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Abstract Random Boolean networks (RBNs) are models

of genetic regulatory networks. It is useful to describe

RBNs as self-organizing systems to study how changes in

the nodes and connections affect the global network

dynamics. This article reviews eight different methods for

guiding the self-organization of RBNs. In particular, the

article is focused on guiding RBNs toward the critical

dynamical regime, which is near the phase transition

between the ordered and dynamical phases. The properties

and advantages of the critical regime for life, computation,

adaptability, evolvability, and robustness are reviewed. The

guidance methods of RBNs can be used for engineering

systems with the features of the critical regime, as well as

for studying how natural selection evolved living systems,

which are also critical.

Keywords Guided self-organization � Random Boolean

networks � Phase transitions � Criticality � Adaptability �
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Self-organization and how to guide it

The concept of self-organization originated within cyber-

netics (Ashby 1947, 1962; von Foerster 1960) and has

propagated into almost all scientific disciplines (Nicolis

and Prigogine 1977; Luhmann 1995; Turcotte and Rundle

2002; Camazine et al. 2003; Skår and Coveney 2003).

Given the broad domains where self-organization can be

described, its formal definition is problematic (Gershenson

and Heylighen 2003; Heylighen 2003; Gershenson 2007;

Prokopenko et al. 2009). Nevertheless, we can use the

concept to study a wide variety of phenomena.

To better understand self-organization, the following

notion can be used: A system described as self-organizing

is one in which elements interact, achieving dynamically a

global function or behavior (Gershenson 2007, p. 32). In

other words, a global pattern is produced from local

interactions.

Examples of self-organizing systems include a cell

(molecules interact to produce life), a brain (neurons

interact to produce cognition), an insect colony (insects

interact to perform collective tasks), flocks, schools, herds

(animals interact to coordinate collective behavior), a

market (agents interact to define prices), traffic (vehicles

interact to determine flow patterns), an ecosystem (species

interact to achieve ecological homeostasis), a society

(members interact to define social properties such as lan-

guage, culture, fashion, esthetics, ethics, and politics). In

principle, almost any system can be described as self-

organizing (Ashby 1962; Gershenson and Heylighen 2003).

If a system has a set of ‘‘preferred’’ states, i.e., attractors,

and we call those states organized, the system will self-

organize toward them. It is useless to enter an ontological

discussion on self-organization. Rather, the question is:

when is it useful to describe a system as self-organizing?

For example, a cell can be described as self-organizing, but

also as a Boolean variable (0 = dead, 1 = alive). Which

description is more accurate? It depends on the aim of the

description (model). A model cannot be judged indepen-

dently of the context where it is used.

Self-organization is a useful description when at least

two levels of description are present (e.g., molecules and
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cells, insects, and colony) and we are interested in studying

the relationship between the descriptions at these two

levels (scales). In this way, one can describe how the

interactions at the lower level affect the properties at the

higher level. When only the interactions at the lower level

are defined, the system can adapt to novel situations and be

robust to perturbations, since the precise global behavior is

not predefined. Because of this, the properties of self-

organizing systems can be exploited in design and engi-

neering (Gershenson 2007; Watson et al. 2010).

The balance between self-organization and design is

precisely the aim of guided self-organization (GSO) (Pro-

kopenko 2009). Although it is difficult to define, GSO can be

described as the steering of the self-organizing dynamics of a

system toward a desired configuration. Cybernetics (Wiener

1948; Ashby 1956) had already a similar aim, although there

was a stronger focus on control and communication, as

opposed to self-organization and information.

The dynamics of self-organizing systems lead them to

an ‘‘organized’’ state or configuration. However, there can

be several potential configurations available. The emerging

study of GSO explores the constraints and conditions

where self-organizing dynamics can be lead to a particular

configuration. Similar to several ‘‘synthetic’’ approaches

(Steels 1993), GSO can be useful on the one hand for

understanding how natural systems self-organize and on

the other hand for building artificial systems capable of

self-organization. This article focuses on both aspects,

exploiting the generality of random Boolean networks

(RBNs): First, how can evolution guide the self-organiza-

tion of genetic regulatory networks? Second, how can we

manipulate RBNs to guide their self-organization toward a

desired regime?

This article is structured in the following sections:

‘‘Random Boolean networks’’, ‘‘Self-organization in ran-

dom Boolean networks’’, ‘‘Guiding the self-organization of

random Boolean networks’’, ‘‘Discussion’’, and

‘‘Conclusions’’.

Random Boolean networks

RBNs were originally proposed as models of genetic reg-

ulatory networks (Kauffman 1969, 1993). However, their

generality has triggered an interest in them beyond their

original purpose (Aldana-González et al. 2003; Gershenson

2004a).

A RBN consists of N nodes linked by K connections

each. Nodes are Boolean, i.e., their state is either ‘‘on’’ (1)

or ‘‘off’’ (0). The state of a node at time t ? 1 depends on

the states of its K inputs at time t by means of a Boolean

function. Connections and functions are chosen randomly

when the RBN is generated and remain fixed during its

temporal evolution. The randomly generated Boolean

functions can be represented as lookup tables that represent

all possible 2K combinations of input states. Figure 1

shows an example of a part of a RBN, where every node

has exactly two inputs, i.e., K = 2. Table 1 shows an

arbitrary lookup table to update the state of one of the

nodes. The dynamics of a RBN with N = 40, K = 2 can be

seen in Fig. 2.

Since RBNs are finite (they have 2N possible states) and

deterministic, eventually a state will be revisited. Then, the

network will have reached an attractor. The number of

states in an attractor determines the period of the attractor.

Point attractors have period one (a single state), while

cyclic attractors have periods greater than one (multiple

states, e.g., four in Fig. 2). A RBN can have one or more

attractors. The set of states visited until an attractor is

reached is called a transient. The set of states leading to an

attractor form its basin. The basins of different attractors

divide the state space. RBNs are dissipative, i.e., many

states can flow into a single state (one state can have

several predecessors), but from one state the transition is

deterministic toward a single state (one state can have only

one successor). The number of predecessors is also called

in-degree. States without a predecessor are called ‘‘Garden

of Eden’’ (GoE) states (in-degree = 0), since they can only

be reached from an initial condition. Figure 3 illustrates the

concepts presented above.

n o p q r s... ...

Fig. 1 Example of a RBN with connectivity K = 2, i.e., the state of

nodes is determined by the state of two other nodes. Note that all

nodes have two inputs, but not necessarily two outputs, e.g., node

n affects four other nodes, while node o does not affect any other node

Table 1 Lookup table to update node o depending on the state of

nodes n and p

n(t) p(t) o(t ? 1)

0 0 1

0 1 0

1 0 0

1 1 1

Lookup tables include all possible combinations of inputs, i.e., 2K

rows. Different nodes will have different lookup tables, i.e., Boolean

functions
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Note the difference between the topological network of a

RBN (e.g., Fig. 1)—which represents how the states of

nodes affect each other—and its state network (e.g.,

Fig. 3)—which represents the transitions of the whole state

space. In the state network, each node represents a state of the

network, i.e., there are 2N nodes in the state network, while

RBN nodes are represented in the topological network, i.e.,

there are N nodes in the topological network. One of the main

topics of RBN research is to understand how changes in the

topological network (lower scale) affect the state network

(dynamics of higher scale), which is far from obvious.

RBNs are a type of discrete dynamical network (Wu-

ensche 1998), i.e., space, time, and states are discrete.

RBNs are generalizations of Boolean cellular automata

(von Neumann 1966; Wolfram 1986, 2002), where the

states of cells are determined by K neighbors, i.e., not

chosen randomly, and all cells are updated using the same

Boolean function (Gershenson 2002).

Self-organization in random Boolean networks

RBNs can be described as self-organizing systems simply

because they have attractors. If we describe the attractors

as ‘‘organized,’’ then the dynamics self-organize toward

them (Ashby 1962). Still, a better argument in favor of this

description is that we are interested in understanding how

the interactions between nodes (lower scale) affect the

network dynamics and properties (higher scale). The con-

cept of self-organization allows us to describe and relate

both scales and their interactions under the same

framework.

The self-organization of RBNs can also be interpreted in

terms of complexity reduction. For example, the human

genome has approximately 25,000 genes. Thus, in princi-

ple, each cell could be in one of the 225,000 possible states

of that network. This is much more than the estimated

number of elementary particles arising from the Big Bang.

However, there are only about 300 cell types (attractors

(Kauffman 1993; Huang and Ingber 2000)), i.e., cells self-

organize toward a very limited fraction of all possible

states. The main question addressed by these review paper

is: in which ways can the self-organization of random

Boolean networks be guided?

Before presenting multiple answers to that question, it is

convenient to understand the different dynamical behaviors

that RBNs can have (Wuensche 1998; Gershenson 2004a).

There are two dynamical phases: ordered and chaotic. The

phase transition is characterized by its criticality and is also

known as the ‘‘edge of chaos’’ (Kauffman 1993).

In the ordered phase, most nodes do not change their

state, i.e., they are static. RBNs are robust in this phase,

i.e., damage does not spread through the network, since

most nodes do not change. Also, similar states tend to

converge to the same attractor. On average, states have

many predecessors, which leads to a high convergence

(many states go to few states), short transient times, and a

high density of Garden of Eden states, i.e., the percentage

of all states without a predecessor is high.

In the chaotic phase, most nodes are changing their

state. Thus, damage spreads through chaotic networks.

Therefore, RBNs are fragile in this phase. Similar states

tend to diverge toward different attractors. On average,

states have few predecessors, which leads to a low con-

vergence, very long average transient times, and a rela-

tively lower density of Garden of Eden states.

Fig. 2 Temporal evolution of a RBN with N = 40, K = 2 for a

random initial state. Dark squares represent 0 and light squares
represent 1. Time flows to the right, i.e., columns represent states of

the network at a particular time, while a row represents the temporal

evolution of the state of a node. Taken from RBNLab (Gershenson

2005)

A

B

C

D

F

E

H

G
...

...

Fig. 3 Example of state transitions. B is a successor state of A and a

predecessor of C. States can have many predecessors (e.g., B), but

only one successor. G is a Garden of Eden state since it has no

predecessors. The attractor C ! D! E! F ! C has a period four
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In the critical regime, i.e., close to the transition between

the ordered and chaotic phases, the extremes of both phases

are balanced: some nodes change and some are static.

Therefore, damage or changes can spread, but not neces-

sarily through all of the network. Similar states tend to lie

in trajectories that neither converge nor diverge in state

space (Kauffman 2000, p. 171). Few nodes have many

predecessors, while many nodes have few predecessors.

Actually, the in-degree distribution approximates a power

law (Wuensche 1998). There is medium convergence. It

has recently been found that RBNs near the critical regime

maximize information storage and coherent information

transfer (Lizier et al. 2008), as well as maximize Fisher

information (Wang et al. 2010).

It has been argued that computation and life should

occur at the edge of chaos (Langton 1990; Kauffman 1993,

2000; Crutchfield 1994). Even when criticality seems not to

be a necessary condition for complexity (Mitchell et al.

1993), there is experimental evidence that the genetic

networks of organisms from at least four kingdoms are near

or within the critical regime (Balleza et al. 2008). The

tendency toward criticality can be explained because of the

following: On the one hand, ordered dynamics produce

stability (robustness) which is desirable for preserving

information (memory). However, a static system is not able

to compute or adapt. On the other hand, chaotic dynamics

give variability (exploration), which is necessary for

computation and adaptation. Still, there is too much change

within the chaotic phase to preserve information. A balance

is reached in the critical regime, where the advantages of

both phases can coexist: there can be enough stability and

robustness to preserve information and enough variability

to compute and explore. For this reason, it becomes a

relevant question to ask how can we guide the self-orga-

nization of RBNs toward the critical regime. Being general

models, the answers will give us information on how to

achieve the same guidance within particular systems.

Guiding the self-organization of random Boolean

networks

The criticality of RBNs can depend on many different

factors. These factors can be exploited—by engineers or by

natural selection—to guide the self-organization of RBNs

and similar systems toward the critical regime.

Probability p

One of the most obvious factors affecting the dynamics of a

RBN is the probability p of having ones on the last column

of lookup tables (Derrida and Pomeau 1986). If p = 1, then

all values in lookup tables will be one, so actually there

will be no dynamics: all nodes will have a state of one after

one iteration, independently on the initial state. The same

case but with zero occurs for p = 0. When p = 0.5, there is

the maximum variability possible in the lookup tables, i.e.,

no bias. As p approaches 0 or 1, RBNs tend to be more

static, i.e., in the ordered regime.

Connectivity K

One of the most important factors determining the

dynamical phase of RBNs is the connectivity K (Derrida

and Pomeau 1986; Luque and Solé 2000). For p = 0.5, the

ordered phase is found when K \ 2, the chaotic phase

occurs for K [ 2, while the critical regime lies at the phase

transition, i.e., K = 2. As p tends toward one or zero, the

phase transition moves toward greater values of K.

If we focus on a single node i and calculate the proba-

bility that damaging its state (be it 0 or 1) will percolate

changes through the network, then it is clear that the

probability will increase with the connectivity K. We can

choose a node j from one of the nodes that i can affect.

There is a probability p that j will be 1, and thus a damage

in i will modify j with a probability 1 - p. The comple-

mentary case is the same. Now, for K nodes, we can expect

that at least one change will occur if hKi2pð1� pÞ� 1

(Luque and Solé 1997b), i.e., chaos. Generalizing, the

critical connectivity becomes (Derrida and Pomeau 1986):

hKci ¼
1

2pð1� pÞ ð1Þ

Canalizing functions

A canalizing function (Kauffman 1969; Stauffer 1987;

Szejka and Drossel 2007) is one in which at least one of the

inputs has one value that is able to determine the value of

the output of the function, regardless of the other inputs

(Shmulevich and Kauffman 2004). In other words, the non-

canalizing inputs of canalizing functions are not relevant.

A different type of canalization is considered when a par-

ticular value of an input determines the output of a func-

tion, while for other(s) values of that input, the output of

the function is determined by other inputs.

Independently of the particular type of canalization, if

there is a bias favoring canalizing functions, the phase

transition will move toward greater values of K. This is

possible because in practice non-canalizing inputs are

‘‘ficticious,’’ i.e., removing them does not affect the state

space nor the dynamics of a RBN.

For more than 150 transcriptional systems, it has been

found that there is a strong canalizing bias (Harris et al.

2002). Systems have hKi = 3, 4, or 5 for most cases, and

few with even hKi = 7, 8, or 9 and still fall within the

ordered phase.
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It has been shown that RBNs with nested canalizing

functions have stable (ordered) dynamics, approaching

criticality for low values of K (Kauffman et al. 2003,

2004).

Schemata can be used to describe canalization in RBNs

in a concise way (Marques-Pita et al. 2008).

Silencing

During normal cell life, genes can be ‘‘silenced’’, i.e.,

switched off by different mechanisms. Silencing is also a

method used for perturbing genetic regulatory networks.

The RBN equivalent of silencing would be to fix the value

of a subset of nodes, independently on the state of their

inputs.

It has been shown that even chaotic networks can be

forced into regular behavior when a subset of nodes is not

responsive to the internal network dynamics (Luque and

Solé 1997a). It is straightforward to assume that if a higher

percentage of nodes remains fixed, the dynamics will be

more stable.

Some studies of silencing on RBNs have been made,

e.g., Serra et al. (2004), although the precise relationship

between silencing and criticality still remains to be studied.

Topology

Until recently, RBN studies used either a homogeneous

topology (K is the same for all nodes) or a normal topology

(there is an average hKi inputs per node). This implies a

uniform input distribution and no regularity in the wiring of

nodes. However, the particular topology can have drastic

effects on the properties of RBNs.

Link distribution

On the one hand, topologies with more uniform rank dis-

tributions, as those used commonly, exhibit more and

longer attractors, but with less correlation in their expres-

sion patterns. On the other hand, skewed topologies exhibit

less and shorter attractors, but with more correlations

(entropy and mutual information) (Oosawa and Savageau

2002). A balance between these two extremes is achieved

with scale-free topologies, i.e., few nodes have many

inputs, while many nodes have few inputs. This advanta-

geous balance can be used to explain why most natural

networks have a scale-free topology (Aldana and Cluzel

2003; Oikonomou and Cluzel 2006).

RBNs with a scale-free topology (Aldana 2003) have

been found to expand the advantages of the critical regime

into the ordered phase, since well-connected elements can

lead to the propagation of changes, i.e., adaptability even

when the average connectivity would imply a static regime.

It can be said that a scale-free topology expands the range

of the critical regime. It has also been found that for RBNs

with a scale-free distribution of outputs the average number

of attractors is independent of networks size for more than

three orders of magnitude (Serra et al. 2003).

Link regularity

Classical RBNs have the same probability of linking any

node to any other node, i.e., they are random networks. For

the same input distributions, the opposite extreme are

regular networks, i.e., where nodes are connected to their

neighbors, in a cellular automata fashion. The balance

between those two extremes is achieved with small-world

networks (Watts and Strogatz 1998; Bullock et al. 2010):

many connections to neighbors and a few long-range

connections lead to reduced average path lengths (common

of random networks), while maintaining a high clustering

coefficient (common of regular networks) (Watts and

Strogatz 1998).

In RBNs, a small-world topology maximizes informa-

tion transfer (Lizier et al. 2011), which is an indicator of

critical dynamics.

Modularity

It is well know that modularity is a prevalent property of

natural systems (Callebaut and Rasskin-Gutman 2005) and

a desired feature of artificial systems (Simon 1996).

Modularity is a property difficult to define precisely, but

we can agree that as system is modular if it is composed

by modules, i.e., the interactions within modules are more

relevant than those between modules. Modules offer a

level of organization that promotes at the same time

robustness and evolvability (Wagner 2005b). On the one

hand, damage within one module usually does not prop-

agate through the whole system (robustness). On the other

hand, useful changes can be exploited to find new con-

figurations without affecting the functionality of other

modules.

In the context of RBNs, initial explorations suggest that

topological modules broaden the range of the critical

regime toward higher connectivities (Poblanno-Balp and

Gershenson 2010), i.e., a modular structure promotes crit-

ical dynamics within the theoretical chaotic phase. This is

because even with high average connectivities, changes

within one node have a low probability of propagating to

other modules if there are few intermodular connections, in

comparison with a non-modular network. These studies are

related to topological modularity. One could argue that

functional modularity is related to topological modularity

(Calabretta et al. 1998), although this precise relationship

remains to be studied.
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Redundancy

Redundancy consists of having more than one copy of an

element type. Duplication combined with mutation is a

usual mechanism for the creation of genes in eukaryotes

(Fernández and Solé 2004). When there are several copies

of an element type, changes or damage can occur to one

element, while others continue to function.

For RBNs (Gershenson et al. 2006), redundancy of links

is not useful, since redundant links are fictitious inputs, i.e.,

they do not affect the state space. However, a redundancy

of nodes prevents mutations from propagating through the

network. Thus, redundant nodes increase neutrality (Kim-

ura 1983; van Nimwegen et al. 1999; Munteanu and Solé

2008), i.e., can ‘‘smoothen’’ rough landscapes. This is an

advantage for robustness and for evolvability, for the same

reasons as the ones discussed concerning modularity, even

when redundancy is a different mechanism from modu-

larity, although both can potentially be combined.

Degeneracy

Degeneracy—also known as distributed robustness—is

defined as the ability of elements that are structurally dif-

ferent to perform the same function or yield the same

output (Edelman and Gally 2001; Fernández and Solé

2004). As modularity, it also widespread in biological

systems and a promotor of robustness and evolvability.

There is evidence that in genetic networks distributed

robustness is equally or more important for mutational

robustness (Wagner 2005a, b) and for evolvability (Whit-

acre and Bender 2010) than gene redundancy.

To date, particular studies of degeneracy on RBNs are

lacking. Nevertheless, it could be speculated that degen-

eracy should promote critical dynamics, even when this

still remains to be explored.

Discussion

In the previous section, a non-exhaustive list of factors that

can be used to guide the self-organization of RBNs toward

the critical regime was presented. Two categories of

methods can be identified for guiding the self-organization

toward criticality: moving the phase transition (with

p, K, canalizing functions, or silencing) or broadening the

critical regime (with balanced topologies, modularity,

redundancy, or degeneracy). The first category seems to be

directed more at the node functionality and lookup tables,

while the second category seems to be directed more at the

connectivity between nodes.

It can be speculated that natural selection can exploit

these and probably other methods to guide the self-

organization of genetic regulatory networks toward the

critical regime. There is evidence that some of these

methods are exploited by natural selection, but further

studies are required to understand better the mechanisms,

their constraints, how they are related, and which ones have

been actually employed and to what degree by natural

selection. In a similar way, engineers can guide the self-

organization of RBNs and related systems using these and

other methods. The purpose of designing artificial systems

with criticality is to provide them with the advantages of

this dynamical regime, that living systems have used to

survive in an unpredictable environment.

Concerning the methods that move the phase transition,

if a RBN is in the ordered phase, one or several of the

following can be done:

– Adjust p toward a value of 0.5. This will increase

variety in lookup tables, and thus increase the number

of nodes that change. In other words, dynamics will be

promoted.

– Increase the connectivity K. More connections also

promote richer dynamics.

– Decrease the number of canalizing functions (if any).

Canalizing functions imply that some connections play

no role on the dynamics. If these connections are

changed, i.e., they become functional, dynamics will be

richer.

If the RBN is in the chaotic phase, complementary

measures can be taken:

– Adjust p farther from a value of 0.5. This will increase

homogeneity in lookup tables, and less nodes will be

changing. This will decrease the damage sensitivity of

the network, i.e., the dynamics will be less chaotic and

more stable.

– Decrease the connectivity K. Less connections promote

stability.

– Increase the number of canalizing functions. Canalizing

functions reduce the effect of having several inputs,

i.e., a high connectivity K, so changes cannot propagate

as easily as with no canalizing functions.

– Silence some nodes by fixing their state independently

of their inputs.

Concerning the methods that broaden the critical

regime, even when they are different, all of them can be

exploited to guide the self-organization of RBNs toward

the critical regime:

– Promote a scale-free topology. When few nodes have

many connections and most nodes have few connec-

tions, the desirable properties of the critical regime

extend beyond the extremely narrow space of all

possible networks that lies precisely on the phase
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transition (e.g., K = 2, p = 0.5). This ‘‘criticality

enhancement’’ is possible because most nodes are

stable, but the nodes with several connections (hubs)

can trigger rich dynamics. In this way, changes can

propagate through the RBN in a constrained fashion.

– Promote a small world topology. Having a high

clustering coefficient and a low average path length

balances several advantages that lead to critical

dynamics (Lizier et al. 2011).

– Promote modularity. Modules make it difficult for

damage to spread through all of the network, even if the

local connectivity (within a module) is high. In this

way, chaotic dynamics can be constrained within

modules. This prevents avalanches, where change to

one node might cause drastic changes in a large part of

the network. Still, modularity allows for information

flow between modules.

– Promote redundancy. Having more than one copy of a

node (or module) implies that a change on that node (or

module) will not propagate through the network, since

the redundant element(s) can perform the same func-

tion. Apart from smoothening rough fitness landscapes

(Gershenson et al. 2006), it has been noted that

redundancy is a useful feature in evolvable hardware

(Thompson 1998).

– Promote degeneracy. The effect of degeneracy is

similar to that of redundacy, but acting at a functional

level. Different components of a system perform the

same function. In certain conditions, degeneracy might

be advantageous over redundancy, e.g., when a change

affects all copies of the same node (or module).

Nevertheless, redundancy seems to be useful for

exploration via duplication and mutation.

Yet another way of guiding the self-organization of

RBNs toward the critical regime would be to promote

certain properties as a part of the fitness function of an

evolutionary algorithm. For example, one could evolve

critical RBNs trying to maximize input entropy variance

(Wuensche 1999), information storage, information trans-

fer (Lizier et al. 2008), and/or Fisher information (Wang

et al. 2010). Another criterion could be to try to approxi-

mate Lyapunov exponents to zero (Luque and Solé 2000).

All of these properties characterize the critical regime.

Thus, they can be used as a guidance of the evolutionary

search. Nevertheless, it should be noted that guiding the

self-organization of RBNs with a fitness function that

promotes criticality is not useful to explain how natural

systems evolved their criticality. Still, they are a valid

approach for engineering critical systems.

It has been noted that the updating scheme can affect the

behavior of RBNs (Harvey and Bossomaier 1997; Ger-

shenson 2002). However, it does not affect the transition

between the ordered and chaotic phases (Gershenson

2004b). Still, within the chaotic phase, random mutations

have less effect when the updating is non-deterministic.

However, this is because basins of attraction merge with a

less-deterministic updating scheme (Gershenson et al.

2003), i.e., there are less attractors. On the one hand, non-

determinism reduces sensitivity to random mutations. On

the other hand, non-determinism reduces the functionality

of RBNs. Having this tradeoff, and many different possible

updating schemes (Giacobini et al. 2006; Darabos et al.

2009), it is difficult to argue in favor of any updating

scheme in the context of this article.

Why criticality?

Some of the advantages of the critical regime were already

presented, namely the balance between stability and vari-

ance that are requirements for life (Kauffman 1993, 2000)

and computation (Langton 1990; Crutchfield 1994). In

addition, the critical regime is also advantageous for

adaptability, evolvability, and robustness.

Adaptability can be understood as the ability of a system

to produce advantageous changes in response to an envi-

ronmental or internal state that will help the system to

fulfill its goals (Gershenson 2007). Suppose that a system

that is modeled by a RBN (such as a genetic regulatory

network) is situated in an unpredictable environment, it is

desirable that the system will be able to adapt to changes in

the environment. Does criticality increase adaptability?

Not by itself, but it is useful. An ordered RBN will not be

able to adapt so easily, because most changes will have no

effect on the dynamics, so there will be no response to the

environmental change. A chaotic RBN will pose the

opposite difficulty: most changes will have a strong effect

on the dynamics. Thus, it is highly probable that some of

the functionality of the system will be lost. A balance is

achieved by a critical RBN: changes can have an effect on

the dynamics, but their propagation can be constrained,

preserving most of the functionality of the system.

Evolvability is the ability of random variations to

sometimes produce improvement (Wagner and Altenberg

1996). It can be seen as a particular type of adaptability,

where changes occur from generation to generation. RBN

evolution has already been explored (Stern 1999; Lemke

et al. 2001). For the same reasons as those exposed for

adaptability, evolvability will be higher for critical RBNs.

Within an evolutionary context, however, it is also

important to mention the advantages of criticality to sca-

lability (Simon 1996), i.e., the ability to acquire novel

functionalities. Since ordered RBNs have restricted

dynamics and interactions, they cannot integrate novel

functions too easily. Chaotic RBNs are also problematic,
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since novel functions most probably change the existing

functionality. Critical RBNs are scalable, since novel

functions can be integrated without altering existing func-

tionalities. Intuitively, modularity promotes scalability in

the most straightforward way, although other methods—

i.e., critical RBNs without modularity—also allow for

scalability.

A system is robust if it continues to function in the face

of perturbations (Wagner 2005; Jen 2005). Robustness is a

desirable property to complement adaptability and evolv-

ability, since changes in the environment (perturbations)

can damage or destroy a system before it can adapt or

evolve. It is clear that evolution is not possible without

robustness. Chaotic RBNs are not robust, since small per-

turbations produce drastic changes. Ordered RBNs are very

robust, since they can resist most perturbations without

producing changes. And when changes are produced, these

do not propagate. However, ordered RBNs do not offer rich

dynamics. Critical RBNs offer both advantages: rich

dynamics and robustness (although not as high as the one

of ordered RBNs. Note that the most robust RBNs are those

without dynamics, e.g., with p = 1.).

Topology and modularity seem to be more relevant for

adaptability and evolvability, while redundancy and

degeneracy seem to be more relevant for robustness.

However, evolvability and robustness are interrelated

properties (Yu and Miller 2001; Ebner et al. 2002; Wagner

2005b), both of them desirable in natural and artificial

systems.

It has been argued by Riegler (2008) that canalization is

indispensable for the evolvability of complexity.

During the development of organisms, it seems that the

‘‘perfect’’ balance between adaptability and robustness

changes with age, i.e., embryos are more plastic than adults

(Neuman 2008, Chap. 13). Silencing seems to be a method

used by organisms to tune this tradeoff, although other

methods might be involved in this process as well.

Conclusions

This article described RBNs as self-organizing systems.

Given the advantages of the critical regime of RBNs, dif-

ferent methods to guide the self-organization of RBNs

toward criticality were reviewed.

One can ask: which comes first, criticality or some of the

methods that promote it? Do they always come hand in

hand? It seems not, since criticality can be present without

canalizing functions, modularity, redundancy, degeneracy,

or scale-free topologies. However, these properties facili-

tate (guide) criticality. Therefore, there is a selective

pressure in favor of these properties. Which are the pres-

sures that have actually guided genetic regulatory networks

toward criticality (Balleza et al. 2008) is an open question.

Which methods of the ones presented have actually been

exploited by natural selection is another open question,

although there is evidence of several of them at play. Yet

another open question is how are the different methods

related. This question actually comprises a whole set of

questions, relevant for networks in general, e.g., how are

scale-free, small world, and modular topologies related? Is

there an advantage of having combinations of them, e.g., a

scale-free modular topology, over only one of them? Do

Apollonian networks (Andrade et al. 2005) offer a ‘‘max-

imal’’ criticality? What would be theoretically the maximal

criticality possible for a given family of RBNs? When is

redundancy or degeneracy preferable? What are the dif-

ferences and advantages of critical RBNs produced with

one or several of the presented methods? How are different

methods related to adaptability, evolvability, and robust-

ness? What is the proper balance between evolvability and

robustness?

This long list of relevant questions, which could easily

continue growing, should motivate researchers to continue

exploring RBNs, their self-organization, and methods for

guiding it. The answers should be relevant for the scientific

study of networks, artificial life, and engineering.
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