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Abstract
In this paper, a new mathematical model that describes the dynamics of the within-host COVID-19 epidemic is formulated. 
We show the stochastic dynamics of Target-Latent-Infected-Virus free within the human body with discrete delay and noise. 
Positivity and uniqueness of the solutions are established. Our study shows the extinction and persistence of the disease 
inside the human body through the stability analysis of the disease-free equilibrium E

0
 and the endemic equilibrium E∗ , 

respectively. Moreover, we show the impact of delay tactics and noise on the extinction of the disease. The most interesting 
result is even if the deterministic system is inevitably pandemic at a specific point, extinction will become possible in the 
stochastic version of our model.

Keywords  Within-host COVID-19 model · Extinction · Persistence · Stochastic perturbation · Delay tactics

Introduction

The novel coronavirus SARS-CoV-2 is one of the biggest 
pandemics in history that has been uncovered by the year 
2020. The first known infections from SARS-CoV-2 were 
discovered in Wuhan, Hubei Province, China, in December 
2019. The virus affected more than two hundred countries 
and killed millions of people according to the World Health 
Organization. The infection can be controlled by physical 
social distancing, self-isolation at home, face masks, hand-
washing and surface cleaning (Lau et al. 2020a). Several 
countries proposed strict social distancing and lock-down 
regulations to stop the spread of the virus.

Few research papers could predict the behavior of the 
COVID-19 disease accurately, and according to WHO, doz-
ens of vaccines candidates are in clinical research and more 
than ten vaccines are authorized for public use (Vaccine 
Centre and Medicine 2021; So and Woo 2020). Clinically, 
there is no effective treatment that can remove the virus from 
the human body; however, the available treatments help 

like for Ebola, Influenza and SARS-CoV-1. Several works 
focused on forecasting the number of infected individuals 
in populations (El-Metwally et al. 2020; Rahimi et al. 2021; 
Nabi 2020; Ullah et al. 2019; Elbaz et al. 2022). Forecast-
ing for COVID-19 is very difficult and has failed in many 
papers because of the type of mathematical models, miss-
ing data and/or the random behavior of this virus (Ioannidis 
et al. 2020). We think it is the time to study the dynamics of 
the COVID-19 within-host instead of between the human 
populations.

Many works have dealt with various viruses by math-
ematical models inside the human body, see Li and Xiao 
(2011); Zeb et al. (2020); Best and Perelson (2018); Zhang 
et al. (2020a, 2020b); Zeb et al. (2022). Considering the 
delay effect in the mathematical modeling of the dynamics 
of the virus implies right conclusions. It is desirable to pro-
pose the within-host COVID-19 model with discrete delay 
in time. This delay can be embedded in the vaccination pro-
cess, immune-boosting foods, effective use of antiretroviral 
therapies, etc.

Within‑host SARS‑CoV‑2 model

Our proposed model comprises four variable quantities, 
namely the uninfected pulmonary epithelial targeted cells, 
T(t), the latent cells, L(t) which are infected but not yet 
infectious, the infected cells, I(t) and free virus particles, 
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V(t). Authors in Li et al. (2020b) studied the viral kinetics 
of COVID-19 without latent class of cells, and we consider 
the mathematical within-host model in the form

For � ∈ [−�, 0] , the initial conditions of this model are

Figure 1 shows the flux of this model. Solutions of (1) with 
(2) are in C4 , and still nonnegative, where C ∶ [−�, 0] → ℝ

+
 

is a Banach space of all continuous functions with the norm

The model assumes that there is a constant of regeneration 
d1T(0) susceptible target cells. The susceptible target cells 
are infected by free virus particles with a bilinear incidence 
rate �TV  , and these infected cells produce with a rate p free 
virus particles. Parameters d1, d2, d3, and d4 are the death 
rates of the susceptible target cells, latent cells, infected 
cells and free virus particles, respectively. Latent cells on 
an average span 1/k units of time in L class and then join the 
infected class of cells. It should be noted that d1 is a natural 
death rate or natural clearance rate while d2, d3 and d4 are 
a combination of the natural clearance rate and the role of 
immune system in the elimination of these cells. The supe-
rior limit of the time delay is � . The probability of surviving 
from t − � to t is e−d3� , and then �e−d3�T(t − �)V(t − �) is the 
force of infection rate with discrete delay.

(1)

Ṫ(t) = d1T(0) − 𝛽e−d3𝜏T(t − 𝜏)V(t − 𝜏) − d1T(t),

L̇(t) = 𝛽e−d3𝜏T(t − 𝜏)V(t − 𝜏) − (d2 + k)L(t),

İ(t) = kL(t) − d3I(t),

V̇(t) = pI(t) − d4V(t).

(2)
T(�) =�1(�), L(�) = �2(�), I(�) = �3(�),

V(�) = �4(�), �i(�) ≥ 0∀ i = 1,⋯ , 4.

‖�‖ = sup
�∈[−�,0]

��(�)�.

Basic reproduction number and equilibrium states

The three infected compartments are

where

The Jacobians of � and � are

The Next Generation Matrix is

with eigenvalues

The basic reproduction number Rd
0
 is the spectral radius of 

�0�
−1
0

 or its maximum eigenvalue, then

The disease dies out and the number of free virus parti-
cles goes to zero for Rd

0
< 1 , and the disease persists for 

Rd
0
> 1 . Clearly, we have two equilibrium states at most, 

E0 = (T0, L0, I0,V0) = (T(0), 0, 0, 0) is the infection-free 
equilibrium state, and a positive endemic equilibrium state

System (1) is exposed to some stochastic parametric pertur-
bations in the form of environmental noises. We have to con-
sider such models for best control and to capture all possible 
types of uncertainty. Many authors have proposed stochastic 
models in many disciplines in El-Metwally et al. (2021); 
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Fig. 1   Flow map of the delayed COVID-19 model within-host (1)
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Zhang and Alzahrani (2020); Tesfay et al. (2021) and with 
discrete delay in El-Metwally et al. (2021); Almutairi et al. 
(2021).

Define J ∶= C([−�, 0], L2) , a Banach space of mean-
square continuous functionals � defined on [−�, 0] with the 
norm

Many works related to the mean-square sense can be found 
in Yassen et al. (2016, 2017); Sohaly et al. (2018); Elbaz 
(2021). Unless otherwise stated, let (Ω,F,

{

Ft

}

t≥0
,ℙ) be 

a complete filtered probability space satisfies the condi-
tion of the right continuity and F0 contains ℙ-null sets. We 
introduce the stochastic version of the delayed within-host 
COVID-19 epidemic in the form

The stochastic process B(t) is a one-dimensional standard 
Wiener process defined on the complete filtered probability 
space (Ω,F,FB

t
,ℙ) , where FB

t
 is the filtration generated by 

it up to time t. Set

as the basic reproduction number of this stochastic system.
Well-posedness of this system is shown in the next sec-

tion. Extinction and persistence of the virus within the 
human body are shown in Sect. 3. Stability areas and some 
computer simulations are carried out in Sect. 4. At the end 
of the paper, we state our conclusions.

Well‑posedness of (3)

This section is devoted to prove that for any given initial 
value, the solution is nonnegative and global, i.e., no explo-
sion in a finite time. The coefficients of (3) are required to 
satisfy the local Lipschitz condition and the condition of 
linear growth (Mao 2007). Anyway, the coefficients of (3) 
are only satisfy the local Lipschitz condition; consequently, 
the solution may explode in finite time. By introducing 
an appropriate Lyapunov function, we show that the solu-
tion is nonnegative and global.

‖�‖J = sup
−�≤s≤0

‖�‖2 = sup
−�≤s≤0

�

�
�

�2
(s)

��1∕2
.

(3)

dT(t) =
(

d1T(0) − �e−d3�T(t − �)V(t − �) − d1T(t)
)

dt

− �T(t − �)V(t − �)dB(t),

dL(t) =
(

�e−d3�T(t − �)V(t − �) − (d2 + k)L(t)
)

dt

+ �T(t − �)V(t − �)dB(t),

dI(t) =
(

kL(t) − d3I(t)
)

dt,

dV(t) =
(

pI(t) − d4V(t)
)

dt.

Rs
0
=

�e−d3�T(0)kp

(d2 + k)d3d4 +
1

2
�2T2

0

,

L e m m a  2 . 1   A  u n i q u e  g l o b a l  s o l u t i o n 
(T(t), L(t), I(t),V(t)) ∈ ℝ

4
+
 of (3) exists for all t ≥ 0 for any 

initial state

Moreover, it is bounded and remains in ℝ4
+
 almost surely.

Proof  In (3), the drift and the diffusion terms are mean-
square locally Lipschitz as for positive constant K and 
g(t, xt) ∶ [0, T] × L2(Ω) → L2(Ω),

f o r  g1(t, xt) = −�T(t − �)V(t − �)   ,  a n d 
g2(t, xt) = �T(t − �)V(t − �) . The coefficients in (3) are con-
tinuous functionals and by taking the delay into account, we 
can assume that the drift and the diffusion terms satisfy for 
arbitrary continuous functions � , � ∈ C[−�, 0]

for nondecreasing bounded functions K1,K2 and

Then for any initial condition (4) such that

the system (3) admits a maximal unique local solution 
(T(t), L(t), I(t),V(t)) ∈ [−�, �1] where �1 is the explosion 
time. If �1 = ∞ , then the solution is global. Assume that 
every �i(�) ∈ ℝ

4
+
, � ∈ [−�, 0], i = 1,⋯ , 4 , lies within the 

interval 
[

1

k1
, k1

]

, k1 > 0.

Define the stopping time

this stopping time �k increases as k → ∞ . Set �
∞
= limk→∞

�k 
whence �

∞
≤ �1 a.s.

Assume 𝜏k < ∞, i.e., �
∞
= ∞ is not satisfied, then

So, there exists k ≥ k1 such that

(4)
(T(�), L(�), I(�),V(�)) = (�1(�),�2(�),�3(�),�4(�)) ∈ ℝ

4
+
.

‖gi(t, xt) − gi(t, yt)‖2 ≤ K‖xt − yt‖2, i = 1, 2.

|fi(t,�) − fi(t, �)|
2
≤
�

0

−�

|�(s) − �(s)|2dK1(s), i = 1,⋯ , 4.

|gi(t,�) − gi(t, �)|
2
≤
�

0

−�

|�(s) − �(s)|2dK2(s), i = 1, 2.

f1 = d1T(0) − �e−d3�T(t − �)V(t − �) − d1T(t),

f2 = �e−d3�T(t − �)V(t − �) − (d2 + k)L(t),

f3 = kL(t) − d3I(t), f4 = pI(t) − d4V(t).

sup
−𝜏≤s≤0

��𝜙(s)�2 = sup
−𝜏≤s≤0

‖𝜙(s)‖2
2
< ∞,

�k = inf
{

t ∈
[

0, �1
]

∶ (T(t), L(t), I(t),V(t)) ≠
[

1

k
, k
]}

,

(5)ℙ(𝜏
∞
≤ T) > 𝜀, for T > 0, 0 < 𝜀 < 1.

(6)ℙ(𝜏k < T) > 0, for T > 0.
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Consider the Lyapunov functional in the form

Using the Itô formula of the stochastic integral (Almutairi 
et al. 2021), we get

Then

W = (T(t) − 1 − lnT(t)) + (L(t) − 1 − ln L(t)) + (I(t) − 1

− ln I(t)) + (V(t) − 1 − lnV(t)).

dW =

(

1 −
1

T(t)

)

dT(t) +
1

2T2
(t)

(dT(t))2

+

(

1 −
1

L(t)

)

dL(t) +
1

2L2(t)
(dL(t))2

+

(

1 −
1

I(t)

)

dI(t) +
1

2I2(t)
(dI(t))2

+

(

1 −
1

V(t)

)

dV(t) +
1

2V2
(t)

(dV(t))2

=

(

1 −
1

T(t)

)

((

d1T(0) − �e−d3�T(t − �)V(t − �)

−d1T(t)
)

dt − �T(t − �)V(t − �)dB(t)
)

+

(

1 −
1

L(t)

)

((

�e−d3�T(t − �)V(t − �)

−(d2 + k)L(t)
)

dt + �T(t − �)V(t − �)dB(t)
)

+

(

1 −
1

I(t)

)

(

kL(t) − d3I(t)
)

dt

+

(

1 −
1

V(t)

)

(

pI(t) − d4V(t)
)

dt

+
1

2L2(t)
�2T2

(t − �)V2
(t − �)dt

+
1

2T2
(t)

�2T2
(t − �)V2

(t − �)dt

=

(

d1T(0) − d1T(t) −
d1T(0)

T(t)
+ �e−d3�T(t − �)

V(t − �)

(

1

T(t)
−

1

L(t)

)

− k
L(t)

I(t)

+ d1 + d2 + d3 + d4 + k − d2L(t) − d3I(t)

− d4V(t) + pI(t) − p
I(t)

V(t)

+
1

2
�2T2

(t − �)V2
(t − �)

(

1

T2
(t)

+
1

L2(t)

))

dt

+ �T(t − �)V(t − �)

(

1

T(t)
−

1

L(t)

)

dB(t).

Taking the expectation leads to

where K is a suitable constant independent of T, L, I, V. Then

Set Ω =

{

�k ≤ T
}

∀ k ≥ k1 . And ℙ(Ωk) > 𝜀 by (6). At least 
one of T(�k,�), L(�k,�), I(�k,�),V(�k,�) equals k or 1/k 
where � ∈ Ωk . Hence, from (5), we have

where 1
Ωk

 is the indicator function of Ωk(�) . Let k → ∞ , then 
∞ > K = ∞ , a contradiction arises here. So �

∞
= ∞ a.s.

Regarding the boundedness of the solutions of (3), the 
total population of cells N(t) = T(t) + L(t) + I(t) , where

Assume that d = min{d1, d2, d3} , then

and

Consequently, all solutions of (3) with respect to the initial 
conditions (4) are bounded in a biologically feasible region

W(t, T(t), L(t), I(t),V(t)) −W(t,�1(0),�2(0),�3(0),�4(0))

≤
�

t

0

(

d1T(0) +
�e−d3�T(s − �)V(s − �)

T(s)

+ k + pI(s) +

4
∑

i=1

di

+
1

2
�2T2

(s − �)V2
(s − �)

(

1

T2
(s)

+
1

L2(s)

))

ds

+ �
�

t

0

T(s − �)V(s − �)

(

1

T(s)
−

1

L(s)

)

dB(s).

�
[

W(t, T(t ∧ �k), L(t ∧ �k), I(t ∧ �k),V(t ∧ �k))
]

− �
[

W(t,�1(0),�2(0),�3(0),�4(0))
]

≤ �

[

�

t∧�k

0

(

d1T(0) +

4
∑

i=1

di

+k + (p + �)M +
1

2
�2M2

)

ds
]

∶= K,

�[W(T , L, I,V)]
|

|

|t∧�k

≤ K.

K ≥�
[

1
Ωk(�)

W
(

T(�k,�), L(�k,�), I(�k,�),V(�k,�)
)]

≥�

(

(k − ln k) ∧ (
1

k
− ln

1

k
)

)

,

dN(t)

dt
= d1T(0) − d1T(t) − d2L(t) − d3I(t)

≤ d1T(0) −min{d1, d2, d3}(T(t) + L(t) + I(t)).

d�[N(t)]

dt
≤ d1T(0) − d�[N(t)],

lim sup
t→∞

�[N(t)] ≤
d1T(0)

d
.
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Clearly, the number of free virus particles is also bounded 
at any time t. 	�  ◻

Extinction and persistence

In this section, we seek for the sufficient conditions for sto-
chastic stability (stability in probability) of the equilibrium 
states of (3). This can be done by investigating the neces-
sary conditions for the mean-square stability of the zero 
solution of the corresponding linear system which are in 
the same time sufficient for stability in probability of the 
equilibrium state of the nonlinear system. We begin with 
centering the nonlinear system around the equilibrium point 
and linearizing.

Stability of the disease‑free equilibrium

By centering the system (3) around E0 using the 
transformations

The corresponding linear system is

Lemma 3.1  The zero solution of (8) is stable in mean-square 
if Rs

0
< 1 and

Γ =

{

(T(t), L(t), I(t)) ∈ ℝ
3
+

|

|

|

T(t) + L(t) + I(t) ≤
d1T(0)

d

}

.

(7)

T = x1 + T(0), L = x2, I = x3, and V = x4.

dx1(t) =
(

d1T(0) − �e−d3�(x1(t − �)

+T(0))x4(t − �) − d1(x1(t) + T(0))
)

dt

− �(x1(t − �) + T(0))x4(t − �)dB(t),

dx2(t) =
(

�e−d3�(x1(t − �) + T(0))x4(t − �)

−(d2 + k)x2(t)
)

dt

+ �(x1(t − �) + T(0))x4(t − �)dB(t),

dx3(t) =
(

kx2(t) − d3x3(t)
)

dt,

dx4(t) =
(

px3(t) − d4x4(t)
)

.

(8)

dx1(t) =
(

−�e−d3�x4(t − �) − d1x1(t)
)

dt

− �T(0)x4(t − �)dB(t),

dx2(t) =
(

�e−d3�x4(t − �) − (d2 + k)x2(t)
)

dt

+ �T(0)x4(t − �)dB(t),

dx3(t) =
(

kx2(t) − d3x3(t)
)

dt,

dx4(t) =
(

px3(t) − d4x4(t)
)

dt.

Proof  Choose the Lyapunov functional W = W1 +W2 , where 
W1(t, xt) = x2

1
(t) + Ax2

2
(t) + Bx2

3
(t) + Cx2

4
(t), and A, B, C are 

arbitrary positive quantities to be determined. Then

For the negative definiteness of LW  along the trajectory of 
the solution, we choose the second component of W to be

Then

Using (9), choose

Consequently,

hence the zero solution of (8) is mean-square stable. 	�  ◻

(9)𝛽e−d3𝜏 < min
{

2d1, 2(d2 + k)
}

, k < 2d3, p < 2d4.

LW1(t, xt) = 2x1(t)(−�e
−d3�x4(t − �) − d1x1(t))

+ 2Ax2(t)(�e
−d3�x4(t − �) − (d2 + k)x2(t))

+ �2
(A + 1)T2

0
x2
4
(t − �) + 2Bx3(kx2(t) − d3x3(t))

+ 2Cx4(px3(t) − d4x4(t))

≤ �T0e
−d3�

(

x2
1
(t) + x2

4
(t − �)

)

− 2d1x
2
1
(t)

+ �2
(A + 1)T2

0
x2
4
(t − �)

+ �T0Ae
−d3�

(

x2
2
(t) + x2

4
(t − �)

)

− 2A(d2 + k)x2
2
(t)

+ Bk
(

x2
3
(t) + x2

2
(t)
)

− 2Bd3x
2
3
(t) + Cp

(

x2
4
(t) + x2

3
(t)
)

− 2d4Cx
2
4
(t)

=

(

�T0e
−d3� − 2d1

)

x2
1
(t) +

(

�T0Ae
−d3� + Bk

−2A(d2 + k)
)

x2
2
(t)

+

(

(k − 2d3)B + Cp
)

x2
3
(t) +

(

(p − 2d4)C
)

x2
4
(t)

+ (A + 1)
(

�T0e
−d3� + �2T2

0

)

x2
4
(t − �).

W2 =

(

�T0e
−d3� + �2T2

0

)

(A + 1)
∫

t

t−�

x2
4
(s)ds.

(10)

LW(t, xt) ≤
(

�T0e
−d3� − 2d1

)

x2
1
(t)

+

((

�T0e
−d3� − 2(d2 + k)

)

+ Bk
)

x2
2
(t).

+

(

(k − 2d3)B + Cp
)

x2
3
(t) +

(

(p − 2d4)C

+

(

�T0e
−d3� + �2T2

0

)

(A + 1)
)

x2
4
(t).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A =

−2�k

�T0e
−d3� − 2(d2 + k)�

,

B =

−2Cp

k − 2d3
,

C =

−

�

�T0e
−d3� + 2�2T2

0

�

(A + 1)

p − 2d4
.

�
[

LW(t, xt)
]

≤
(

�T0e−d3� − 2d1
)

�|x1(t)|2 − Bk�|x2(t)|2 − �2T2
0

�|x3(t)|2 ≤ −min
{

2d1 − �T0e−d3� ,Bk, �2T2
0
}

�|x(t)|2,
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Theorem 3.1  Conditions (9) are sufficient for stability in 
probability of the disease-free equilibrium E0 of the nonlin-
ear system (3) or the trivial equilibrium of (7).

Proof  Following the same argument of the previous lemma 
by choosing W1(t, xt) in the form

where D, E, F, G are positive quantities to be determined. 
Then according to (7)

Now, we can choose

Then

Under conditions (9), we choose for sufficiently small 
enough 𝛿 > 0,

W1(t, xt) = DT(0)x2
1
(t) + ET(0)x2

2
(t) + Fx2

3
(t) + Gx2

4
(t),

LW1(t, xt) = 2DT(0)x1(t)
(

−�e−d3�(x1(t − �)

+T(0))x4(t − �) − d1x1(t)
)

+ T(0)�2
(

x1(t − �) + T(0)
)2
x2
4
(t − �)(D + E)

+ 2ET(0)x2(t)
(

−�e−d3�(x1(t − �) + T(0))x4(t − �)

−(d2 + k)x2(t)
)

+ 2Fx3(t)
(

kx2(t) − d3x3(t)
)

+ 2Gx4(t)
(

px3(t) − d4x4(t)
)

≤ �e−d3�DT(0)
(

x2
1
(t) + (x1(t − �)

+T(0))2x2
4
(t − �)

)

− 2d1Dx
2
1
(t)

+ T(0)(D + E)�2
(

x1(t − �) + T(0)
)2
x2
4
(t − �)

− 2E(d2 + k)x2
2
(t)

+ �e−d3�ET(0)
(

x2
2
(t) + (x1(t − �) + T(0))2x2

4
(t − �)

)

+ Fk
(

x2
2
(t) + x2

3
(t)
)

− 2d3Fx
2
3
(t) + Gp

(

x2
3
(t) + x2

4
(t)
)

− 2d4Gx
2
4
(t)

=

(

�T(0)e−d3�
)

Dx2
1
(t) +

([

�T(0)e−d3�

−2(d2 + k)
]

E + Fk
)

x2
2
(t)

+

(

(k − 2d3)F + Gp
)

x2
3
(t) +

(

(p − 2d4)G
)

x2
4
(t)

+ �T(0)e−d3�(� + T(0))2(D + E)x2
4
(t − �).

W2(t, xt) = �T(0)e−d3�(� + T(0))2(D + E)
∫

t

t−�

x2
4
(s)ds.

LW(t, xt) = LW1(t, xt) + LW2(t, xt)

≤
(

�T(0)e−d3� − 2d1
)

Dx2
1
(t)

+

((

�T(0)e−d3� − 2(d2 + k)
)

E + Fk
)

x2
2
(t)

+

(

(k − 2d3)F + Gp
)

x2
3
(t)

+

(

(p − 2d4)G + �T(0)e−d3�(�

+T(0))2(D + E)
)

x2
4
(t).

Then the disease-free equilibrium of (3) is stochastically 
stable. 	�  ◻

Stability of the endemic equilibrium

By centering the system (3) around E∗ using the 
transformations

The corresponding linear system is

Lemma 3.2  The zero solution of (12) is stable in mean-
square if Rs

0
> 1 and

Proof  Choose the Lyapunov functional

where H, K, L are arbitrary positive quantities to be deter-
mined. Then

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

D =

−d1

�T(0)e−d3� − 2d1
,

E =
−2Fk

�T(0)e−d3� − 2(d2 + k)
,

F =

−2Gp

k − 2d3
,

G =

−� − �T(0)e−d3�(� + T(0))2(D + E)

p − 2d4
.

(11)

T = x1 + T∗, L = x2 + L∗, I = x3 + I∗, and V = x4 + V∗.

dx1(t) =
(

d1T(0) − �e−d3�(x1(t − �) + T∗
)x4(t − �)

−d1(x1(t) + T∗
)

)

dt

− �(x1(t − �) + T∗
)x4(t − �)dB(t),

dx2(t) =
(

�e−d3�(x1(t − �) + T∗
)x4(t − �)

−(d2 + k)(x2(t) + L∗)
)

dt

+ �(x1(t − �) + T∗
)x4(t − �)dB(t),

dx3(t) =
(

k(x2(t) + L∗) − d3(x3(t) + I∗)
)

dt,

dx4(t) =
(

p(x3(t) + I∗) − d4(x4(t) + V∗
)

)

.

(12)

dx1(t) =
(

−�e−d3�x4(t − �) − d1x1(t)
)

dt

− �T∗x4(t − �)dB(t),

dx2(t) =
(

�e−d3�x4(t − �) − (d2 + k)x2(t)
)

dt

+ �T∗x4(t − �)dB(t),

dx3(t) =
(

kx2(t) − d3x3(t)
)

dt,

dx4(t) =
(

px3(t) − d4x4(t)
)

dt.

(13)
𝛽e−𝜇d3T∗ < min

{

2d1, 2(d2 + k)
}

, k < 2d3, p < 2d4.

W(t, xt) = x2
1
(t) + Hx2

2
(t) + Kx2

3
(t) + Lx2

4
(t)

+

(

�2T∗
+ �e−�d3

)

(H + 1)T∗

∫

t

t−�

x2
4
(s)ds,
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Under conditions (13), we choose

Consequently,

hence the zero solution of (12) is mean-square stable. 	
� ◻

LW(t, xt) = 2x1(t)
(

−�e−d3�x4(t − �) − d1x1(t)
)

+ 2Hx2(t)
(

�e−d3�x4(t − �) − (d2 + k)x2(t)
)

+ 2Kx3(t)
(

kx2(t) − d3x3(t)
)

+ 2Lx4(t)
(

px3(t)

−d4x4(t)
)

+ �2
(T∗

)
2x2

4
(t − �)(H + 1)

+

(

�2T∗
+ �e−�d3

)

(H + 1)T∗
(x4(t) − x2

4
(t − �))

≤
(

�T∗e−d3� − 2d1
)

x2
1
(t) +

((

�T∗e−d3�

−2(d2 + k)
)

H + Kk
)

x2
2
(t)

+

(

(k − 2d3)K + Lp
)

x2
3
(t) +

((

�2T∗
+ �e−�d3

)

(H + 1)T∗
+ (p − 2d4)L

)

x2
4
(t).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

H =
−2Kk

�T∗e−d3� − 2(d2 + k)
,

K =

−2Lp

k − 2d3
,

L =

−2
�

�2T∗
+ �e−�d3

�

(H + 1)T∗

p − 2d4
.

�
[

LW(t, xt)
]

≤
(

�T∗e−d3� − 2d1
)

�|x1(t)|
2

− Kk�|x2(t)|
2
− Lp�|x3(t)|

2

−

(

�2T∗
+ �e−�d3

)

(H + 1)T∗
�|x4(t)|

2

≤ −min
{

2d1 − �T∗e−d3� ,Kk, Lp,
(

�2T∗

+�e−�d3
)

(H + 1)T∗
}

�|x(t)|2,

Theorem 3.2  Conditions (13) are sufficient for stability in 
probability of the endemic equilibrium E∗ of the nonlinear 
system (3) or the trivial equilibrium of (11).

Proof  Following the same argument of Theorem 3.1 by 
choosing

where M, N, Q, P are positive quantities to be determined 
based on (13). 	�  ◻

Stability areas and numerical simulations

In this section, we will  show stabili ty areas 
of the equilibr ium states E0 and E∗ in (�, d3)-
space of parameters. Using the parameter values 
T(0) = 5, d1 = 0.9, d2 = 1.1, p = 0.8, d4 = 1.5, k = 0.05 
and based on conditions (9),(13), the stochastic stability 
regions of the disease-free equilibrium E0 and the endemic 
equilibrium E∗ are shown in Fig 2 for different values of � . 
The delay � has a reasonable effect on the stability regions, 
it increases the region of E0 . Consequently, it is advisable 
to increase the delay tactics which can be represented in 
the antiretroviral therapies, suitable licensed vaccine, etc. 
We perform the numerical simulation at specific points 
within the regions. At the point A = (0.5, 0.5) in the stabil-
ity region of E0 , we simulate the number of infected cells 
in Fig 3a, we get 20 blue stable trajectories, and the num-
ber of infected cells goes to zero with Rs

0
= 0.0065 < 1 . In 

this figure, the equilibrium state E0 is unstable at the point 

W(t, xt) =(M + N)T∗
(x2

1
(t) + x2

2
(t)) + Qx2

3
(t) + Px2

4
(t)

+ �e−�d3T∗
(� + T∗

)
2
(M + N)

∫

t

t−�

x2
4
(s)ds,

Fig. 2   Stability areas of E
0
 

(green)(extinction) and E∗ (red)
(persistence) (Colour figure 
online)

(a) τ = 0.8. (b) τ = 1.2.
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B = (2.5, 0.01) throughout simulating 20 red unstable trajec-
tories. In Fig 3b, the endemic equilibrium E∗ is stable with 
Rs
0
= 1.6369 > 1 at the point B, 20 red stable trajectories and 

the number of infected cells goes to the endemic equilibrium 
I(t) → I∗ = 0.2894 . In the same figure, there are 20 blue 
unstable trajectories, i.e, the endemic equilibrium is unstable 
at the point A. We fix the delay and see the effect of the latent 
period k and the rate of free virus particles in Fig 4. If the 
latent cells take more time before joining the infected class 
of cells besides the decrease in the production rate of virus 
particles, this may help in eradicating the disease within-
host. It should be noted the effect of the noise on the stability 
of the equilibrium states of (3). The noise parameter has a 
good effect on decreasing the stability region of the endemic 
equilibrium E∗ as shown in Fig 5.

Moreover, the numerical simulations are performed to 
show the effect of the noise parameter throughout showing 
the behavior of the number of infected cells for different 
values of � , see Fig 6a. The equilibrium state E0 remains 
stable for increasing the noise parameter, and the num-
ber of infected cells goes to zero. Figure 6b compares the 
simulation of the solution of the deterministic system with 
the simulation of the stochastic system, and the noise can 
stabilize (red trajectory) an unstable endemic deterministic 
system (blue trajectory).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

0

0.1

0.2

0.3

0.4

0.5

0.6

I(
t)

Stability of the number of infected cells (endemic-free equilibrium)

(a) I(t) → 0 at A and unstable at B.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

0

0.5

1

1.5

2

2.5

3

I(
t)

Stability of the number of infected cells (endemic equilibrium)

(b) I(t) → I∗ at B and unstable at A.

Fig. 3   Numerical simulation of the solution of (3)

Fig. 4   The effect of latent 
period k and the rate of virus 
particles p 

(a) p = 0.9, k = 0.07. (b) p = 0.6, k = 0.3.
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Conclusion

This paper presents the extinction and persistence of the 
COVID-19 pandemic within-host through a stochastic 
mathematical model with time delay. Our results reveal 
that the delay tactics like antiretroviral therapies, suitable 
licensed vaccine and immune foods are very effective in 
eradicating the disease from the human body. Sufficient 
conditions for extinction and persistence of the disease 
within-host are obtained. One of the main results in this 
work is the importance of the noise effect in the math-
ematical model. Noise can stabilize an unstable pandemic 
deterministic system, and consequently, we can have the 
extinction via the stochastic model.
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Fig. 5   The effect of noise on the stability regions
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