by

IN[j, ind(B → •γ), j] = Pr(B → γ).

• Completion:

IN[i, ind(A→ αB • β), j] =
∑
i≤k≤j

IN[i, ind(A→ α •Bβ), k] ·
∑

ruleB∈RB

IN[k, ind(ruleB), j],

where RB = {rule ∈ RGr,• | rule = B → γ•}.

Moreover, the desired semiring parser algorithm for the correct computation of all inside values ad-
ditionally requires the definition of a convenient ordering of the considered items [i, ind(rule), j], for
1 ≤ i, j ≤ n+1 and rule ∈ RGr,•, such that no item precedes any other item on which it depends. Details
on how we derived the corresponding ordering used in this work will follow. In principle, we can define an
ordering by first and last parameters i, j ∈ {1, . . . , n+1} that matches the order of consideration of items
induced by Earley’s algorithm and especially an appropriate ordering of the considered rule set RGr,• by
indices (p, q), for p ∈ {1, . . . , card(RGr )} and q ∈ {0, . . . , k(p)}, where k(p) denotes the conclusion length
of the production rule ∈ RGr indexed by p.
Based on the previously introduced formulae and the appropriate ordering that will be formally defined
hereafter, we finally obtain Algorithm 1 that shows how to perform the complete inside computation.

Sm-I.2.2 Ordering of Items

According to [Goo98, Goo99], we initially need to define an ordering on the items [i, ind(rule), j], 1 ≤
i, j ≤ n+ 1 for n the length of the input word and rule ∈ RGr,•. In fact, we have to take care that when
successively computing the values of all items, no item precedes any item on which it depends. For this
reason, in [Goo98, Goo99], each item x is associated with a “bucket” B; they write bucket(x) = B. The
buckets have to be ordered as follows: If item y depends on item x, then buckets(x) ≤ buckets(y). There
are two types of buckets: looping buckets and non-looping buckets. In fact, if items x and y depend
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Algorithm 1 Computation of Inside Values

Require: RNA sequence r ∈ Lr of length n ≥ 1,
set RGr,• of production rules used by Earley’s algorithm for parsing r with Gr, and
probabilities Pr(rule) of the productions rule ∈ RGr , trained on RNA structure data.

for j = 1 . . . n+ 1 do
for i = j . . . 1 do

for p = 1 . . . card(RGr ) do
for q = 0 . . . k(p) do

rule = ind−1(p, q) /*rule ∈ RGr,• is the rule having index (p, q) in our ordering.*/
if rule = A→ αwj−1 • β then

/* Scanning: */
IN[i, (p, q), j] = δwj−1,rj−1

· IN[i, (p, q − 1), j − 1]
else if rule = B → •γ then

/* Prediction: */
IN[j, (p, q), j] = Pr(B → γ)

else if rule = A→ αB • β then
/* Completion: */
IN[i, (p, q), j] =

∑
i≤k≤j

(
IN[i, (p, q − 1), k] ·

(∑
ruleB∈RB

IN[k, ind(ruleB), j]
))

end if
end for

end for
end for

end for

(directly or indirectly) on each other, then they are both associated with a special looping bucket B,
such that bucket(x) = B = bucket(y). A bucket is also called looping bucket if an item in it depends
on itself. Otherwise, the bucket is called non-looping. If item x is associated with a non-looping bucket,
then its value can easily be computed, as this value depends only on the values of items in earlier buckets.
However, in the case of item x being associated with a looping bucket, the computation is much more
complex, which is due to the fact that the value of x then depends potentially on the values of other
items in the same bucket. In fact, this means that infinite loops may occur, for two different reasons:
First, if the values of two items in the same bucket are mutually dependent, or second if an item depends
on its own value. Although such infinite loops may require computation of infinite sums, there exists a
way to efficiently compute or approximate them, as shown in [Goo98, Goo99].
Fortunately, as the SCFG Gr considered in this work is loop-free, each item [i, ind(rule ∈ RGr,•), j]
can be associated with a non-looping bucket B (of size one). Thus, considering the restriction that no
item precedes any item on which it depends, an ordering on the items [i, ind(rule), j] can be defined
by appropriately iterating over positions i and j, respectively, as well as by using a suitable ordering
(indexing) of the elements in RGr,•. Since we use an Earley-style parser, it is obvious that in order to
calculate all values of items [i, ind(rule), j], 1 ≤ i, j ≤ n+ 1 and rule ∈ RGr,•, we first have to iterate over
all values j from 1 to n + 1. This means we “shift” the symbol •17 from left to right. For each value of
j ∈ {1, . . . , n+ 1}, we then have to iterate over all values i from j down to 1. Thus, we can first make a
prediction for i = j and then scanning or completion steps for i < j. However, the problem of finding an
appropriate ordering of RGr,• that has to be applied for every pair of fixed positions i and j in order to
derive the values for items [i, ind(rule), j], rule ∈ RGr,•, is more complicated.
In this work, the ordering of the rules in RGr,• is defined by index values (p, q), given as follows:

• The first index p ∈ {1, . . . , card(RGr )} corresponds to a set of productions RGr,•(rule) ⊂ RGr,• (the
one that was derived from production rule ∈ RGr ) and

• the corresponding second index q ∈ {0, . . . , card(RGr,•(rule))} corresponds to a single production
ruleq ∈ RGr,•(rule) (the one in which symbol • occurs after the qth symbol in the conclusion, see
above).

Obviously, this ordering within the sets RGr,•(rule) is appropriate, since if rule = A→ αBβ is indexed by
p ∈ {1, . . . , card(RGr )}, then item [i, (p, q) = ind(A→ αB •β), j] depends on item [i, (p, q−1) = ind(A→
α•Bβ), j′] for j′ ≤ j. Consequently, it remains to find a suitable distinct index p ∈ {1, . . . , card(RGr )} for

17Recall that symbol • is used to mark the current position j, 1 ≤ j ≤ n+ 1, in the input word up to which the parsing
has proceeded.
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any set RGr,•(rule) corresponding to the original production rule ∈ RGr , such that the resulting ordering
ensures that no item precedes any item on which it depends.
It is easy to see that for predictions and scanning steps, no problems can occur due to our ordering (implied
by index q) within any set RGr,•(rule). Thus, the center of attention has to be laid on the completion
steps. In fact, suppose the value of an item [i, (p, q) = ind(A → αB • β), j] has to be computed by
completion. Then, this value depends on the values of items [i, (p, q − 1) = ind(A → α • Bβ), k] and
[k, ind(ruleB ∈ RB), j], for i ≤ k ≤ j. Whereas in all cases, the value of [i, (p, q − 1), k] has been
computed at this point (due to our ordering of RGr,•(A → αBβ) and since k ≤ j), problems may
arise for [k, ind(ruleB ∈ RB), j]. Particularly, if α can not be the empty word, i.e., if |α| ≥ 1 holds,
then we only have to consider i + 1 ≤ k ≤ j, in which cases values of items [k, ind(ruleB ∈ RB), j]
have already been determined in previous iterations, since k > i. However, if α can be empty, then
[i, (p, q) = ind(A→ αB •β), j] also depends on [i, (p′, q′) = ind(ruleB = B → γ• ∈ RB), j]. Thus, B → γ
has to be considered before A → αBβ, which implies p′ < p must hold. In fact, as this holds for any
ruleB ∈ RB , we can conclude that if α can be empty, then in an appropriate ordering, A→ αBβ ∈ RGr
has to be placed after all productions B → γ ∈ RGr that have premise B.
According to these observations, the desired ordering can easily be constructed in the following way: Start
by assigning the smallest indices p ∈ {1, . . . , card(RGr )} to productions of the form rule = I → tδ, where
the first symbol t of the conclusion is any terminal symbol from ΣGr . Then, assign the remaining indices
to the other setsRGr,•(rule), for rule ∈ RGr , taking into account the previously discussed restrictions. For
the sake of simplicity, let us first consider the grammar Gs that models the language Ls of all secondary
structures. For this grammar, we could for example use the following ordering of the corresponding rule
set RGs , i.e., the following ordering by first indices p ∈ {1, . . . , card(RGs)}:

Index p Rule r Index p Rule r Index p Rule r Index p Rule r

1 Z → ◦◦◦ , 2 A→ (((msL)))ms , 3 P → (((L))),
4 C → ZC, 5 C → Z, 6 H → ZH, 7 H → Z,
8 B → ZB, 9 B → Z, 10 U → ZU , 11 U → ε,

12 T → C, 13 T → A, 14 T → CA,
15 T → AT , 16 T → CAT , 17 F → Zmh−1H,
18 G→ BA, 19 G→ AB, 20 G→ BAB,
21 M → UAO, 22 O → UAN , 23 N → UAN , 24 N → U ,
25 L→ F , 26 L→ P , 27 L→ G, 28 L→M ,
29 S → T .

The derivation of a corresponding ordering for the considered SCFG Gr generating all RNA sequences
is straightforward. Thus, we have defined an appropriate ordering of RGr,• by indices (p, q), for p ∈
{1, . . . , card(RGr )} and q ∈ {0, . . . , k(p)}, where k(p) = card(RGr,•(rule)) if RGr,•(rule) can be found
under index p.

Sm-I.2.3 Outside Computation

Once the inside values have been computed (with Algorithm 1), the corresponding outside values of all
items [i, ind(rule), j], 1 ≤ i, j ≤ n+1 (for an RNA sequence r of size n) and rule ∈ RGr,• can be calculated
with Algorithm 2. This Earley-based semiring parser algorithm uses the reversed previously introduced
ordering of items and makes use of the following formulae for the outside computations (for details, we
refer to [Goo98, Goo99]):

• Scanning (reverse):

OUT[i, ind(A→ α • wjβ), j] = δwj ,rj ·OUT[i, ind(A→ αwj • β), j + 1].

• Prediction (reverse):
There is nothing to do, since this value is obtained while performing a (reverse) completion com-
putation.

• Completion (reverse):

OUT[i, ind(A→ α •Bβ), k] = OUT[i, ind(A→ α •Bβ), k]+

OUT[i, ind(A→ αB • β), j] ·
∑

ruleB∈RB

IN[k, ind(ruleB), j]
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Algorithm 2 Computation of Outside Values

Require: RNA sequence r ∈ Lr of length n ≥ 1,
set RGr,• of production rules used by Earley’s algorithm for parsing r with Gr, and
the corresponding inside values (computed by Algorithm 1).

OUT[1, ind(S → T•), n+ 1] = 1
for j = n+ 1 . . . 1 do

for i = 1 . . . j do
for p = card(RGr ) . . . 1 do

for q = k(p) . . . 0 do
rule = ind−1(p, q) /*rule ∈ RGr,• is the rule having index (p, q) in our ordering.*/
if rule = A→ αwj • β then

/* Scanning (reverse): */
OUT[i, (p, q − 1), j] = δwj ,rj ·OUT[i, (p, q), j + 1]

else if rule = B → •γ then
/* Prediction (reverse): */
do nothing

else if rule = A→ αB • β then
/* Completion (reverse): */
for k = i . . . j do

OUT[i, (p, q − 1), k] =
OUT[i, (p, q − 1), k] + OUT[i, (p, q), j] ·

(∑
ruleB∈RB

IN[k, ind(ruleB), j]
)

for ruleB ∈ RB do
OUT[k, ind(ruleB), j] =

OUT[k, ind(ruleB), j] + OUT[i, (p, q), j] · IN[i, (p, q − 1), k]
end for

end for
end if

end for
end for

end for
end for

and

OUT[k, ind(ruleB), j] = OUT[k, ind(ruleB), j]+

OUT[i, ind(A→ αB • β), j] · IN[i, ind(A→ α •Bβ), k],

for i ≤ k ≤ j and ruleB ∈ RB .

Since the number of production rules considered for the inside and outside computations is given by
card(RGr,•) and is thus not dependent on the input size, Algorithms 1 and 2 need cubic time and
quadratic space in the worst-case.

Sm-I.3 Deriving the Needed Inside and Outside Probabilities

Finally, since for a given sequence r ∈ Lr of length n, an item of the form [i, ind(A → α•), j + 1],

1 ≤ i, j ≤ n+ 1, asserts that A⇒ α
∗⇒ ri . . . rj , it is easy to see that∑

rule=A→α•

IN[i, ind(rule), j + 1] =
∑

rule∈RA

IN[i, ind(rule), j + 1] = αA(i, j)

is the probability of a leftmost derivation that generates the subword ri . . . rj of r from the interme-
diate symbol A. Furthermore, recall that βA(i, j) is defined as the probability of a derivation which,
starting with the intermediate symbol S (the axiom of the grammar Gr), generates the expression
r1 . . . ri−1 A rj+1 . . . rn. For this outside probability, it obviously does not matter what subword ri . . . rj
of r is derived from intermediate symbol A, i.e., it is independent on which rule A→ α• ∈ RA generates
subword ri . . . rj . Consequently, for rule = A→ α• ∈ RA, the outside value for item [i, ind(rule), j+ 1] is
either equal to zero (if ri . . . rj can not be derived from non-terminal A using production rule), or it is equal
to the outside value for any items [i, ind(rule ′), j+ 1], where rule ′ ∈ RA and OUT[i, ind(rule ′), j+ 1] 6= 0
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(which means that production rule ′ can be used to generate subword ri . . . rj of r from A). Accord-
ingly, the needed outside probability for symbol A is equal to one of the non-zero values (if any) of the
corresponding production rules with premise A, which can be written as:

max
rule=A→α•

OUT[i, ind(rule), j + 1] = max
rule∈RA

OUT[i, ind(rule), j + 1] = βA(i, j).

Thus, for any given RNA sequence r ∈ Lr of size n, we can derive the desired inside and outside
probabilities αA(i, j) and βA(i, j), for each A ∈ IGr and 1 ≤ i, j ≤ n, by computing the inside and
outside values of all items by semiring parsing based on an Earley-style parser for the SCFG Gr and
afterwards using the results for each rule ∈ RGr,• of the form rule = A→ α• to obtain the corresponding
probabilities for each A ∈ IGr (in the previously described way). Consequently, for sequence r of size
n, there result cubic time complexity and quadratic memory requirements for the computation of all
probabilities αA(i, j) and βA(i, j), A ∈ IGr and 1 ≤ i, j ≤ n.

Sm-II Details of the Sampling Algorithm

In this section, we first present equations for computing the needed sampling probabilities for all consid-
ered cases (except for exterior loops, since they have already been presented in Section 3.2.1). Afterwards,
we give a detailed description of the corresponding sampling algorithm, including detailed information
on how to use the respective sampling probabilities. Note that these parts are written in a similar way as
the corresponding section in [DL03], in order to illustrate the similarities and differences that arise when
computing the sampling probabilities according to either approach.

Sm-II.1 Equations for Computation of Sampling Probabilities

Basically, the definitions of the needed sampling probabilities for all regular loop types can be derived
in the same way as those already presented in Section 3.2.1 for exterior loops – by using only the
corresponding inside outside values and the probabilities of the production rules of the considered SCFG.

Sm-II.1.1 Sampling Probabilities for Substructures Between a Given Base Pair

Given a base pair ri.rj , then this pair can either be the closing base pair of a hairpin loop, the exterior
pair of a base pair stack, the closing pair of a bulge or an interior loop, or close a multibranched loop.
For all of these cases, the corresponding probabilities are given as follows:

QHLij (i, j) =
1

qij(i, j)
· βL(i+ 1, j − 1) · (αF (i+ 1, j − 1) · Pr(L→ F )) ,

QSPij (i, j) =
1

qij(i, j)
· βL(i+ 1, j − 1) · (αP (i+ 1, j − 1) · Pr(L→ P )) ,

QBIij (i, j) =
1

qij(i, j)
· βL(i+ 1, j − 1) · (αG(i+ 1, j − 1) · Pr(L→ G)) ,

QML
ij (i, j) =

1

qij(i, j)
· βL(i+ 1, j − 1) · (αM (i+ 1, j − 1) · Pr(L→M)) .

Here, we have to use the normalizing factor

qij(i, j) = βL(i+ 1, j − 1) · αL(i+ 1, j − 1).

Thus, QHLij (i, j), QSPij (i, j), QBIij (i, j) and QML
ij (i, j) is the sampling probability for a hairpin loop, base

pair stack, bulge or interior loop and multibranched loop, respectively, where for mutually exclusive and
exhaustive cases, QHLij (i, j) +QSPij (i, j) +QBIij (i, j) +QML

ij (i, j) = 1 holds.

Sm-II.1.2 Sampling Probabilities for Bulge and Interior Loops

For sampling bulge and interior loops corresponding to the PF approach, we would have to use the
following probabilities:

PBILhl (i, j, h, l) =


PB1
hl (i, j, h), if h > i+ 1 and l = j − 1,

PB2
hl (i, j, l), if h = i+ 1 and l < j − 1,

P ILhl (i, j, h), if h > i+ 1 and l < j − 1,

0, else,
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where

PB1
hl (i, j, h) =

1

QBIij (i, j) · qij(i, j)
· βL(i+ 1, j − 1) · Pr(L→ G)

× (αB(i+ 1, h− 1) · αA(h, j − 1) · Pr(G→ BA)) ,

PB2
hl (i, j, l) =

1

QBIij (i, j) · qij(i, j)
· βL(i+ 1, j − 1) · Pr(L→ G)

× (αA(i+ 1, l) · αB(l + 1, j − 1) · Pr(G→ AB)) ,

P ILhl (i, j, h, l) =
1

QBIij (i, j) · qij(i, j)
· βL(i+ 1, j − 1) · Pr(L→ G)

× (αB(i+ 1, h− 1) · αA(h, l) · αB(l + 1, j − 1) · Pr(G→ BAB)) .

After the case of bulge or interior loop was sampled, {PBILhl (i, j, h, l)} would then be used for sam-
pling h and l (together in one single sampling step) and for mutually exclusive and exhaustive cases,∑j−minps

h=(i+1)

∑(j−1)
l=(h−1)+minps

PBILhl (i, j, h, l) = 1 (under the condition that QBIij (i, j) > 0).

However, to ensure that the sampling algorithm runs in cubic time, we would then have to disregard long
bulge and interior loops by using a constant maxBL – just like with PFs18. Nevertheless, we do not need
to apply this restriction if we sample h and l one after the other with the following probabilities:

PBIhj (i, j, h) =
1

pBI(i, j)
· βG(i+ 1, j − 1) · (αB(i+ 1, h− 1) · αA(h, j − 1) · Pr(G→ BA)) ,

PBIil (i, j, l) =
1

pBI(i, j)
· βG(i+ 1, j − 1) · (αA(i+ 1, l) · αB(l + 1, j − 1) · Pr(G→ AB)) ,

PBIhl (i, j, h) =
1

pBI(i, j)
· βG(i+ 1, j − 1) · (αB(i+ 1, h− 1) · αAB(h− 1, j) · Pr(G→ BAB)) ,

P̂BIhl (j, h, l) =
1

αAB(h− 1, j)
· (αA(h, l) · αB(l + 1, j − 1)) ,

where

αAB(i, j) =
∑(j−2)

l=i+minps

(αA(i+ 1, l) · αB(l + 1, j − 1))

and
pBI(i, j) = βG(i+ 1, j − 1) · αG(i+ 1, j − 1).

Obviously, {PBIhj (i, j, h)} and {PBIil (i, j, l)} are the sampling probabilities for bulges on the left and bulges

on the right, respectively. Furthermore, {PBIhl (i, j, h)} are the probabilities for first sampling h for interior

loops and {P̂BIhl (j, h, l)} are the probabilities for sampling l after h is sampled (for interior loops).

Since the probabilities of all mutually exclusive and exhaustive cases sum up to 1, we have
∑j−minps

h=(i+2) P
BI
hj (i, j, h)+∑(j−2)

l=i+minps
PBIil (i, j, l) +

∑j−minps−1
h=(i+2) PBIhl (i, j, h) = 1, and, under the condition that PBIhl (i, j, h) > 0, also∑(j−2)

l=(h−1)+minps
P̂BIhl (j, h, l) = 1.

Sm-II.1.3 Sampling Probabilities for Multiloops

In the case of a multibranched loop, the probabilities for sampling the first accessible base pair rh1 .rl1
within this loop can be obtained by considering the intermediate symbols of Gr that generate (parts of)
multiloops. More specifically, we first sample h and l according to the following conditional probabilities:

PM1

hl (i, j, h) =
1

pM1(i, j)
· βM (i+ 1, j − 1) · (α∗U (i+ 1, h− 1) · αAO(h, j) · Pr(M → UAO)) ,

P̂M1

hl (j, h, l) =
1

αAO(h, j)
· (αA(h, l) · αO(l + 1, j − 1)) ,

where

αAO(h, j) =
∑(j−1)−minps

l=(h−1)+minps

(αA(h, l) · αO(l + 1, j − 1))

and
pM1(i, j) = βM (i+ 1, j − 1) · αM (i+ 1, j − 1).

18Note that when using the PF approach based on thermodynamics, h and l have to be sampled at once, since the free
energy of a bulge or interior loops strongly depends on both the closing pair ri.rj and the accessible pair rh.rl.
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Note that we have to take care of the ε-rule U → ε, which implies that symbol U may generate words of
size zero. For this reason, h = i+ 1 could be chosen, implying h− 1 < i+ 1. However, αU (i+ 1, h− 1)
is only defined for i+ 1 ≤ h− 1. To fix this problem, we have used the term α∗U (i+ 1, h− 1) instead of
αU (i+ 1, h− 1) in the previous two definitions, which is given as follows:

α∗U (i+ 1, h− 1) =

{
αU (i+ 1, h− 1), if i+ 1 ≤ h− 1,

Pr(U → ε), if i+ 1 > h− 1.

Thus, {P̂M1

hl (j, h, l)} are probabilities for sampling l after h ≥ i + 1 is sampled with probabilities

{PM1

hl (i, j, h)}. For mutually exclusive and exhaustive cases, we have
∑j−2·minps

h=(i+1) PM1

hl (i, j, h) = 1, and

accordingly,
∑(j−1)−minps

l=(h−1)+minps
P̂M1

hl (j, h, l) = 1. Sampling both h and l yields the first accessible base pair

rh1
.rl1 := rh.rl (which closes the first helix radiating out from this multiloop).

In order to sample the second accessible base pair rh2
.rl2 , we consider the remaining structure fragment

R(l1+1)(j−1) (between the 3′ base rl1 of the first accessible base pair rh1
.rl1 and the 3′ base rj of the

closing base pair ri.rj of the considered multiloop). In fact, for any k ≥ 1, the probabilities for sampling
the (k+ 1)th accessible base pair rhk+1

.rlk+1
within this multibranched loop are computed by considering

the structure fragment R(lk+1)(j−1) and using the corresponding inside and outside variables for some
specific multiloop generating intermediate symbols of the grammar Gr. More specifically, we first sample
h and l according to conditional probabilities, which are defined as follows:

P
Mk+1

hl (lk, j, h) =
1

pMk+1(lk, j)
· βX(lk + 1, j − 1) · (α∗U (lk + 1, h− 1) · αAN (h, j) · Pr(X → UAN)) ,

P̂
Mk+1

hl (j, h, l) =
1

αAN (h, j)
· (αA(h, l) · α∗N (l + 1, j − 1)) ,

where

αAN (h, j) =
∑(j−1)

l=(h−1)+minps

(αA(h, l) · α∗N (l + 1, j − 1))

and

pMk+1(lk, j) =


βO(lk + 1, j − 1) · αO(lk + 1, j − 1), if (k + 1) = 2,

βN (lk + 1, j − 1) · αN (lk + 1, j − 1)−
βN (lk + 1, j − 1) · (αU (l + 1, j − 1) · Pr(N → U)) , if (k + 1) ≥ 3,

as well as

X =

{
O, if (k + 1) = 2,

N, if (k + 1) ≥ 3.

Again, we have used α∗U instead of αU and α∗N instead of αN , which is defined as

α∗N (l + 1, j − 1) =

{
αN (l + 1, j − 1), if l + 1 ≤ j − 1,

Pr(N → U) · Pr(U → ε), if l + 1 > j − 1,

in order to take care of possible cases where U and/or N generate words of size zero. According to these

definitions, {P̂Mk+1

hl (j, h, l)} are probabilities for sampling l after h ≥ lk + 1 is sampled with probabilities

{PMk+1

hl (lk, j, h)} and again, for mutually exclusive and exhaustive cases, we have
∑j−minps

h=(lk+1) P
Mk+1

hl (lk, j, h) =

1, and
∑(j−1)
l=(h−1)+minps

P̂
Mk+1

hl (j, h, l) = 1. By sampling both h and l, we obtain the desired (k + 1)th

accessible base pair rhk+1
.rlk+1

:= rh.rl (which closes the (k+1)th helix radiating out from this multiloop).

According to the definition of multibranched loops, we now have to address two different cases: either
the considered multiloop contains no additional accessible base pair, or there is at least one more base
pair accessible from the closing pair ri.rj . These two mutually exclusive cases are addressed by the
following two probabilities: Conditional on the sampled values for hk and lk (for the kth accessible base
pair rhk

.rlk in the considered multiloop), k ≥ 2, we consider the following “decision” probability for no
additional accessible base pairs on the structure fragment R(lk+1)(j−1) (i.e., between the 3′ base rlk of
the kth accessible base pair rhk

.rlk and the 3′ base rj of the closing base pair ri.rj):

P
Mk+1

01 (lk, j) =
1

p01(lk, j)
· βN (lk + 1, j − 1) · (αU (lk + 1, j − 1) · Pr(N → U)) ,
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where

p01(lk, j) =

{
βN (lk + 1, j − 1) · (αU (lk + 1, j − 1) · Pr(N → U)) , if (j − lk − 1) < minps,

βN (lk + 1, j − 1) · αN (lk + 1, j − 1), if (j − lk − 1) ≥ minps.

Accordingly, the probability that there is at least one more accessible base pair in the considered multiloop

(i.e., on the structure fragment R(lk+1)(j−1)) is given by 1− PMk+1

01 (lk, j).
If no additional accessible base pair is sampled, the sampling process for the considered multibranched
loop (closed by pair ri.rj) is terminated; the resulting loop is thus a (k + 1)-loop, with k internal helices
closed by the k sampled base pairs rhp

.rlp , 1 ≤ p ≤ k, accessible from the closing pair ri.rj . Otherwise,
the next accessible base pair rhk+1

.rlk+1
is sampled and afterwards, it has yet again to be decided whether

the loop contains additional accessible base pairs or not (by another “decision” sampling). This process
is then repeated until no additional base pair is sampled.

Sm-II.2 Formal Description of the Sampling Process

According to the previous discussion, it should be clear that a secondary structure for a given RNA
sequence r ∈ Lr of length n can be sampled in the following recursive way: Start with the entire RNA
sequence R1n and consecutively compute the adjacent substructures (single-stranded regions and paired
substructures) of the exterior loop (from left to right). Any paired substructure, say the kth substructure
of the exterior loops, has to be completed by successively folding other loops (hairpins, stacked pairs,
bulges, interior and multibranched loops) before the (k + 1)th adjacent substructure is computed. This
means that the folding process performed by the sampling algorithm corresponds to the native folding
procedures of RNA molecules (from left to right, due to the aspects of co-transcriptional folding).

Algorithm 3 Sampling an entire secondary structure

Require: RNA sequence r ∈ Lr of length n ≥ 1, and
all previously defined sampling probabilities computed for r (as global variables).

procedure computeRandomExteriorLoop (n)
sec = ∅
Set i = 1, j = n and k = 0
while (j − i+ 1) 6= 0 do

/*Create (k + 1)th helix, starting with free base pair h.l, i < h < l < j, or leave Rij unpaired:*/
extLoopType = Sample exterior loop substructure type for Rij
if extLoopType =̂ PE0 (i, j) /*case (a): Rij is single-stranded:*/ then

return sec
else if extLoopType =̂ PEij (i, j) /*case (b): h = i and l = j:*/ then

Set h = i and l = j

else if extLoopType =̂
∑(j+1)−minps

h=(i+1) PEhj(i, j, h) /*case (c): i < h < l = j:*/ then

Sample h ∈ [(i+ 1), (j + 1)−minps] according to probabilities {PEhj(i, j, h)}
Set l = j

else if extLoopType =̂
∑(j−1)
l=(i−1)+minps

PEil (i, j, l) /*case (d): i = h < l < j:*/ then

Set h = i
Sample l ∈ [(i− 1) + minps, (j − 1)] according to probabilities {PEil (i, j, l)}

else if extLoopType =̂
∑j−minps

h=(i+1) P
E
hl(i, j, h) /*case (e): i < h < l < j:*/ then

Sample h ∈ [(i+ 1), j −minps] according to probabilities {PEhl(i, j, h)}
Sample l ∈ [(h− 1) + minps, (j − 1)] according to probabilities {P̂Ehl(j, h, l)}

end if
/*Collect base pairs for (k + 1)th substructure and add them to the entire structure:*/
sub = {h.l, (h+ 1).(l − 1), . . . , (h+ (minhel − 1)).(l − (minhel − 1))}
sub = sub ∪ computeRandomLoop (h+ (minhel − 1), l − (minhel − 1))
sec = sec ∪ sub
/*Consider the remaining fragment R(l+1)j :*/
Set i = l + 1 /*=next unpaired base after free base pair h.l*/ and k = k + 1

end while
return sec
end procedure
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Algorithm 4 Sampling any substructure of an entire secondary structure

procedure computeRandomLoop (i, j)
Set sec = ∅
randLoopType = Sample loop type closed by i.j
if randLoopType =̂ QHLij (i, j) /*i.j closes hairpin loop:*/ then

return sec
else if randLoopType =̂QSPij (i, j) /*i.j closes stacked pair:*/ then
sec = sec ∪ {(i+ 1).(j − 1)}
sec = sec ∪ computeRandomLoop (i+ 1, j − 1)

else if randLoopType =̂QBIij (i, j) /*i.j closes bulge or interior loop:*/ then
sec = sec ∪ computeRandomBulgeInteriorLoop (i, j)

else if randLoopType =̂QML
ij (i, j) /*i.j closes multiloop:*/ then

sec = sec ∪ computeRandomMultiLoop (i, j)
end if
return sec
end procedure

Algorithm 5 Sampling a bulge or interior loop within a secondary structure

procedure computeRandomBulgeInteriorLoop (i, j)
if Sample strictly corresponding to PF approach then

/*This requires to use a constant maxBL:*/
Sample h and l according to probabilities {PBILhl (i, j, h, l)}

else
/*This allows maxBL =∞ (then no restrictions are applied):*/
loopType = Sample bulge or interior loop type for Rij
if loopType =̂

∑j−minps

h=(i+2) P
BI
hj (i, j, h) /*bulge on the left:*/ then

Sample h ∈ [(i+ 2), j −minps] according to probabilities {PBIhj (i, j, h)}
Set l = j

else if loopType =̂
∑(j−2)
l=i+minps

PBIil (i, j, l) /*bulge on the right:*/ then
Set h = i
Sample l ∈ [i+ minps, (j − 2)] according to probabilities {PBIil (i, j, l)}

else if loopType =̂
∑j−minps−1
h=(i+2) PBIhl (i, j, h) /*interior loop:*/ then

Sample h ∈ [(i+ 2), j −minps − 1] according to probabilities {PBIhl (i, j, h)}
Sample l ∈ [(h− 1) + minps, (j − 2)] according to probabilities {P̂BIhl (j, h, l)}

end if
end if
sec = {h.l, (h+ 1).(l − 1), . . . , (h+ (minhel − 1)).(l − (minhel − 1))}
sec = sec ∪ computeRandomLoop (h+ (minhel − 1), l − (minhel − 1))
return sec
end procedure

For a formal description on how the sampling algorithm works and explicit information on where each of
the previously defined sampling probabilities has to be considered in order to perform the needed random
choices, see Algorithms 3 to 6.
It remains to mention that when the probabilities αx(i, j), x ∈ {AT,AB,AO,AN}, 1 ≤ i, j ≤ n, are
also precomputed, each of the needed sampling probabilities can be derived in constant time. Thus, after
a preprocessing of the given RNA sequence (which includes the complete inside outside computation
and takes cubic time and requires quadratic storage), corresponding secondary structures can be quickly
generated. In fact, the time complexity of the sampling algorithm is bounded by O(n2), since any
structure of size n can have at most bn−minHL

2 c base pairs and any base pair can be sampled in linear
time.
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Algorithm 6 Sampling a multiloop within a secondary structure

procedure computeRandomMultiLoop (i, j)
Set sec = ∅, k = 0 and lk = i
while (j − lk − 1) ≥ minps do

/*Create (k + 1)th helix, starting with accessible pair hk+1.lk+1, lk < hk+1 < lk+1 < j:*/
if (k + 1) = 1 then

Sample h ∈ [(i+ 1), j − 2 ·minps] according to probabilities {PM1

hl (i, j, h)}
Sample l ∈ [(h− 1) + minps, (j − 1)−minps] according to probabilities {P̂M1

hl (j, h, l)}
Set h1 = h and l1 = l

else
Sample h ∈ [(i+ 1), j −minps] according to probabilities {PMk+1

hl (i, j, h)}
Sample l ∈ [(h− 1) + minps, (j − 1)] according to probabilities {P̂Mk+1

hl (j, h, l)}
Set hk+1 = h and lk+1 = l

end if
/*Collect base pairs for (k + 1)th substructure and add them to the entire structure:*/
sub = {h.l, (h+ 1).(l − 1), . . . , (h+ (minhel − 1)).(l − (minhel − 1))}
sub = sub ∪ computeRandomLoop (h+ (minhel − 1), l − (minhel − 1))
sec = sec ∪ sub
/*Decide whether to leave the remaining fragment R(lk+1+1)(j−1) unpaired or not:*/
if (k + 1) ≥ 2 then

Sample “decision” according to P
Mk+1

01 (lk+1, j) and 1− PMk+1

01 (lk+1, j)

if P
Mk+1

01 (lk+1, j) /*no additional base pairs on R(lk+1+1)(j−1):*/ then
return sec

else
Set k = k + 1

end if
end if

end while
return sec
end procedure
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Sm-III Tables and Figures

CSPfreq (selection principle MF struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0633 0.1216 0.2071 0.2117 0.2639 0.3694
SCFG minHL = 1,minhel = 1 0.2099 0.3699 0.5594 0.5594 0.5599 0.6302

minHL = 1,minhel = 2 0.2187 0.3833 0.5830 0.5830 0.5835 0.6607
minHL = 3,minhel = 1 0.2450 0.4448 0.6417 0.6417 0.6422 0.7356
minHL = 3,minhel = 2 0.2409 0.4364 0.6399 0.6399 0.6403 0.7379

CSPfreq (selection principle MEA struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0416 0.1049 0.1923 0.1960 0.2496 0.3559
SCFG minHL = 1,minhel = 1 0.0555 0.2094 0.4193 0.4193 0.4207 0.4679

minHL = 1,minhel = 2 0.0656 0.2446 0.4961 0.4961 0.4984 0.5613
minHL = 3,minhel = 1 0.0772 0.2510 0.4928 0.4928 0.4942 0.5497
minHL = 3,minhel = 2 0.1008 0.2917 0.5525 0.5525 0.5543 0.6241

CSPfreq (selection principle Centroid):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0264 0.0800 0.1595 0.1627 0.1932 0.2677
SCFG minHL = 1,minhel = 1 0.0374 0.1276 0.2973 0.2973 0.2978 0.3130

minHL = 1,minhel = 2 0.0485 0.1623 0.3791 0.3791 0.3800 0.4097
minHL = 3,minhel = 1 0.0536 0.1665 0.3773 0.3773 0.3778 0.4060
minHL = 3,minhel = 2 0.0758 0.2150 0.4563 0.4563 0.4568 0.5003

Table 13: Results related to the shapes of selected predictions, obtained from our tRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSOfreq:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.5196 0.6740 0.8160 0.8239 0.8798 0.9556
SCFG minHL = 1,minhel = 1 0.6838 0.9459 0.9903 0.9903 0.9908 0.9995

minHL = 1,minhel = 2 0.6806 0.9006 0.9630 0.9635 0.9640 0.9991
minHL = 3,minhel = 1 0.7148 0.9459 0.9875 0.9880 0.9885 0.9991
minHL = 3,minhel = 2 0.7111 0.8997 0.9677 0.9681 0.9686 0.9995

CSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 21.073 58.200 136.67 140.63 205.54 328.56
SCFG minHL = 1,minhel = 1 16.202 98.357 327.26 327.27 327.51 418.80

minHL = 1,minhel = 2 25.205 142.50 453.03 453.03 453.10 527.04
minHL = 3,minhel = 1 24.883 130.04 392.78 392.79 393.05 494.79
minHL = 3,minhel = 2 34.898 173.73 513.05 513.06 513.08 595.26

DSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 355.32 130.22 81.796 33.125 22.585 4.8848
SCFG minHL = 1,minhel = 1 802.27 244.52 60.504 60.030 59.916 28.764

minHL = 1,minhel = 2 652.75 125.69 24.687 24.687 24.687 16.019
minHL = 3,minhel = 1 752.71 208.65 48.257 47.797 47.691 21.838
minHL = 3,minhel = 2 592.84 103.04 18.921 18.921 18.921 12.053

Table 14: Results related to the shapes of sampled structures, obtained from our tRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSPfreq (selection principle MF struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0000 0.0009 0.0078 0.0513 0.0261 0.6353
SCFG minHL = 1,minhel = 1 0.0000 0.0026 0.0052 0.0131 0.0357 0.7128

minHL = 1,minhel = 2 0.0000 0.0052 0.0139 0.0331 0.0522 0.7502
minHL = 3,minhel = 1 0.0000 0.0044 0.0113 0.0314 0.0766 0.7781
minHL = 3,minhel = 2 0.0009 0.0096 0.0244 0.0609 0.1027 0.8207

CSPfreq (selection principle MEA struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0000 0.0052 0.0139 0.0835 0.0696 0.6640
SCFG minHL = 1,minhel = 1 0.0000 0.0000 0.0000 0.0000 0.0261 0.3820

minHL = 1,minhel = 2 0.0000 0.0009 0.0009 0.0035 0.0566 0.4769
minHL = 3,minhel = 1 0.0000 0.0000 0.0000 0.0009 0.0261 0.3977
minHL = 3,minhel = 2 0.0000 0.0009 0.0009 0.0035 0.0557 0.5387

CSPfreq (selection principle Centroid):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0000 0.0026 0.0104 0.0775 0.0731 0.7214
SCFG minHL = 1,minhel = 1 0.0000 0.0000 0.0000 0.0000 0.0104 0.1097

minHL = 1,minhel = 2 0.0000 0.0000 0.0000 0.0000 0.0148 0.1279
minHL = 3,minhel = 1 0.0000 0.0000 0.0000 0.0000 0.0078 0.1236
minHL = 3,minhel = 2 0.0000 0.0000 0.0000 0.0009 0.0139 0.1549

Table 15: Results related to the shapes of selected predictions, obtained from our 5S rRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSOfreq:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0009 0.1662 0.3063 0.7580 0.6883 0.9817
SCFG minHL = 1,minhel = 1 0.0000 0.2855 0.4526 0.9852 0.9974 1.0000

minHL = 1,minhel = 2 0.0017 0.4135 0.5754 0.9861 0.9983 0.9991
minHL = 3,minhel = 1 0.0000 0.3308 0.4883 0.9904 0.9974 1.0000
minHL = 3,minhel = 2 0.0026 0.4509 0.6372 0.9904 0.9974 0.9991

CSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0009 0.7571 3.4207 36.641 30.288 600.35
SCFG minHL = 1,minhel = 1 0.0000 0.5432 1.1811 20.640 51.834 573.72

minHL = 1,minhel = 2 0.0017 1.1428 2.6615 32.051 64.332 608.06
minHL = 3,minhel = 1 0.0000 0.6651 1.4309 22.983 54.635 569.80
minHL = 3,minhel = 2 0.0026 1.3795 3.1949 36.673 71.080 609.58

DSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 710.75 333.72 237.71 93.335 63.661 7.0951
SCFG minHL = 1,minhel = 1 999.67 941.77 866.98 336.69 167.10 16.476

minHL = 1,minhel = 2 999.18 884.49 764.79 249.02 129.35 14.198
minHL = 3,minhel = 1 999.93 947.19 874.03 331.75 163.09 15.620
minHL = 3,minhel = 2 999.68 885.81 762.67 239.28 123.91 13.558

Table 16: Results related to the shapes of sampled structures, obtained from our 5S rRNA database (by
10-fold cross-validation procedures, using sample size 1000).
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CSPfreq (selection principle MF struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0661 0.1255 0.1586 0.2050 0.2183 0.4834
SCFG minHL = 1,minhel = 1 0.0530 0.0993 0.1191 0.1324 0.1589 0.3776

minHL = 1,minhel = 2 0.0398 0.1193 0.1457 0.1656 0.1856 0.4106
minHL = 3,minhel = 1 0.0530 0.1259 0.1390 0.1590 0.1789 0.4107
minHL = 3,minhel = 2 0.0530 0.1258 0.1522 0.1788 0.1985 0.4240

CSPfreq (selection principle MEA struct.):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0660 0.1123 0.1453 0.1984 0.2051 0.4902
SCFG minHL = 1,minhel = 1 0.0264 0.0927 0.0993 0.1125 0.1325 0.3778

minHL = 1,minhel = 2 0.0264 0.1193 0.1391 0.1523 0.1789 0.4239
minHL = 3,minhel = 1 0.0264 0.0927 0.0993 0.1125 0.1325 0.3777
minHL = 3,minhel = 2 0.0197 0.1127 0.1391 0.1656 0.2055 0.4109

CSPfreq (selection principle Centroid):

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.0793 0.1321 0.1653 0.1917 0.2449 0.5100
SCFG minHL = 1,minhel = 1 0.0197 0.0861 0.1059 0.1190 0.1258 0.3181

minHL = 1,minhel = 2 0.0197 0.0795 0.0926 0.1191 0.1192 0.3578
minHL = 3,minhel = 1 0.0197 0.0795 0.0926 0.1125 0.1125 0.3181
minHL = 3,minhel = 2 0.0197 0.0927 0.1125 0.1390 0.1391 0.3577

Table 17: Results related to the shapes of selected predictions, obtained from the S-151Rfam database
(by 2-fold cross-validation procedures, using sample size 1000).
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CSOfreq:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 0.3638 0.4433 0.4766 0.5231 0.6488 0.7947
SCFG minHL = 1,minhel = 1 0.2520 0.5497 0.6095 0.6888 0.7683 0.9604

minHL = 1,minhel = 2 0.2717 0.5630 0.6158 0.7284 0.8079 0.9605
minHL = 3,minhel = 1 0.2518 0.5429 0.6093 0.7218 0.7815 0.9472
minHL = 3,minhel = 2 0.2715 0.5564 0.6027 0.7087 0.7484 0.9604

CSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 40.390 88.886 121.55 158.32 195.83 453.58
SCFG minHL = 1,minhel = 1 10.743 47.281 63.587 97.088 121.64 362.44

minHL = 1,minhel = 2 12.968 58.796 78.776 115.96 139.09 387.16
minHL = 3,minhel = 1 12.468 51.569 67.603 104.67 125.50 365.84
minHL = 3,minhel = 2 15.059 63.707 83.965 125.82 142.99 391.39

DSnum:

Shape Level
Approach Parameters

0 1 2 3 4 5

PF maxBL = 30 540.74 304.36 255.40 150.89 117.24 18.795
SCFG minHL = 1,minhel = 1 892.14 600.39 526.36 368.49 322.88 99.601

minHL = 1,minhel = 2 849.32 538.56 466.17 322.99 286.12 84.480
minHL = 3,minhel = 1 888.89 588.97 516.66 358.72 315.25 94.603
minHL = 3,minhel = 2 840.03 522.53 452.04 307.61 273.92 77.536

Table 18: Results related to the shapes of sampled structures, obtained from the S-151Rfam database
(by 2-fold cross-validation procedures, using sample size 1000).
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Figure 2
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Figure 2: Comparison of loop profiles for E.coli tRNAAla. Hplot, Bplot, Iplot, Mplot and Extplot display
the probability that an unpaired base lies in a hairpin, bulge, interior, multibranched and exterior loop,
respectively. For each considered variant, these five probabilities are computed by a sample of 1000
structures. Results for the PF approach (for maxBL = 30) are displayed by the thin black lines. For the
SCFG approach, we chose minhel = 1 (thick gray lines) and minhel = 2 (thick dashed darker gray lines),
combined with minHL = 1 (figures shown on the left) and minHL = 3 (figures on the right), respectively.
The corresponding probabilities for the correct structure of E.coli tRNAAla are also displayed (by black
points).
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(a) PF approach (with parameter maxBL = 30).
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(b) SCFG approach (with the most realistic parameter combination minHL = 3 and minhel = 2).

Figure 3: Comparison of the (areas under) ROC curves obtained for our tRNA database (computed by
10-fold cross-validation procedures, using sample size 1000). For each considered sampling variant, the
corresponding ROC curves are shown for prediction principle MEA structure (figure on the left) and
centroid (figure on the right), respectively.

46



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PPV

Se
ns

it
iv

it
y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PPV

Se
ns

it
iv

it
y

(a) PF approach (with parameter maxBL = 30).
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(b) SCFG approach (with the most realistic parameter combination minHL = 3 and minhel = 2).

Figure 4: Comparison of the (areas under) ROC curves obtained for our 5SrRNA database (computed
by 10-fold cross-validation procedures, using sample size 1000). For each considered sampling variant,
the corresponding ROC curves are shown for prediction principle MEA structure (figure on the left) and
centroid (figure on the right), respectively.
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(a) PF approach (with parameter maxBL = 30).
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(b) SCFG approach (with the most realistic parameter combination minHL = 3 and minhel = 2).

Figure 5: Comparison of the (areas under) ROC curves obtained for the mixed S-151Rfam database
(computed by two-fold cross-validation procedures, using the same folds as in [DWB06] and sample size
1000). For each considered sampling variant, the corresponding ROC curves are shown for prediction
principle MEA structure (figure on the left) and centroid (figure on the right), respectively.
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