
RESEARCH PAPER

Recombination operators and selection strategies
for evolutionary Markov Chain Monte Carlo algorithms

Madalina M. Drugan • Dirk Thierens

Received: 23 February 2010 / Revised: 25 June 2010 / Accepted: 2 July 2010 / Published online: 21 July 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Markov Chain Monte Carlo (MCMC) methods

are often used to sample from intractable target distribu-

tions. Some MCMC variants aim to improve the perfor-

mance by running a population of MCMC chains. In this

paper, we investigate the use of techniques from Evolu-

tionary Computation (EC) to design population-based

MCMC algorithms that exchange useful information

between the individual chains. We investigate how one

can ensure that the resulting class of algorithms, called

Evolutionary MCMC (EMCMC), samples from the target

distribution as expected from any MCMC algorithm. We

analytically and experimentally show—using examples

from discrete search spaces—that the proposed EMCMCs

can outperform standard MCMCs by exploiting common

partial structures between the more likely individual states.

The MCMC chains in the population interact through

recombination and selection. We analyze the required

properties of recombination operators and acceptance (or

selection) rules in EMCMCs. An important issue is how to

preserve the detailed balance property which is a sufficient

condition for an irreducible and aperiodic EMCMC to

converge to a given target distribution. Transferring EC

techniques to population-based MCMCs should be done

with care. For instance, we prove that EMCMC algorithms

with an elitist acceptance rule do not sample the target

distribution correctly.

Keywords Evolutionary Markov chain Monte Carlo �
Detailed balance � Recombination � Acceptance rules

1 Introduction

Markov Chain Monte Carlo (MCMC) is a framework of

algorithms for sampling from complicated distributions.

The use of MCMC in Machine Learning has recently been

advocated by [1]. Usually, a single MCMC is run until it

converges to the stationary distribution. To improve their

efficiency, some MCMC variants consist of a population of

chains that interact by exchanging useful information and at

the same time preserve the MCMC convergence characteris-

tics at the population level. In this paper, we are particularly

interested in techniques that use multiple interacting chains in

parallel as opposed to a single chain.

The stochastic process of Evolutionary Computation

(EC) and MCMC algorithms is basically similar: both are

Markov chains with fixed transition matrices between

individual states, for instance transition matrices given

by mutation and recombination operators for EC and

by perturbation operators for MCMC. Furthermore, both

Metropolis-Hastings—a subclass of MCMCs—and EC

algorithms have a selection step, the acceptance rule, to

propagate good individuals to the next generation. There

are also many differences induced by the different scope of

these algorithms: EC is used for optimization and MCMC

is used for sampling. Additionally, MCMC uses a single

chain whereas EC algorithms use a population of individ-

uals that interact. Motivated by the common points of

these two algorithms, we have previously discussed the

Evolutionary MCMC (EMCMC) framework which aims

to improve the efficiency of standard MCMC algorithms

[7, 8]. EMCMC is a population-based MCMC that
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exchanges information between the individual chains such

that at population level it is still an MCMC.

In general, it is not straightforward to integrate inter-

action between chains, like recombination or selection, into

population based MCMCs and to preserve the convergence

to the target distribution. To ease proving that EMCMCs

converge to the stationary distribution the individuals

generated with recombinative operators (an alternation

between mutation and recombination operators) should be

all accepted or all rejected [8, 16] with a so called coupled

acceptance rule. Note the difference between this coupled

acceptance and the popular selection strategies in EC; the

coupled acceptance rule is selective at the family (i.e., the

set of children generated by a set of parents) level whereas

the selection strategies are selective at individual level that

is one of the children competes against one of its parents.

Using the standard MH acceptance rule where only one of

the multiple children generated from multiple parents is

accepted/rejected is a straightforward alternative algorithm

[27]. It is interesting to note that Mahfoud and Goldberg

[17] also obtained good results for Simulated Annealing

(SA) [14] algorithms where one child competes against one

of the parents. However, such a recombinative EMCMC

does not fit in the standard framework of Metropolis-

Hastings algorithms. Some alternative solutions proposed

previously restrict the proposal distributions that generate

new individuals by generating only one child at the time

from a family of parents [3, 5, 15, 23, 24]. For example,

[15] proposed an EMCMC algorithm that uses a population

based univariate distribution to sample from likely

Bayesian network structures. Other algorithms, for exam-

ple some population-based adaptive MCMCs [9] and

sequential Monte Carlo [6], relax the Markov property at

the price of more difficult convergence properties and

usage by practitioners.

In this paper, we theoretically and experimentally study

various recombination operators and their interaction with

acceptance rules resulting into EMCMCs with a required

target distribution. We investigate the properties of several

popular recombination operators in GAs (i.e., uniform

recombination) when integrated in the EMCMC frame-

work. We show that the individuals that interact in gen-

erating candidate individuals should also interact in the

acceptance rule to sample from the target distribution.

Acceptance rules that are directly derived from the EC’s

selection strategies are more useful for optimization than

for sampling. The sampled distribution is skewed com-

pared with the target distribution: the fit states of the search

space are amplified and the less fit states are diminished.

We propose a general method that corrects the target

distribution of a recombinative EMCMC that does not

sample from the intended distribution. This technique sim-

ply considers the recombinative EMCMC as the proposal

distribution and the generated children are all accepted/

rejected with a coupled acceptance rule. In this way we

postpone the acceptance or rejection of all children with

the hope that the recombinative EMCMC generates fit

individuals that will increase the chance that children are

accepted and, consequently, that the algorithm converges

faster to the target distribution. This method has theoretical

value constructing a correction term with which the sam-

pled distribution should be multiplied to transform it into

the target distribution.

We compare in practice the performance of various

recombinative and non-recombinative EMCMCs with the

standard and the population-based MCMC. When com-

paring (E)MCMCs we respond to three questions: (1) how

useful are EMCMCs when compared with MCMCs, (2)

how useful are the recombinative operators and (3) what is

the difference in performance between EMCMCs using the

standard MH acceptance rule selective at individual level

and EMCMCs using the coupled acceptance rules. The

recombinative operators chosen are the most popular

operators in EC: discrete space uniform recombination and

uniform mutation. As a consequence, the theory and the

practical examples are formulated for the discrete space

(E)MCMCs. We also mention that it is straightforward to

extend these results to the continuous space (E)MCMCs.

For our first experiment we analytically compare the

algorithms an a toy example such that the exact perfor-

mance of algorithms is calculated from all the transitions

between all the states of an (E)MCMCs. In the second

experiment we calculate the Kullback-Leiber distance

between the target distribution and the distribution output

by an algorithm after a finite number of steps on a rela-

tively small size binary quadratic programming problem

(BQP) to exactly compute the target distribution. The next

experiment is on a larger size BQP where we can compare

the performance of (E)MCMCs using only graphical (and

more imprecise) tests. Note that BQP is related to the

popular mathematical problem in statistical mechanics

known as the Ising model [10]. The obtained results show

that recombination improves the mixing of the EMCMC

especially when the standard MH acceptance rule is used

with recombination.

1.1 Outline of the paper

Section 2 presents some basic knowledge of MCMC

algorithms and introduces the notation used in the rest of

the paper. For an in depth study on MCMCs we refer the

reader to [12]. In Sect. 3 the EMCMC framework is pre-

sented. In Sect. 4 we investigate several recombination

operators and their desired properties for EMCMCs. Sec-

tion 5 proposes and analyzes various MH acceptance

rules and the properties of the resulting EMCMCs when
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combined with the recombinative operators. We also

establish rules to design recombinative EMCMCs for

sampling and optimization. In Sect. 6 we analytically

investigate the discussed EMCMCs on a toy problem and

experimentally test them on two BQP problem instances.

Section 7 concludes and discusses the results of the paper.

2 Background: MCMC framework

MCMC is a general framework to generate samples X(t)

from a probability distribution P(�) while exploring its

so-called countable ‘-dimensional state (or search) space

E using a Markov chain. We assume the state space is

compact. MCMC does not sample directly from P(�), but

only requires that it can be evaluated within a multiplica-

tive constant PðXÞ ¼ P̂ðXÞ=Z, where Z is a normalization

constant and P̂ð�Þ the unnormalized target distribution.

A discrete time Markov chain is a stochastic process

(X(0), X(1), …) with the property that the probability dis-

tribution for the state X(t) given all previous values

(X(0), X(1),…, X(t-1)) only depends on X(t-1). Mathemati-

cally, we can write

PðXðtÞ j Xð0Þ;Xð1Þ; . . .;Xðt�1ÞÞ ¼ PðXðtÞ j Xðt�1ÞÞ

We call PðXðtÞ j Xðt�1ÞÞ the transition matrix of the

Markov chain. A homogeneous Markov chain in addition,

has a time-independent transition matrix. In the following

we only consider homogeneous Markov chains, unless

specified otherwise. Aperiodicity excludes for instance that

certain points can only be reached at even times. For any

starting point a Markov chain with a finite state-space

converges to a unique invariant distribution if it is

irreducible and aperiodic. A Markov chain is called

irreducible if, and only if, every state can be reached

from every other state in a finite number of steps.

A sufficient, but not necessary, condition to ensure that

the given distribution P(�) is the stationary distribution is

that it satisfies the detailed balance condition [1].

A MCMC satisfies the detailed balance condition if, and

only if, the probability to move from X to Y multiplied by

the probability to be in X is equal to the probability to move

from Y to X multiplied by the probability to be in Y:

PðY j XÞ � PðXÞ ¼ PðX j YÞ � PðYÞ

2.1 Metropolis-Hastings algorithms

Many MCMC algorithms are Metropolis-Hastings (MH)

algorithms [13, 18]. Since we cannot sample directly from

the distribution P(�), MH algorithms consider a simpler

distribution Qð� j �Þ, called the proposal distribution to

generate the next state of a MCMC chain. QðY j times;ðtÞ Þ

generates the candidate state Y from the current state X(t), and

the new state Y is accepted with probability:

aðY j XðtÞÞ ¼ min 1;
P̂ðYÞ � QðXðtÞ j YÞ

P̂ðXðtÞÞ � QðY j XðtÞÞ

� �

If the candidate state is accepted, the next state becomes

X(t?1) = Y. Otherwise, X(t?1) = X(t). For finite search

spaces, the transition probability KðY j XðtÞÞ for arriving

in Y when the current state is X(t), where X(t)
= Y, is

KðY j XðtÞÞ ¼ QðY j XðtÞÞ � aðY j XðtÞÞ

The rejection probability is,

KðXt j XtÞ ¼ 1�
X

Y 0;Y 0 6¼XðtÞ

QðY 0 j XðtÞÞ � aðY 0 j XðtÞÞ

An MH algorithm is aperiodic, since the chain can remain

in the same state with a probability greater than 0, and by

construction it satisfies the detailed balance condition,

P̂ðXðtÞÞ � KðY j XðtÞÞ ¼ P̂ðYÞ � KðXðtÞ j YÞ

If, in addition, the chain is irreducible, then it converges to

the stationary distribution P(�). The rate of convergence

depends on the relationship between the proposal

distribution and the target distribution: the closer the

proposal distribution is to the stationary distribution, the

faster the chain converges. A popular Metropolis-Hastings

algorithm is the Metropolis algorithm where the proposal

distribution is symmetrical QðY j XðtÞÞ ¼ QðXðtÞ j YÞ and

the acceptance rule becomes

aðY j XðtÞÞ ¼ min 1;
P̂ðYÞ

P̂ðXðtÞÞ

� �

2.2 Mutation

A popular and often used set of irreducible proposal dis-

tributions for MH algorithms can be described by a

mutation operator. We generically denote the proposal

distributions resulting from mutation operators with Qm.

We consider a state in the discrete space as a string of ‘

characters, X = (X1, X2,…, X‘). The h-th position in X is

called the locus of Xh, where 1 B h B ‘, and the value of

X in the locus h is called an allele. Each position (or locus)

h in an individual X is instantiated with an allele

Xh [ E(X�), where E(X�) is the multi-set of all possible

values of X�.

The uniform mutation operator randomly changes every

value of each variable of the current state with a non-zero

probability, called the mutation rate [8, 16, 17, 23]. The

bigger the uniform mutation rate, the bigger the jump in the

search space of the child state from the parent state. Qm

denotes the uniform mutation proposal distribution. When

the context is not ambiguous, we simply refer to it as
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mutation. The uniform mutation operator defines an irre-

ducible, symmetric and stationary proposal distribution [8].

In the sequel, the uniform mutation transition matrix,

Km, proposes candidate individuals with Qm and accepts

them with the MH acceptance rule. The uniform mutation

transition matrix, Km, defines an irreducible MH algorithm

which converges to its stationary distribution [8].

2.3 Multiple independent chains (MICs)

When we talk about the performance of an MCMC, we refer

to how well an MCMC is mixing or how ‘‘fast’’ it converges

to the target distribution. We say that an MCMC is mixing

‘‘well’’ if it rapidly traverses the search space and, at the

same time, accurately samples the target distribution. Note

that the mixing concept in MCMC is not related to the

mixing of building blocks in the EC literature.

In an attempt to improve the mixing behavior of MCMCs

one could make use of multiple chains that run indepen-

dently (MICs). The chains are started at different initial

states and their output is observed at the same time. It is

hoped that this way a more reliable sampling of the target

distribution P(�) is obtained. It is important to note that no

information exchange between the chains takes place.

Recommendations in the literature are conflicting

regarding the efficiency of multiple independent chains.

Yet there are at least theoretical advantages of multiple

independent chains MCMC for establishing its conver-

gence to P(�) [12]. Let’s consider a large dimensional

distribution where an MCMC takes a long time to find a

relevant region of the search space and to escape from it to

search for other relevant regions. Then, the time necessary

for a long MCMC can be larger than just starting multiple

MCMCs spread over the search space sampling in different

regions. However, MIC converges only after all the com-

ponent MCMC chains have converged.

Since the chains do not interact, MIC is at the population

level an MCMC with transition probabilities equal to the

product of component chains transition probabilities, or

KðXðtþ1Þ j XðtÞÞ ¼
YN
i¼1

Kðxðtþ1Þ
i j xðtÞi Þ

where XðtÞ ¼ ðxðtÞ1 ; . . .; x
ðtÞ
N Þ. If the MCMCs have detailed

balance, are irreducible and aperiodic, then MIC inherits

these properties and it converges, at the population level, to

the product of their target distributions, P1(�)9_9PN(�),
where Pi(�) is the target distribution of the i-th chain.

3 EMCMC framework

EMCMCs use a population of chains that allow interac-

tions between the individuals under the assumption that

individuals in the current population exchange informa-

tion that helps the EMCMC to sample the desired dis-

tribution. Note that, in EMCMCs, the population is a

multi-set of individual states rather than a collection of

MCMCs: the current individual states depend on several

states from the previous population. Now the sample at

time t is the population XðtÞ ¼ ðxðtÞ1 ; . . .; x
ðtÞ
N Þ of N states

(or individuals) xðtÞ� .

Definition 1 An evolutionary Markov chain Monte Carlo

(EMCMC) algorithm is a population MCMC that exchan-

ges information between individual states such that, at the

population level, the EMCMC is an MCMC.

Similarly to an MCMC, the main goal of an EMCMC

is to sample from a given distribution, P(�). Ideally, an

MCMC algorithm generates individuals directly from the

target distribution. Unfortunately, we do not know where

the most likely—or equivalently, the most fit—individual

states can be found in the search space. Furthermore,

MCMCs can poorly ‘‘mix’’ when individual states are

disproportionately proposed with their probability. A

standard MCMC, for example, generates individuals with

some mutation proposal distribution (e.g., the uniform

mutation proposal distribution Qm) that does not have any

knowledge of the sampled distribution. A method to speed

up the mixing is to propose individuals using proposal

distributions that are ‘‘close’’ to the target distribution. For

that, we can use recombination operators that exploit the

common structure of the parents. Sampling from a distri-

bution implies that the more fit individuals are more often

generated than less fit ones. As a consequence, the com-

monalities of more likely individuals are used by recom-

bination to create other more likely individuals. Intuitively,

such a proposal distribution approximates better the target

distribution than a proposal distribution that does not make

any assumption about the generated individuals, like uni-

form mutation. In this perspective, the recombination

operators adapt the proposal probabilities to generate an

individual from the current population. Note that, the

allowed types of proposal distribution are the ones that

preserve the Markov chain property at the population level:

we can only use the information in the current population

for generating new individuals.

3.1 Recombination operators in EMCMCs

We call EMCMCs that use recombination to exchange

information between individuals recombinative EMCMCs.

Definition 2 A recombination operator used as proposal

distribution of an EMCMC generates one or more children

from two or more parents using some function that is

independent of the EMCMCs’ sampled distribution. Each
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generation, the population is uniform randomly grouped in

disjunct families of few (i.e., two, three) individuals such

that each individual belongs to exactly one family. All the

chains from an EMCMC eventually interact in population

recombinations. We call recombination proposal distribu-

tion, Qr, the distribution defined by the recombination

probabilities at the population level.

It is important to note that at the individual family level,

the proposal probabilities of recombination are not sta-

tionary since they depend on the family members with

which they are grouped. At population level, however, the

recombination proposal distribution generating the next

population from the current one is stationary.

We only consider recombination operators that are

respectful—this is, the common substructures of the par-

ents are inherited by the offspring [20]. With respectful

recombination the common parts of strings are protected

against disruption.

An important aspect of any recombination operator is to

establish whether it is symmetrical or not: for non sym-

metrical recombinations, we have to compute the proposal

probabilities, whereas for symmetrical operators we can

simply use the Metropolis algorithm. In Sect. 4.1 we design

and investigate several recombination operators that gen-

erate symmetrical proposal distributions and in Sect. 4.2

we give examples of recombination operators that generate

non-symmetrical distributions. We focus on the most

popular type of recombination operators in GAs that swap

alleles between two or more parents with some probability

to generate one or more children. Since respectful recom-

bination by definition is reducible [8], in Sect. 4.3 we

combine recombination with mutation to obtain irreducible

proposal distributions following the simple mathematical

rules of mixtures and cycles [8].

3.2 The MH acceptance rules

The recombination operators usually have no information

about how fit the individuals in the current and proposed

population are. Then, like for the standard MCMCs, we

need acceptance rules to sample from the target distribu-

tion. Detailed balance is a sufficient, but not a necessary

condition, for an irreducible aperiodic EMCMC to con-

verge to a desired target distribution P(�). By definition,

MH algorithms are aperiodic and have detailed balance.

Most EMCMCs are irreducible MH algorithms—by use

of mutation—and apply recombination in the proposal

distribution.

In Sect. 5.1 we propose an EMCMC where individuals

are generated with recombinative proposal distributions

and the parents and children are competing in a Metropolis-

Hasting acceptance rule. Such an EMCMC has detailed

balance if and only if the individuals that interact through

recombination also interact in the acceptance rule. We

further call these acceptance rules where two or more

chains interact the coupled acceptance rule. We prove that

such an algorithm is ergodic—that is irreducible and ape-

riodic—with the stationary distribution P1(�)9_9PN(�),
where Pi(�) is the target distribution of the i-th chain.

However, such a coupled acceptance rule has a negative

effect on the performance of an EMCMC. If some children

are fit individuals but the others are not, this acceptance

rule can reject ‘‘good’’ individuals whereas the standard

MH acceptance rule will always accept them.

We investigate the convergence properties of recomb-

inative EMCMCs using variations of the Metropolis-

Hasting acceptance rule. In Sect. 5.2 we prove that the

recombinative population-based MCMCs that accept/reject

each candidate state using the standard Metropolis accep-

tance rule does not have detailed balance. Its advantage is

that the probability of accepting at least one individual of

this EMCMC is larger than the acceptance probability of an

EMCMC using the coupled acceptance rule. In Sect. 5.3 an

example of an MH acceptance rule derived from the elitist

replacements selection strategy [25] is designed. The

sampled distribution is even more skewed towards proba-

ble states and the acceptance probability of one individual

is even larger. In Sect. 5.4 we propose and analyze a

methodology, we call it nested EMCMC. It corrects the

sampled distributions of skewed EMCMCs by accepting/

rejecting all the individuals generated with the EMCMCs

with the coupled acceptance rule. This nested EMCMC has

detailed balance even though the initial EMCMC does not.

4 Recombinative proposal distributions for EMCMCs

In this section we propose and analyze various recom-

binative proposal distributions and their properties for

EMCMCs that sample from the desired target distribution.

4.1 Symmetrical recombinations

In EMCMCs, the symmetry is obtained by preserving the

distance between the parents and their children. For example,

the distance between N children is equal with the distance

between the N parents that generate the children, or the distance

between a parent and its child is constant as compared with the

distance between two other individuals in the population.

4.1.1 N parents generate N children

When the distance, i.e. Hamming distance, between the

generated children is the same as the distance between their

parents, the recombination operator is symmetrical.
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Proposition 1 Consider N parents uniform randomly

chosen without replacement from the current population,

x
ðtÞ
i ; . . .;x

ðtÞ
iþN�1

n o
, and an associated distance metric

D :E2 ! IR with

DðxðtÞi ; . . .; x
ðtÞ
iþN�1Þ ¼

X
j;kjj6¼k

DðxðtÞj ; x
ðtÞ
k Þ

where DðxðtÞj ; x
ðtÞ
k Þ ¼ DðxðtÞk ; x

ðtÞ
j Þ. Let the recombination

operator where N candidate individuals, {yi,…, yi?N-1},

are generated by swapping alleles of parents such that the

corresponding proposal probability SrðxðtÞi ; . . .; x
ðtÞ
iþN�1 j

yi; . . .; yiþN�1Þ is a function of the distance between

parents such that the distance between parents is equal

with the distance between their children

DðxðtÞi ; . . .; x
ðtÞ
iþN�1Þ ¼ Dðyi; . . .; yiþN�1Þ

then Sr is symmetrical.

Proof The probability to generate children from their

parents is Sr is a distance function f: E2 ? R between

parents

SrðxðtÞi ; . . .; x
ðtÞ
iþN�1 j yi; . . .; yiþN�1Þ

¼ f ðDðxðtÞi ; . . .; x
ðtÞ
iþN�1ÞÞ ¼ f ðDðyi; . . .; yiþN�1ÞÞ

¼ Srðyi; . . .; yiþN�1 j x
ðtÞ
i ; . . .; x

ðtÞ
iþN�1Þ

Thus, this recombination is symmetrical. h

Note that if the number of children is different from N,

in general, the symmetry condition does not hold. We

discuss such examples in the next section.

The swapping recombinations, often used in EMCMCs

and the standard GAs, are particular cases of the above

proposition where the distance between individuals are

kept constant by swapping alleles.

Proposition 2 Recombination proposal distributions

which swap parts of individuals in between chains using a

uniform distribution are symmetrical, respectful and

stationary.

Proof Since there are equal probabilities to swap alleles

(parts) in between parents and in between children, this

recombination is symmetrical and the distance between

them remains equal. If the parents have the same allele on a

locus, so do the children since the swapping does not

change the values of alleles. h

We have recombinations which exchange non-common

alleles, e.g., uniform crossover, or parts of individuals, e.g.,

1 and 2 point crossover [16, 17]. These recombinations are

often used only with two parents.

In binary spaces, an example of swapping recombination

is parameterized uniform crossover, Qunif, which generates

two candidate individuals by swapping alleles between two

parents with a uniform probability, px. Thus, it is impos-

sible to generate children that have other common alleles

than their parents. Where the two parents differ, an allele is

swapped with the probability px and is not swapped with

the probability 1 - px. It is interesting to observe that the

time complexity to generate two children from two parents

with Qunif, like for uniform mutation, is linear with the

dimensionality, Oð‘Þ.
For px = 0.5, the operator is called uniform crossover

and is used with all codings: for strings of bits [16] and for

strings of real numbers [12].

4.1.2 Three parents generate one child

In the following, we introduce a general condition to

design symmetrical recombinations using three parents

which generate one child.

Proposition 3 Consider three parents uniform randomly

chosen without replacement from the current population,

x
ðtÞ
i ; x

ðtÞ
iþ1; x

ðtÞ
iþ2

n o
. The recombination operator where a

candidate individual, yi, is generated from the three par-

ents such that the total distance between parents is equal

with the total distance between the candidate individual

and x
ðtÞ
iþ1; x

ðtÞ
iþ2

n o
;

DðxðtÞi ; x
ðtÞ
iþ1Þ þ DðxðtÞi ; x

ðtÞ
iþ2Þ þ DðxðtÞiþ1; x

ðtÞ
iþ2Þ

¼ Dðyi; x
ðtÞ
iþ1Þ þ Dðyi; x

ðtÞ
iþ2Þ þ DðxðtÞiþ1; x

ðtÞ
iþ2Þ

is symmetrical, where D : E2 ! IN is a distance metric.

Proof The parent x
ðtÞ
i and the child yi are interchangeable;

they have the same total distance with the other two par-

ents. Thus, this recombination is symmetrical. h

As an example in the binary space, we propose the total

difference crossover, Qdif. This type of recombination is

imported from real coded EAs [22] and EMCMCs [24].

The new individual, yi has the same alleles like x
ðtÞ
i on the

positions where the two other parents coincide. On the

other positions, we flip the alleles of x
ðtÞ
i with the proba-

bility px.

Corollary 1 Qdif is symmetric, respectful and stationary.

The time complexity of Qdif, like for Qunif, is linear with the

dimensionality, Oð‘Þ.

The xor crossover [23] is a special case of Qdif where the

probability to flip a bit is 1 for x
ðtÞ
i ’s bits where x

ðtÞ
iþ1 and

x
ðtÞ
iþ2 disagree.

The main difference between the two symmetrical types

of recombination is that one preserves the sum of distances

between the three parents when generating a child and the
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other preserves the distance between two parents when

generating two children.

4.1.3 Family versus population recombination operators

Given the number of chains that interact, we distinguish

between family and population recombinations. Recom-

bining few chains (e.g., two or three chains) is an example

of the first approach, while in the latter all chains from the

population exchange information. The above recombina-

tion proposal distributions are all family recombinations.

We assume that, for family recombination, each gener-

ation, the population is uniform randomly grouped in dis-

junct families such that each individual belongs to exactly

one family. All the chains from an EMCMC, eventually,

interact in population recombinations. We call recombi-

nation proposal distribution the distribution defined by the

recombination probabilities at the population level. We

denote it with Qr. In the case of an individual at the family

level, the proposal probabilities of recombination are not

stationary since they depend on the family members with

which they are grouped. At population level, the proba-

bility to generate with recombination one population from

another one is stationary.

For the above family recombinations (e.g., Qunif and

Qdif), the time complexity at the population level is linear

with the number of individuals in the population: each

generation, each individual is randomly paired in exactly

one family. The complexity of these recombination pro-

posal distributions at the population level therefore is

Oð‘ � NÞ. Note that, at the population level, the complexity

of the mutation proposal distribution depends linearly on

the number of individuals in the population Oð‘ � NÞ.

4.2 Non-symmetrical proposal distributions

We investigate two non-symmetric recombinations where

the alleles are exchanged between parents but, this time,

the distance between parents and children is not preserved

4.2.1 The masked recombination

This recombination swaps the alleles between two parents

like the parameterized recombination but it generates one

child instead of two. Then, the distance between parents, in

general, is not same with the distance between the child

and one of the parents. Thus, the recombination is not

symmetrical. We call this recombination the masked

recombination, Qmask.

A child yi is generated from a parent, x
ðtÞ
i , and a mask,

x
ðtÞ
iþ1. The common alleles of x

ðtÞ
i and x

ðtÞ
iþ1 are passed to yi,

but the non-common alleles are flipped in x
ðtÞ
i with the rate

px. Note that this crossover and the parameterized uniform

crossover have the same probabilities to generate one child.

But, Qunif is symmetrical and Qmask is not symmetrical,

because Qmask generates only one child. Consequently, we

have to compute the probabilities to generate a candidate

individual with Qmask in the acceptance rule of the MH

algorithm. Qmask also resembles Qdif where two parents are

identical. However, by replacing the identical parents with

the child in the candidate generation, the symmetry con-

dition does not hold.

Proposition 4 Qmask is reducible and stationary. Con-

sider that from a parent x
ðtÞ
i and a mask x

ðtÞ
iþ1 we generate a

child, yi with Qmask. Then, Qmask is non-symmetrical. The

time complexity to generate a child with Qmask is linear

with the string size ‘;Oð‘Þ.

Proof Let’s consider that x
ðtÞ
i 6¼ yi because bits are flipped

on some positions. In those positions, the mask x
ðtÞ
iþ1 and the

child yi have the same values, whereas x
ðtÞ
i and x

ðtÞ
iþ1 do not.

Then, it is impossible to generate x
ðtÞ
i from yi and x

ðtÞ
iþ1. The

rest of the properties follow directly. h

4.2.2 Recombination using probabilistic models

This recombination builds a probabilistic model of the

parents to generate the children. It is analogous with the

operator that generates individuals for the estimation dis-

tribution (EDA) algorithms applied in Evolutionary Com-

putation for solving optimization problems [19].

We propose the tree frequencies probabilistic recombi-

nation, Qtree, closely related with the probabilistic model of

Baluja [2]. Unlike the previous recombination operators

where an allele is generated only given the alleles on the

same position, Qtree considers the dependencies between

two positions in the population using the Chow and Liu [4]

algorithm.

In the following, we describe the algorithm we use to

generate individuals with Qtree. This algorithm constructs

from the population of current individuals a tree with

maximum entropy using a mutual information function.

The entropy describes the level of uncertainty in a statis-

tical variable. Here, the frequencies of the alleles in a

position define a statistical variable for that position.

Mutual information captures the extent to which two sta-

tistical variables are dependent. This algorithm keeps

adding dependencies between variables based upon their

mutual information under the constraint of building a tree

(e.g., there are no cyclic paths between variables). The

higher the mutual information is, the sooner the algorithm

tries to add the dependency in the tree.

A root for this tree is chosen at random from the set of

positions. The allele for the root position is chosen based
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on its frequencies in the current population. We itera-

tively generate the other alleles based on their depen-

dency with an allele—called parent—which was already

instantiated in the tree. If h is the root of the tree, then the

allele yih is generated using the distribution N(yih)/N,

where N(yih) is the number of alleles yih in the current

population. Otherwise, if h has the parent h1 in the tree,

then the allele yih is generated with the probability
Nðyih;yih1

Þ
Nðyih1

Þ where yih1
is the allele already generated in

position h1, and Nðyih; yih1
Þ is the number of individuals

in the current population that have allele yih on position

h and allele yih1
in position h1.

We observe that Qtree is the most expensive recombin-

ative proposal distribution we have investigated for

EMCMC. Unlike the other discrete space recombinations,

Qtree exploits some relationships between dimensions: it

computes the dependencies between two positions in order

to construct the tree of maximum entropy and to assign a

value to an allele. Then, the generation of an allele on a

position also depends on the alleles on another position.

Proposition 5 Qtree is respectful, non-symmetrical, sta-

tionary and biases the exploration according to the non-

linear correlations between dimensions. The computational

complexity to generate a child with Qtree is Oð‘2 � NÞ,
where l is the dimensionality and N the size of the

population.

Proof When an individual is generated with Qtree and

replaces a parent, some allele frequencies can increase at

the cost of the others. The computational complexity of this

operator is given by building the maximum log-likelihood

tree. Chow and Liu [4] show that this is Oð‘2 � NÞ. h

Qtree is a generalization of Laskey and Myers [15]’s

recombination proposal distribution; when generating an

allele, they consider only the frequencies of the alleles on

the same position and not also on the other positions as

Qtree does. Therefore, their recombination, unlike Qtree,

does not exploit the relationships between dimensions.

4.3 Irreducible recombinative proposal distributions

Since respectful recombination by definition is reducible,

in the following, we study how to combine it with mutation

to obtain irreducible proposal distributions. We combine

the proposal distributions following the same simple

mathematical rules as for transition distributions. We study

the properties (like symmetry and irreducibility) of the

resulting proposal distributions. We show some examples

where the properties of the component proposal distribu-

tions are inherited by the complex proposal distribution.

However, in general, we have to check the properties for

each distribution.

We combine mutation and recombination in mixtures

and cycles.

Definition 3 A mixture of proposal distributions is a

probabilistic sum of proposal distributions where each step

one distribution is selected according to some constant

positive probability. A cycle of proposal distributions is the

product of proposal distributions where in each step one

distribution is used in turn in a specific order.

4.3.1 Mixtures

Proposition 6 In a mixture of proposal distributions, if

one distribution is irreducible, then the mixture is irre-

ducible. A mixture is symmetrical if the component distri-

butions are symmetrical. A mixture is stationary if all

component distributions are stationary.

Proof If one distribution is irreducible, then there exists a

non-zero probability to generate any population from any

other population. The rest of the properties follows

directly. h

For example, the following mixture

Qmþr ¼ ð1� prÞ � Qm þ pr � Qr

is irreducible when pr \ 1, and symmetrical when the

recombination is symmetrical. Note that the above operator

is equivalent to recombination, Qm?r = Qr, for pr = 1;

then, like recombination, Qm?r is reducible. Note that the

computational cost of a mixture of proposal distributions is

driven by the most expensive component proposal distri-

bution. Furthermore, a mixture exploits some relationships

between dimensions if a component proposal distribution

does.

4.3.2 Cycles

Unlike for mixtures, for cycles, there are no rules for

irreducibility or symmetry. They have to be checked for

each cycle. Cycles of proposal distributions are common

for the standard GAs where one considers first mutation

and then recombination, Qm9r, or first recombination and

then mutation, Qr9m.

Qm�r ¼ Qr � Qm; Qr�m ¼ Qm � Qr

In general, since two matrices usually do not commute,

Qm9r and Qr9m are non-symmetrical.

Proposition 7 Qm9r and Qr9m, are symmetrical for any

recombination that swaps alleles [17]. Qm9dif and Qdif9m

are non-symmetrical. Qm9r and Qr9m are irreducible
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and stationary. If the recombination Qr is symmetrical, we

have

Qm�rðY j XðtÞÞ ¼ Qr�mðXðtÞ j YÞ

To ease the reading of the paper, we give the proof for

the above proposition in Appendix 1.

Parallel Recombinative Simulated Annealing (PRSA)

[17] uses recombination that swaps alleles followed by

mutation. Note that it is impractical to compute the prob-

abilities of a cycle: we have to sum over all possible

intermediate populations. Therefore, in general, it is

impractical to use non-symmetrical cycles. In the follow-

ing, we show two cycles where the above non-symmetrical

recombinations are efficiently combined with uniform

mutation directly on each position of an individual.

Consider a parent x
ðtÞ
i and a mask x

ðtÞ
iþ1 chosen at random

from the population. Like for Qmask, for the non-common

values of the two parents, x
ðtÞ
i is flipped with the probability

px to generate the child yi. Unlike for Qmask, for the com-

mon parts of these parents, x
ðtÞ
i is flipped with the low

probability 1/‘ to generate the child yi. We generate from

the mask x
ðtÞ
iþ1 a second child yi?1 with the uniform muta-

tion with the mutation rate pm. We denote this proposal

distribution with Qm9mask where

Qm�maskðyi; yiþ1 j x
ðtÞ
i ; x

ðtÞ
iþ1Þ

¼ Qmaskðyi j x
ðtÞ
i ; x

ðtÞ
iþ1Þ � Qmðyiþ1 j x

ðtÞ
iþ1Þ

In the next proposition we show that Qm9mask, unlike

Qmask, can be used with an MH algorithm. Furthermore,

although it is a cycle, its computational time is similar with

the one of uniform mutation.

Proposition 8 Qm9mask is irreducible. Qm9mask is

symmetrical if pm = 1/2 or px = 1/‘. If pm = 1/2 and

px = 1/‘ then Qm9mask is non-symmetrical. The time

complexity of Qm9mask is linear with the string size

‘;Oð‘Þ.

The prove is given in Appendix 2 to ease the reading of

the paper.

Similarly, we combine the tree frequencies probabilistic

recombination, Qtree, with the uniform mutation in a cycle

to be able to use it with the MH algorithm. We first con-

struct the maximum entropy tree. We choose at random a

position, h, which we consider the root, we propose an

allele yih with the probability ðNðyihÞ þ 1Þ=ðN þ jXðx��ÞjÞ.
Iteratively, we propose an allele yih with the probability

ðNðyih; yih1
Þ þ 1Þ=ðNðyih1

ÞÞ þ jXðx��ÞjÞ

where the allele on the position h1, yih_1, is already

instantiated. We denote this operator with Qm�tree ¼
ðQtree þ 1=NÞ=ð1þ Xðx��Þ=NÞ. Like Qtree and unlike the

other proposal distributions, Qm9tree exploits some rela-

tionships between different dimensions.

Proposition 9 Qm9tree is irreducible and non-symmetri-

cal. The time complexity to generate an individual with

Qm9tree is Oð‘2 � NÞ, where ‘ is the string size and N the

population size.

Proof The proof is immediate. h

In Table 1 we present the operators composed from

mutation and/or recombination, their irreducibility, their

symmetry, and their number of parents compared with the

number of children.

5 MH acceptance rules for recombinative EMCMC

In this section we propose various MH acceptance rules

and we discuss the properties of EMCMC algorithms

resulting from the interaction between the recombinative

operators and these acceptance rules.

5.1 Detailed balance: all children accepted

or all rejected

We establish that the EMCMCs that generate individuals

with irreducible recombinative proposal distributions and

accept/reject them all has detailed balance and the target

distribution for this EMCMC.

Theorem 1 Consider the EMCMC algorithm that pro-

poses N C 2 children, Y = (y1,…, yN) from N parents,

XðtÞ ¼ ðxðtÞ1 ; . . .; x
ðtÞ
N Þ using a irreducible proposal distri-

bution Q that is independent of the target distribution. All

children are accepted or all children are rejected with the

probability

Table 1 Properties of several mutation/recombination operators: if

they are irreducible or not, symmetrical, and how many children are

generated from how many parents

Type op Op Irred Symmetry Par/child

Mut Qm Irred Symm 1/1

Qunif Red Symm 2/2

Qdif Red Symm 3/1

Qmask Red Non-symm 2/1

Qtree Red Non-symm N/1

Mixture cycle Qm? unif Irred Symm 2/2

Qm9unif Irred Symm 2/2

Qm9mask Irred Non-symm 2/1

Qm9tree Irred Non-symm N/1
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aCðY j XðtÞÞ ¼ min 1;
P̂1ðy1Þ � . . . � P̂NðyNÞ

P̂1ðxðtÞ1 Þ � . . . � P̂NðxðtÞN Þ
�QðX

ðtÞ j YÞ
QðY j XðtÞÞ

 !

This EMCMC is ergodic with unique stationary

distribution P1(�)9_9PN(�), where Pi(�) is the unique

stationary marginal distribution for the ith chain,

Vi = 1,…, N.

The prove is given in Appendix 3 to ease the reading of

the paper.

Note that the EMCMC resulting from the interaction

between the proposal distribution Q and the MH accep-

tance rule aC is an MCMC over the N dimensional search

space EN. We denote the transition matrix for this EMCMC

algorithm with KC. The transition probability between a

candidate state Y and the current state X(t) is KCðY j XðtÞÞ ¼
aCðY j XðtÞÞ � QðY j XðtÞÞ and the rejection probability is

KCðXðtÞ j XðtÞÞ ¼ 1�
P

Y 6¼XðtÞ KCðY j XðtÞÞ.

5.1.1 Two examples

The coupled acceptance rule. The coupled acceptance

rule aC [11, 16] considers for acceptance two chains. Two

children, y1 and y2, generated from two parents, x
ðtÞ
1 and

x
ðtÞ
2 , are both accepted or rejected with the coupled

acceptance rule aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ.

When aC is associated with one of the irreducible rec-

ombinative proposal distributions—for instance Qm9unif

and Qm?unif that generates two children from two parents—

according with Theorem 1, the EMCMC algorithm has

detailed balance and samples from the target distribution

P1(�)9P2(�).

Corollary 2 Consider the EMCMC algorithm that pro-

poses two children from two parents using an irreducible

proposal distribution Q and accepts/rejects the children

using the coupled acceptance rule aC. We denote the cor-

responding transition matrix with KC. This EMCMC con-

verges to P1(�)9P2(�), where Pi(�) is the marginal

distribution of the i-th chain i = 1,2.

However, in practice, such an acceptance rule is not

always desired, since it is not selective at individual level.

For example, usually, individuals with higher and lower

probabilities are proposed; with aC the fit individuals can

be rejected and the acceptance of less fit individuals

depends on the family’s fit individuals.

Note that the target distribution of this EMCMC is given

by the product of distributions in the MH acceptance rule.

By replacing this product with other mathematical func-

tions (e.g., maximum of two values as in the next example),

the corresponding EMCMC converges to a different

distribution.

The order two statistics acceptance rule To sample from

the order two statistics distribution

P2:1ð�; �Þ ¼ max Pð�Þ;Pð�Þf g

we create a variant of the coupled acceptance rule

a2:1ðyi; yj j x
ðtÞ
i ; x

ðtÞ
j Þ

¼ min 1;
maxðP̂ðyiÞ; P̂ðyjÞÞ

maxðP̂ðxðtÞi Þ; P̂ðx
ðtÞ
j ÞÞ
�
QðxðtÞi ; x

ðtÞ
j j yi; yjÞ

Qðyi; yj j x
ðtÞ
i ; x

ðtÞ
j Þ

( )

where max is the maximum for the values of two indi-

viduals, and Qð� j �Þ is any proposal distribution.

According to Lemma1, an EMCMC that proposes two

candidate individuals from two parents and accepts/rejects

them both with a2:1 has detailed balance. If the proposal

distribution is also irreducible, this EMCMC converges to

the stationary distribution P2:1(�,�).

5.1.2 Detailed balance at population level

Most EMCMCs use family recombinations where, each

generation, all individuals are randomly grouped such that

each individual belongs to exactly one group. If the chil-

dren generated with recombination are all accepted or all

rejected with an acceptance rule as suggested in Theorem

1, we obtain family transition probabilities with detailed

balance. At individual or family level, these transitions are

not MCMCs, since their proposal probabilities are not

stationary—they depend on how the individuals are

grouped. At population level, for all possible groupings of

the current population, the transition distribution is sta-

tionary. Then, the population transition probabilities

obtained by combining the family transitions have detailed

balance and define an MCMC.

5.2 The standard MH acceptance rule in recombinative

EMCMCs

In the following, we investigate the properties of EMCMCs

that use irreducible recombinative proposal distributions

and the standard MH acceptance rule. Such an EMCMC

does not fit in the standard MH framework where the

individuals that interact in the proposal distribution also

interact in the acceptance rule. For this EMCMC individ-

uals interact in the proposal distribution but children are

accepted/rejected individually given only one parent.

To ease the reading, we consider that two children, y1

and y2, are generated with a symmetrical proposal distri-

bution Q from two parents x
ðtÞ
1 and x

ðtÞ
2 . Each child is

accepted/rejected given one of the parents, randomly cho-

sen without replacement, with the standard Metropolis
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acceptance rules, aðyi j x
ðtÞ
i Þ ¼ minð1; P̂iðyiÞ

P̂iðxðtÞi Þ
Þ. Let’s denote

with K1.1 the resulting transition matrix. The transition

probability to accept both children is

K1:1ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

¼ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � aðy1 j x

ðtÞ
1 Þ � aðy2 j x

ðtÞ
2 Þ

The transition probability to accept only one child (i.e., y1)

and to reject the other child is

K1:1ðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ ¼

X
y2

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

� aðy1 j x
ðtÞ
1 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

The rejection probability of both candidate states is

K1:1ðxðtÞ1 ;x
ðtÞ
2 j x

ðtÞ
1 ;x

ðtÞ
2 Þ ¼

X
y1;y2

Qðy1;y2 j x
ðtÞ
1 ;x

ðtÞ
2 Þ

� ½1� aðy1 j x
ðtÞ
1 Þ� � ½1� aðy2 j x

ðtÞ
2 Þ�

To analyze the behavior of this EMCMC, we compare its

transition distribution with KC, which we showed in The-

orem 1 that it converges to the target distribution. We show

that even though the acceptance and rejection transition

probabilities are similar, KC samples from the target dis-

tribution and K1.1 does not.

Proposition 10 Consider the two transition distributions

KC and K1.1, the coupled acceptance rule aC, the standard

Metropolis acceptance rule a as before. Let’s further

consider two parents ðxðtÞ1 ; x
ðtÞ
2 Þ and their two children (y1,

y2) generated with an irreducible symmetrical proposal

distribution Q.

The probability to accept a child that it fitter than one of

its parents, P̂ðy1Þ[ P̂ðxðtÞ1 Þ, is higher for K1.1 than for KC

KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ�K1:1ðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

þ K1:1ðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

The probability to reject a child less fit than one of its

parents, P̂ðy1Þ\P̂ðxðtÞ1 Þ, is higher for K1.1 than for KC when

the second child is more fit than the second parent,

P̂ðy2Þ[ P̂ðxðtÞ2 Þ;

KCðxðtÞ1 ; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ�K1:1ðxðtÞ1 ; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

þ K1:1ðxðtÞ1 ; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

The probability to reject a child less fit than one of its

parents, P̂ðy1Þ\P̂ðxðtÞ1 Þ, is lower for K1.1 than for KC when

the second child is less fit than the second parent,

P̂ðy2Þ\P̂ðxðtÞ2 Þ.

The EMCMC algorithm K1.1 has detailed balance if and

only if the probability to generate two children from two

parents is equal with the probability to generate one child

and one parent from the other parent and the other child

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ Qðy1; x

ðtÞ
2 j x

ðtÞ
1 ; y2Þ ð1Þ

If Eq. 1 holds, the algorithm converges to the target dis-

tribution P1 (�) � P2(�).
Again, to ease the reading, we prove this theorem in

Appendix 4.

According to the above proposition, an MH algorithm

that accepts/rejects with the standard MH acceptance rule

some, not all, of the individuals generated with some rec-

ombinative proposal distribution does exhibit detailed

balance only for some particular types of recombinations.

Equation 1 holds, for example, for uniform mutation

distribution Qm and symmetrical recombination distribu-

tions that generate one child [8, 23]. It does not hold for

other symmetrical recombinations that generate two or

more children, like for example, uniform recombination.

With uniform recombination for any four individuals, we

have

Qunif ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ 6¼ Qunif ðy1; x

ðtÞ
2 j x

ðtÞ
1 ; y2Þ

Unfortunately, if the detailed balance condition does not

hold, there is no standard method to know the target

distribution.

It is interesting to notice that the MH algorithms gen-

erated with K1.1 have a higher probability of acceptance of

at least one candidate state than the algorithms generated

with KC that accept or reject all individuals at once. As a

consequence, for the same proposal distribution, the algo-

rithm determined by K1.1 samples faster than an algorithm

that uses KC.

5.3 The elitist coupled acceptance rule

In this section we investigate an acceptance rule inspired

from the elitist replacement strategy [25] which does not

have detailed balance regardless of the proposal distribu-

tion used. Furthermore, we show that the marginal distri-

bution of the generated EMCMC is different from the

target distribution being amplified for the fit individuals

and diminished for the less fit individuals.

The elitist coupled acceptance rule (ECA) algorithm is a

family competitive acceptance rule where the best two

solutions from the family of four is kept if at least one of

them is a child. Otherwise, when both children have a

lower fitness than both their parents, the children can

probabilistically replace the parents.

ECA can be viewed as a combination between the elitist

replacement rule from regular GAs and the coupled

acceptance rule aC. When compared with the elitist

replacement, ECA is more exploratory but less elitist since

it still accepts with some probability less fit individuals.

When compared with aC and a acceptance rules, ECA is

more elitist but less exploratory. With ECA, if a child and a
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parent are the two most fit individual states from two

parents and their children, they are always accepted

whereas with a the other child will be accepted with some

probability.

To establish the properties of ECA’s target distribution,

we compare it with KC. The probability to escape from the

basin of attraction of a peak, as we show in the next

paragraphs, is rather poor when compared with the transi-

tion distribution KC generated with the same proposal

distribution and the coupled acceptance rule aC. The tran-

sition distribution generated by accepting with ECA the

individuals proposed with the irreducible proposal distri-

bution Q is denoted with KECA. We call max2 the function

returning the two most fit solutions.

We distinguish three cases.

a) Both children are better or worse than their parents.

Then

y1; y2f g ¼ max
2

x
ðtÞ
1 ; x

ðtÞ
2 ; y1; y2

n o

or

x
ðtÞ
1 ; x

ðtÞ
2

n o
¼ max

2
x
ðtÞ
1 ; x

ðtÞ
2 ; y1; y2

n o

where y1 6¼ x
ðtÞ
1 and y2 6¼ x

ðtÞ
2 . The transition

probability to accept or reject both children, {y1, y2},

proposed with the proposal distribution Q is non-zero

only in this case. Then

KECAðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ�

min 1;
P̂ðy1Þ � P̂ðy2Þ

P̂ðxðtÞ1 Þ � P̂ðx
ðtÞ
2 Þ
� Qðx

ðtÞ
1 ; x

ðtÞ
2 j y1; y2Þ

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

( )

Note that in this case, the transition probability of ECA

is equal with the transition probability of an EMCMC

using the coupled acceptance,

KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ KECAðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

b) One of the children and one of the parents are most fit.

Then, for example,

y1; x
ðtÞ
1

n o
¼ max

2
x
ðtÞ
1 ; x

ðtÞ
2 ; y1; y2

n o

The transition probability to go from x
ðtÞ
1 ; x

ðtÞ
2

n o
to

{y1,y2} is 0.

KECAðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ 0

Now, KC is larger than 0 and KECA is 0.

c) Only one parent is replaced by its child. The proposal

probability where only one parent is replaced in the

next generation, KECAðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ, is amplified

with the sum over all proposal probabilities that

generate a state y2 such that

y1; x
ðtÞ
2

n o
¼ max

2
y1; y2; x

ðtÞ
1 ; x

ðtÞ
2

n o

Then

KECAðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ ¼ KCðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

þ
X

y2; y1;x
ðtÞ
2f g¼max2 y1;y2;x

ðtÞ
1
;x
ðtÞ
2f g

Qðy1; y2vx
ðtÞ
1 ; x

ðtÞ
2 Þ

For irreducible proposal distributions Q, this EMCMC

algorithm is irreducible because any two individuals

can be generated from any other two individuals with a

non-zero probability in two iterations of the algorithm

TECA2ð� j �Þ[ 0: Let’s assume again that a child y1 and one

of the parents x
ðtÞ
2 have the largest probabilities. In one

iteration

KECAðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ[ 0

and, for the second iteration, we also have KECAðy1; y2 j
y1; x

ðtÞ
2 Þ[ 0:

Following the above observation, we prove that this

EMCMC converges to a stationary distribution and also it

does not have detailed balance regardless of the proposal

distribution. The proof is given in Appendix 5.

Proposition 11 Consider the EMCMC algorithm that

generates candidate individuals using an irreducible

proposal distribution Q and then accepts or rejects them

with the ECA acceptance rule. This EMCMC algorithm

does not have detailed balance for any non-uniform dis-

tribution Q and converges to a stationary distributionQN
i¼1 Rð�Þ.

This algorithm is climbing towards a local optima since

it is very probable that a good solution remains a long time

in the population to generate better solutions. Only when

both children are worse than their parents this algorithm

rejects the two candidate individuals with some probability.

Otherwise, ECA always accepts at least one child. As a

consequence, the probability to accept at least one pro-

posed child is the largest from all the previous acceptance

rules. Thus, an algorithm that uses ECA behaves more

similar to a standard GA than to a sampling algorithm. As a

consequence, the target distribution of ECA is biased

towards high regions of P(�): the highest fitness states are

sampled more often at the expense of the lower fitness

states.

5.4 Nested transition distributions: repairing

the detailed balance

In the following, we propose a method to integrate the

transition distributions without detailed balance in MH
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algorithms with detailed balance. To achieve this, we need

to accept or reject all the individuals generated with an MH

algorithm without detailed balance.

Definition 4 A nested EMCMC algorithm is an EMCMC

algorithm where individuals are proposed using a transition

distribution, and are further all accepted or all rejected by a

coupled MH acceptance rule. A nested transition distri-

bution is the transition distribution used as proposal dis-

tribution by the nested EMCMC algorithm.

Furthermore, the nested transition distribution that

generates individuals with a recombination distribution is

itself a recombinative proposal distribution: from two or

more parents we propose two or more children.

Proposition 12 The nested EMCMC algorithm has

detailed balance. The nested transition distribution com-

posed by a respectful recombination proposal distribution

and an acceptance rule is by itself a respectful recombi-

nation proposal distribution.

Proof The proof is immediate if we consider the nested

transition distribution as a proposal distribution and

Lemma 1. If parents have identical values at certain posi-

tions, then the individuals generated by respectful recom-

bination have—by definition—the same values at those

positions. An acceptance rule simply selects from parents

and children, therefore, the accepted individuals have the

same values on those positions. h

Nested transitions are, usually, non-symmetrical. Thus,

we need to compute these probabilities. In Fig. 1, we

graphically depict the nested EMCMC framework.

5.4.1 Examples of nested EMCMCs

Correcting K1.1. Consider the nested EMCMC that uses as

proposal distribution the nested transition distribution, K1.1

where two candidate individuals are proposed from two

parents with some recombinative proposal distribution, Q,

and each child competes against one of the parents ran-

domly chosen from the population with a standard MH

acceptance rule. The candidate individuals proposed with

K1.1 are, at their turn, accepted with the coupled acceptance

rule, aC. The nested EMCMC’s transition distribution is

KnEMCMC ¼ K1:1 � aC ¼ ðQ � A � AÞ � aC

where the coupled acceptance rule is

aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

¼ min 1;
P̂ðy1Þ � P̂ðy2Þ

P̂ðxðtÞ1 Þ � P̂ðx
ðtÞ
2 Þ
� K1:1ðxðtÞ1 ; x

ðtÞ
2 j y1; y2Þ

K1:1ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

( )

We observe that the nested EMCMC eliminates the

influence of the proposal distribution on K1.1’s target

distribution with the coupled acceptance rule, aC.

In the following proposition, we express KnEMCMC as a

function of K1.1 and the proposal distribution Q. The proof

of this proposition is in Appendix 6.

Proposition 13 Consider that the symmetrical proposal

distribution Q generates y1 and y2 from x
ðtÞ
1 and x

ðtÞ
2 . If both

children are different from their parents,

x
ðtÞ
1 ; x

ðtÞ
2

n o
6¼ y1; y2f g, the nested transition distribution is

KnEMCMCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ K1:1ðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

If only one child is different from its parent, y1 6¼ x
ðtÞ
1 , then

KnEMCMCðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ ¼ K1:1ðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

�min 1;
qþ

P
P̂ðy2Þ\P̂ðxðtÞ

2
Þ QðxðtÞ1 ; y2 j y1; x

ðtÞ
2 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

qþ
P

P̂ðy2Þ\P̂ðxðtÞ
2
Þ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

8<
:

9=
;

where

q ¼ QðxðtÞ1 ; x
ðtÞ
2 j y1; x

ðtÞ
2 Þ ¼ Qðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

Otherwise, if both children are rejected,

KnEMCMCðxðtÞ1 ; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ 1�
X

y1 6¼x
ðtÞ
1
;y2 6¼x

ðtÞ
2

KnEMCMCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

From the above proposition, we note that the difference

between the two transition distributions, KnEMCMC, which

....... ....... ....... .......

proposal prob.

(e.g. A)

(e.g. A)

nested transition probabilities

(e.g. Q    ) (e.g. A  )Cunif acceptance

acceptance

transition probabilities

current pop X
(t)

candidate pop Y´

acceptance

next pop X
(t+1)

candidate pop Y

Fig. 1 Nested EMCMC framework: a candidate population Y0 is

proposed with some proposal distribution Q from the current

population Xt and some children are accepted with some MH

acceptance rule. These accepted children and the parents that are not

replaced form the candidate population Y compete against Xt such

that the resulting EMCMC has detailed balance
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samples from the target distribution, and K1.1, which does

not sample from the target distribution, is given by the

correction term from Eq. 2. In other words, K1.1 has to be

multipled with the above correction term to sample from

the target distribution. If the irreducible proposal

distribution Q has the property that

QðxðtÞ1 ; y2 j y1; x
ðtÞ
2 Þ ¼ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

for any x
ðtÞ
1 ; x

ðtÞ
2 ; y1 and y2, the correction term is 1. In this

case, according with both Proposition 13 and 10, K1.1 has

detailed balance and converges to the target distribution.

Note that the probability of acceptance of at least one

candidate individual with KnEMCMC is smaller than with

K1.1 and larger than with KC. Furthermore, K1.1, as proposal

distribution, is not symmetrical and to use it in KnEMCMC,

we have to compute the impractical correction term.

KC as nested proposal distribution. The coupled

transition distribution KC is invariant for the nested

method. The proof of this proposition is in Appendix 7.

Proposition 14 Consider that the symmetrical proposal

distribution Q generates y1 and y2 from x
ðtÞ
1 and x

ðtÞ
2 . The

nested transition distribution is

KnEMCMCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ KCðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

The coupled transition distribution KC does not need a

correction term to converge to the target distribution.

6 Three experimental tests

We compare the performance of recombinative and non-

recombinative population-based (E)MCMCs on two func-

tions: a toy problem, the hyper-geometrical distribution,

which we use to analytically compare the performance of

the algorithms and a larger problem the binary quadratic

programming problem (BQP). We show that recombinative

EMCMCs can outperform the standard MCMCs. Further-

more, we show that the algorithms that use the coupled

acceptance rule aC are less efficient than the algorithms

that use the standard acceptance rule a.

We compare the performance of five MCMCs: a single chain

MCMC, two non-recombinative MCMCs with two recombin-

ative EMCMCs. We take the size of population N = 2.

1. MCMC: one single chain MCMC that proposes new

states with Qm with the mutation rate pm = 1/‘ and

accepts (rejects) them using the Metropolis acceptance

rule a.

2. MIC: 2 independent MCMCs that propose new states

with Qm with the mutation rate pm = 1/‘ and accept

(reject) them using the Metropolis acceptance rule a.

3. mut?aC: a non-recombinative population-based

MCMC that proposes each generation 2 new states

with the same Qm and accepts (rejects) all of them

using the coupled acceptance rule aC.

4. rEMCMC: generates two individuals with a cycle

between Qm and parameterized uniform recombina-

tion, Qunif, with pr = 50%, and then accepts them with

the standard Metropolis acceptance rule a.

5. rEMCMC?aC: generates two individuals with a cycle

between Qm and Qunif and then accepts them with the

coupled acceptance rule aC.

As shown in previous sections, the target distribution of

the three population based EMCMCs– MIC, mut?aC and

rEMCMC?aC—is
Q

N Pð�Þ and the target distribution of

single chain MCMC is P(�). The sampled distribution of

rEMCMC is not the target distribution but, as the experi-

mental results show it, it approximates quite well P(�) for

large search spaces and a small number of samples.

6.1 Sampling from the hyper-geometrical function

To compare MH algorithms analytically, we compute the

second largest eigenvalue of the transition matrices of the

corresponding (E)MCMCs. Note that the second eigen

value should be small to mix well.

6.1.1 The tested distribution

A hyper-geometric distribution (Hyper) is

P̂ðxÞ ¼
h2 � w�Dðx;x0Þ

w if Dðx; x0Þ\w
0:01 if Dðx; x0Þ ¼ w

h1 � Dðx;x0Þ�w
‘�w otherwise

8<
:

with ‘ the string size, w the number of bits-1 in the indi-

viduals with the lowest value 0.01, individual x0 with all

bits equal to 0 is the second largest peak h2, and the indi-

vidual with all bits equal to 1 is the largest peak h1. We set

‘ = 8 and h1 = 1.

6.1.2 Results

In the first experiment, see Fig. 2a and b, we vary the

distance of the lowest valued states to the optimum,

w = {1, 2, 3} and we set the value of the second largest

state to h2 = 0.75. In this case, the local and global opti-

mum have a close value and we vary their basin of

attraction: the greater the distance from the local optimum,

the smaller the basin of attraction of the global optimum.

Second, we vary h2 from 0.25 to 0.75 with a step size of

0.25 and we set w = 3. In this case, the optimum is isolated

and its importance is decreasing with the height of the

second largest peak. In Fig. 2a and c we show results for
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high mutation and swapping rates, 0.5; in Fig. 2b and d we

have low mutation and swapping rates 0.125. We set the

low mutation rate for the cycle Qm9Qunif to 0.125. Again,

we reduce the computation costs by grouping individuals

with the same number of ones and zeros in one individual

because these individuals have the same fitness value and

therefore, the same acceptance probability. The eigen-

values for MIC and MCMC are the same because the two

MCMCs have the same acceptance rule and proposal dis-

tribution. Thus, we have chosen to show results only for

one of the two algorithms.

In Fig. 2a and b, for w = 2, the basin of attraction is

equal for the two peaks. Then, we obtain the highest

eigenvalues, and thus the worst performance, for all the

four algorithms. Here we have the largest amount of low fit

states that separate two narrow regions with fit individuals;

a random sampler, see MCMC with mutation rate of 0.5 in

Fig. 2b, is the best algorithm since it covers a large area

with low equal values in short time.

For the other values of w, the basin of attraction of one

of the peaks is wider than the basin of attraction of the

other peak; the narrower one region is, the harder to find

and sample it. For w = {1,3} we have the lowest eigen-

values and, furthermore, the highest difference between the

algorithms. The non-recombinative (E)MCMCs do well

because the narrow peak is reduced now to one point. The

recombinative EMCMCs do better than the non-recomb-

inative (E)MCMCs with the same acceptance rule because

recombination generates with higher probability more fit

individuals by combining the two building blocks of this

function, In Fig. 2c and d, we observe that the performance

of all the (E)MCMC algorithms varies very little with the

height of the second largest peak h2. Thus, these eigen-

values are (approximatively) the same with the eigenvalues

for w = {1,3} from Fig. 2a and b.

To conclude this example, we observe that due to the

structure of the problem recombinative EMCMCs have

provably a better performance than the non-recombinative

EMCMCs. The performance of MCMCs are diminished by

the coupled acceptance rule aC; MCMC is sampling more

efficient than mut?aC and rEMCMC is better than rEM-

CMC?aC. The mutation rate greatly influences the per-

formance of non-recombinative MCMCs; a high mutation

rate decreases the performance of the algorithm. The

swapping probability influences less the efficiency of the

recombinative EMCMCs. rEMCMC and rEMCMC?aC

perform best for high swapping probabilities, whereas

MCMC and mut?aC perform best for low mutation rates.

6.2 Sampling from BQP

In the following, we have performed experiments with the

binary quadratic programming problem (BQP) to show,

on a more elaborated example, that recombination is useful

for sampling. The fitness function of an individual x is

f(x) =
P

j=1
‘ P

k=1
‘ F[j][k] � x[j] � x[k], where F[j][k] is the

element on the j-th row and on the k-th column of a matrix

F of integers, both positive and negative and x a binary

string (e.g., x� is 0 or 1). Then, F’s size is ‘ � ‘.
The interaction between two or more positions of the

BQP problem depends on the matrix F’s density, which is

defined as the number of non-zero elements divided by the

number of total elements in the matrix. The density is then

between 0 and 1, where 0 means no interaction between

positions and 1 means maximum interaction—that is every

position depends on every other position. For our experi-

ments, we generate random matrices with density 0.1.

These fitness values are positive and negative. However,

the (unnormalized) probabilities of a distribution can be

only greater than 0. Therefore, we add to all the fitness
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Fig. 2 Second largest

eigenvalues for Hyper-

geometrical function on 8 bits,

that is two blocks each of 4 bits,

where a,b w = {1, 2, 3} and

the peak heights are set to

h1 = 1 and h2 = 0.75, and

c,d h2 = {0.25, 0.5, 0.75} and

the distance to the highest peak

is set to w = 3
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values a fixed positive integer transl; every value that now

is equal or below 0 is assigned with the value 0.01. The

unnormalized probabilities are P̂ðxÞ ¼ f ðxÞ � transl, when

f(x) [ transl and, otherwise, P̂ðxÞ ¼ 0:01.

In this section, we show that recombination can improve

sampling. We first discuss the experimental methodology

available to measure and compare the performance of EM-

CMCs. Second, we show experimental results on a BQP

problem on 20 bits. By expanding the target distribution, we

are able to compute the distance between this distribution and

the true distribution. At last, we show results on a larger search

space, for l = 100 bits. Unlike for the previous example, we

are not able to expand this distribution, and therefore we are

constrained to use less precise methods to assess the perfor-

mance of (E)MCMCs. For both experiments, we compare the

five (E)MCMC algorithms described above: three non-rec-

ombinative (E)MCMCs—that are one long chain MCMC,

MIC and mut?aC—and two recombinative EMCMCs—that

are rEMCMC and rEMCMC?aC.

6.2.1 Experimental methodology

To assess the efficiency of various EMCMCs we focus on

monitoring how fast an MCMC is mixing and how well the

samples spread over the entire target distribution after a

fixed and rather small number of generated individuals.

There is no generally acknowledged methodology on

measuring how ‘‘close’’ a set of samples generated with a

real-coded MCMC is to the true target distribution. Wol-

pert and Lee [26] argue that a good approach is to use the

Kullback-Leibler (KL) distance between an approximation

of the sampled distribution and a discrete approximation of

the true distribution.

To measure the speed with which an algorithm samples

the search space, Roberts et al. [21] recommend to monitor

the acceptance probability of an algorithm. They analyti-

cally and experimentally study the behavior of a standard

MCMC using a normal distributed mutation with fixed and

equal variances in all dimensions. The target distribution is

a multivariate normal distribution with standard deviation

of 1.0 in all dimensions and no correlations. They conclude

that a very high or very low acceptance rate of the MCMC

indicates slow mixing, and a good acceptance rate is

between 0.2 and 0.5. A high acceptance rate and a high

performance (e.g., the KL-measure close to 0) indicates a

well performing algorithm that mixes fast. Analytically

computing the optimal acceptance probability is only fea-

sible for very simple target and proposal distributions and

when using the Metropolis acceptance rule. Here, we

restrict ourselves to experimentally monitoring the accep-

tance probability.

For the tested recombinative EMCMCs, we have good

performance (e.g., KL distance) even for very high

acceptance rates that shows that recombination can

improve the mixing of MCMCs. Furthermore, we show

that algorithms with similar acceptance probabilities can

have rather different performance.

6.2.2 A 20 bits BQP

For the first experiment, we set the string length to ‘ = 20

and transl = 50. Since the F’s density is 0.1, only 40

elements of F have non-zero values. The non-zero integers

are generated at random from the interval [-100, 100]. For

the generated matrix F, we have found the maximum

fitness value 146; when this is translated, the maximum

unnormalized probability value is 196. We group the

individuals with the same value to generate the histogram

and we also store the number of individuals with the same

value.

We set the population size N = 20. Each generation, all

individuals are randomly coupled in N/2 pairs such that

each individual belongs to exactly one pair. We have

performed experiments for various mutation rates (from

0.05 to 0.5) and swapping probabilities for the uniform

recombination (from 0.05 to 0.5). With each algorithm, we

generate 20,000 individuals; our measurements are aver-

aged over 50 runs. We throw away the first 10,000 gen-

erated individuals to diminish the impact of the starting

points over the performance of the algorithms. This is

called the burn-in period. Thus, in total, we sample 10,000

‘‘useful’’ individuals from which we generate Table 2 and

the graphs from Fig. 3.

The search space is 220. By expanding the target dis-

tribution, we are able to compare the frequencies of sam-

ples generated with the tested (E)MCMCs with their value

in the true distribution. In Table 2, we compute the KL

distance and acceptance ratio for the five (E)MCMCs.

Mann-Whitney nonparametric two-sided test with signifi-

cance level p \ 0.05 is used to verify if KL distances of the

five tested algorithms are sampled from different distribu-

tions. The algorithms have statistical significantly different

output except with mut?aC and MCMC.

The best algorithm, with the significantly lowest KL dis-

tance and the highest acceptance ratio, is the recombinative

Table 2 Efficiency of (E)MCMCs for a BQP on 20 bits: the KL

distances and acceptance probabilities

Alg. KL dist Accept prob

Mut?aC (1.47 ± 0.36) � 10-4 0.16 ± 0

MCMC (1.29 ± 0.41) � 10-4 0.26 ± 0.01

rEMCMC?aC (0.86 ± 0.28) � 10-4 0.53 ± 0

MIC (0.73 ± 0.12) � 10-4 0.29 ± 0

rEMCMC (0.57 ± 0.07) � 10-4 0.74 ± 0.01
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EMCMC, rEMCMC. The only difference between MIC,

the algorithm with second best KL distance, and rEMCMC

is that rEMCMC uses recombination and MIC does not.

Further, we observe that the two recombinative EMCMCs,

that are rEMCMC and rEMCMC?aC, have a higher

acceptance probability than the three non-recombinative

EMCMCs, that are MCMC, MIC and mut?aC. That indi-

cates that the recombinative proposal distribution

Qm9Qunif, by exploiting the commonalities of the search

space, is a ‘‘better’’ proposal distribution than Qm.

Furthermore, as we already observed in the analytical

experiments, the coupled acceptance rule aC has a negative

influence over both recombinative and non-recombinative

EMCMCs. Even though using aC, the recombinative

rEMCMC?aC has the third best KL distance and the second

acceptance ratio, whereas mut?aC is the worst algorithm of

all. We explain the good behavior of rEMCMC?aC by

synchronizing the individuals in the family with the uniform

recombination: children that inherit the common parts of

their parents have similar fitness with the parents and the

algorithm accepts more individuals. In opposition, uniform

mutation independently proposes two individuals in random

directions; then, if one of the candidates has very low fit-

ness, there is a big probability that both children are

rejected. As a consequence, mut?aC has a low acceptance

rate and, thus, performance.

In accordance with the analytical results from the pre-

vious section, we observe that MIC, by using populations of

MCMC chains has a lower KL distance than the standard

MCMC. Note that the acceptance ratio for these two algo-

rithms is the same, but their KL distance quite different.

In Fig. 3, we show experimental results for the two most

performant (E)MCMCs presented in the previous section:

MIC and rEMCMC. By using recombination, rEMCMC is

a better sampler than MIC is: in frequencies, rEMCMC, see

Fig. 3a, is closer to the true target distribution than MIC is.

If rEMCMC samples with predilection in the high values of

the target distribution, in opposition, MIC typically sam-

ples the low fit individuals. Furthermore, rEMCMC finds

more higher probable solutions than MIC, see Fig. 3b.

Overall, in Fig. 3c, we notice that the distribution sampled

with rEMCMC is closer to the true distribution than MIC is.

These results are in concordance with the ones in Table 2

from which we conclude that rEMCMC is the most per-

formant algorithm for this particular problem by proposing

individuals with recombination.

6.2.3 A 100 bits BQP

We now show that recombination can improve mixing on

BQP with string size ‘ = 100, for which it is impractical to

generate the target distribution. In this experiment, we

cannot compute the KL distance. Furthermore, we do not

know the maximum value of this function or if the values

are uniformly distributed in some interval.

For this experiment, we compare all the five MCMCs as

before, but we show the results only for the best two algo-

rithms MIC and rEMCMC. Note that these two algorithms are

the best performant algorithms in all three experiments.

Assuming, that the unnormalized values of the distri-

bution are in a very large range we group our samples is

using the individual’s number of ones to compare two

(E)MCMCs algorithms. Given this grouping, we compute

the frequencies, Fig. 4a, and the mean value, Fig. 4b, for

each such a group.

Again, we set the density of F to 0.1; thus, approxi-

mately 1,000 elements of F are non-zero. We generate

these non-zero integers with a uniform random distribution
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from the interval [-100, 100]. To generate a distribution with

positive values, we set transl = 1,250. We set population size

N = 100 and, each algorithm we run 50 times. With each

algorithm, we generate 100,000 individuals which we throw

away, and we use the next 100,000 generated individuals.

Again, we vary the mutation rate and swapping rate from 0.05

and 0.5. In Fig. 4, we show results for MIC’s mutation rate 0.2,

and rEMCMC’s swapping probability 0.5 and mutation rate

0.01. Then, MIC has an acceptance rate of 30%, whereas

rEMCMC has an acceptance rate of 78%. We mention that we

have performed experiments with various mutation and

swapping probabilities but the results are not very different

from the ones we currently show.

In Fig. 4a, we notice that rEMCMC samples slightly more

individuals with a higher number of ones than MIC does.

Except that, the distributions sampled by MIC and rEMCMC

are similar and both are sampling especially from individuals

with half number of zeros and ones indicating that the target

distribution is symmetrically distributed around these indi-

viduals. Despite that, the mean values of the sampled indi-

viduals are remarkably larger for rEMCMC than for MIC. It

seems that 100,000 individuals are not enough for MIC’s burn

in whereas for rEMCMC it is. We also have performed

experiments with single chain MCMC; we mention that the

mean values are worse than of MIC. We explain that by the

shape of this BQP: a lot of peaks with many low fit individuals.

We therefore consider that MIC mixes slower than rEMCMC:

N = 100 is not large enough to cover the number of these

peaks and thus MIC will always have the problem to escape

from these peaks to find the other useful ones. To sample the

same amount of individuals, an increase in population size

must be combined with a decrease in the MCMC’s time to run.

The less time we allow an MCMC to run, the worse an MCMC

samples from the search space and eventually, when popula-

tion size goes to infinity, MIC is just a random sampler.

7 Conclusions and discussion

We discussed aspects from the Evolutionary MCMC

framework, a class of population based MCMC algorithms

that exchange useful information by using recombination

and selection. The main issue for EMCMC algorithms is to

improve the performance of the sampling process, or the

convergence time to a desired distribution. Detailed bal-

ance is a straightforward and sufficient, but not necessary,

condition for an irreducible and aperiodic EMCMC to

converge to a given distribution.

We aim to increase the efficiency of MCMCs by the use

of recombination. Recombination operators can generate

‘‘good’’ proposal distributions that exploit the structure of

the search space such that EMCMCs using it converge

faster to the target distribution. Of course, when the search

space has no structure or the structure is not correctly

matched with the recombination operator, the recombin-

ative proposal distribution will offer no advantage and will

most likely be as efficient as a uniform randomly generated

distribution, or even worse in the worst case.

We proposed various recombinative proposal distributions

on discrete spaces and we studied how to integrate them into

EMCMCs with detailed balance. Since we consider only

respectful recombinations, which are reducible, we have to

combine recombination with mutation in order to obtain irre-

ducible EMCMCs. We focus on discrete space recombinations

and study the properties of discrete space EMCMCs resulting

from the interaction of recombinative proposal distributions and

MH acceptance rules. The analytical and experimental results

show that EMCMCs can outperform the standard MCMC

sampling algorithms by using recombination operators.

We have proposed and investigated various MH accep-

tance rules derived from EC’s selection strategies. In order to

obtain a recombinative EMCMC with detailed balance, the

children proposed by the recombination operator need to be all

accepted or all rejected with the coupled acceptance rule.

Both analytical investigations and experimental tests

show that the recombinative EMCMC in which a child

individually competes against a parent in the standard MH

acceptance rule is the best sampler. In the experimental

section, for very large search spaces and small number of

samples, this EMCMC, rEMCMC, samples high regions of

the search space faster than an EMCMC using the coupled

acceptance rule. Thus, in short time, rEMCMC approximates

the desired distribution better. However, there is no theo-

retical guarantee that rEMCMC converges to the target dis-

tribution. We also proposed the nested EMCMCs that

individually accept or reject fitted states with a EMCMC
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without detailed balance. Even though the nested EMCMCs

on the proposed unbalanced EMCMC have theoretical value

by indicating a correction term of the sampled distribution,

its computation is impractical.

Finally, we also discussed a recombinative EMCMC with-

out detailed balance but that can be useful for optimization

purposes. It is a straightforward extension of the elitist

replacement in an MH acceptance rule: two parents compete

against two children and the best two from the four are selected

for the next generation. This EMCMC can be used only for

optimization since it is sampling mainly from the fittest regions

of the sampled distribution at the expense of the less fit regions.

Its disadvantage is that it can get stuck for a long time in good,

but isolated, modes of the sampled distribution.

We conclude that one should be careful with adopting

recombination and selection operators from EC into pop-

ulation-based MCMC framework. Population-based tech-

niques that are suited for optimization can be less suitable

for sampling and vice-versa. To have a positive impact on

the sampling performance of interacting MCMC chains,

recombination and selection techniques need to follow

some design principles as outlined in this paper.
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Appendix 1: Proof for Proposition 7

Qm9r and Qr9m are irreducible because they have non-zero

probabilities to go from any population to any other pop-

ulation, Qm9r [ 0 and Qr9m [ 0.

When Qr is symmetric, we have

Qm�rðY jXðtÞÞ¼
X
Y02E

QmðY0 jXðtÞÞ�QrðY jY0Þ

¼
X
Y02E

QrðY0 jYÞ�QmðXðtÞ jY0Þ¼Qr�mðXðtÞ jYÞ

Qr9m and Qm9r are symmetrical for recombinations that

swap alleles because mutation generates the alleles which

differ in the two populations and recombination swaps

them or vice-versa.

By means of an example, we prove that Qdif9m is non-

symmetrical. Consider the current population of bits

X(t) = {0, 1, 0} and the candidate population Y = {1, 1, 1},

the mutation rate of 1/3, and, for simplicity, the xor operator.

We compute the probability to generate Y from X(t) with

uniform mutation and then with xor recombination and the

inverse probability to generate X(t) from Y.

Let’s consider all possible parent choices for xor. With

the xor recombination, given the distance Dð0; 1Þ between

the first two bits, we generate 1 from the third bit of the

current population 0; the intermediate population is now

Y0 ¼ 0; 1; 1f g. The distance between the second and the

third bit is also Dð1; 0Þ, and thus the intermediate popula-

tion is again Y0 ¼ 1; 1; 0f g. Since the distance between first

and second bits of the current population is Dð0; 0Þ, we

generate 1 from 1 and the intermediate population is

Y0 ¼ 0; 1; 0f g. When we mutate the intermediate popula-

tions, we have Qmð1; 1; 1 j 0; 1; 0Þ= (1/3)2 �2/3 and

Qmð1; 1; 1 j 1; 1; 0Þ = (2/3)2 �1/3. Computing in a similar

manner the inverse probability, for all possible intermedi-

ate populations, we have Qdif�mðY j XðtÞÞ ¼ 1=3 � ðð1=3Þ2�
2=3þ 2 � ð2=3Þ2 � 1=3Þ ¼ 10=81.

To generate X(t) from Y with Qdif9m, we mutate Y to

Y0 ¼ 0; 1; 1f g and then swap with the xor operator the last

bit given the difference between the first two bits resulting in

X(t). Similarly, we mutate Y to Y0 ¼ 1; 1; 0f g and swap the

first bit of Y0 or we mutate into Y0 ¼ Y and do not swap the

middle bit with xor since the difference between the first

and the last bit is 0. We then have Qdiff�mðXðtÞ j YÞ: = 1/3 �
(2 � (2/3)2 � 1/3?1/3 �(2/3)2) = 4/81.

We conclude that Qdif9m is not symmetrical since

Qdiff�mðXðtÞ j YÞ 6¼ Qdif�mðY j XðtÞÞ: h

Appendix 2: Proof for Proposition 8

Qm9mask is irreducible, since is has Qm�maskð� j �Þ[ 0: If

px = 1/‘, the Qm9mask is equivalent with the mutation

operator, since all alleles in the parents can be flipped with

the probability 1/‘. Then Qm9mask is symmetric.

For pm = 1/2, we uniformly random generate the child

yi?1 from the mask x
ðtÞ
iþ1: Then, Qm9mask is symmetric since

the common and uncommon parts of the parents and the

children are randomly generated.

By means of an example, we show that Qm9mask is non-

symmetrical for other values of pm and px. Consider x
ðtÞ
i ¼

x
ðtÞ
iþ1 ¼ 0 and yi; yiþ1

� �
¼ 1; 0f g. When yi = 1 and

yi?1 = 0, the probability to generate yi is 1/‘, and the

probability to generate yi?1 is 1 - pm. The inverse

probability is Qm�maskðxðtÞi ; x
ðtÞ
ðiþ1Þ j yi; yiþ1Þ = (1 - px) �

(1 - pm). When yi = 0 and yi?1 = 1, the probability to

generate yi is 1 - 1/‘ and the probability to generate yi?1

is pm. The reverse probability is now px � pm. Then

Qm�maskðyi; yiþ1 j x
ðtÞ
i ; x

ðtÞ
iþ1Þ ¼ ð1� pmÞ=‘þ ð1� 1=‘Þ � pm

and Qm�maskðxðtÞi; xðtÞðiþ 1Þ j yi; yiþ1Þ = (1 - px) � (1 -

pm)?px � pm. We now have that if px = 1/‘ and pm = 1/2,

then Qm9mask is non-symmetrical. h

Appendix 3: Proof for Theorem 1

We consider that the EMCMC resulting from the interac-

tion between transition matrix Q and the (generalized)
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Metropolis acceptance rule is an EMCMC over the

N dimensional search space EN. For ease of exposure and

without loss of generality, let’s consider populations of two

individuals N = 2. Two children {y1, y2} that are gener-

ated with some irreducible and symmetrical proposal dis-

tribution Q from two parents x
ðtÞ
1 ; x

ðtÞ
2

n o
. Then Qðy1; y2 j

x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ QðxðtÞ1 ; x

ðtÞ
2 j y1; y2Þ.

The Metropolis acceptance rule in this case is

aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ minð1; P̂1ðy1Þ�P̂2ðy2Þ

P̂1ðxðtÞ1
Þ�P̂2ðxðtÞ2

Þ
Þ. The transition

matrix we denote with KC. The transition probability

that two children y1 and y2 are generated and both are

accepted is

KCðy1;y2 jx
ðtÞ
1 ;x

ðtÞ
2 Þ¼Qðy1;y2 jx

ðtÞ
1 ;x

ðtÞ
2 Þ �aCðy1;y2 jx

ðtÞ
1 ;x

ðtÞ
2 Þ

The rejection transition probability that both children are

rejected isX
y1;y2f g6¼ x

ðtÞ
1
;x
ðtÞ
2f g

Qðy1;y2 j x
ðtÞ
1 ;x

ðtÞ
2 Þ � ½1� aCðy1;y2 j x

ðtÞ
1 ;x

ðtÞ
2 Þ�

Let’s assume without loss of generality that
P̂1ðy1Þ�P̂2ðy2Þ

P̂1ðxðtÞ1
Þ�P̂2ðxðtÞ2

Þ
\1. Then,

aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ minð1; P̂1ðy1Þ � P̂2ðy2Þ

P̂1ðxðtÞ1 Þ � P̂2ðxðtÞ2 Þ
Þ

¼ P̂1ðy1Þ � P̂2ðy2Þ
P̂1ðxðtÞ1 Þ � P̂2ðxðtÞ2 Þ

and aðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ ¼ 1.

We now show that the detailed balance condition holds

P̂1ðxðtÞ1 Þ � P̂2ððtÞ2 Þ �KCðy1;y2 j
ðtÞ
1 ;x

ðtÞ
2 Þ

¼ P̂1ðxðtÞ1 Þ � P̂2ðxðtÞ2 Þ �Qðy1;y2 j x
ðtÞ
1 ;x

ðtÞ
2 Þ �aCð1;y2 j x

ðtÞ
1 ;x

ðtÞ
2 Þ

¼ P̂1ðxðtÞ1 Þ � P̂2ððtÞ2 Þ �Qðy1;y2 j
ðtÞ
1 ;x

ðtÞ
2 Þ �

P̂1ðy1Þ � P̂2ðy2Þ
P̂1ðxðtÞ1 Þ � P̂2ðxðtÞ2 Þ

¼ P̂1ðy1Þ � P̂2ðy2Þ �Qðy1;y2 j x
ðtÞ
1 ;x

ðtÞ
2 Þ

¼ P̂1ðy1Þ � P̂2ðy2Þ �Qðx
ðtÞ
1 ;x

ðtÞ
2 j y1;y2Þ �1

¼ P̂1ðy1Þ � P̂2ðy2Þðx
ðtÞ
1 ;x

ðtÞ
2 j y1;y2Þ �aCðxðtÞ1 ;x

ðtÞ
2 j 1;y2Þ

¼ P̂1ðy1Þ � P̂2ðy2Þ �KCðxðtÞ1 ;x
ðtÞ
2 j y1;y2Þ

The marginal transition probability to generate x
ðtÞ
1 from

y1 when summing over the variables of the second chain is

KCðy1 j x
ðtÞ
1 Þ ¼

X
x
ðtÞ
2
;y2

P̂2ðx2Þ � KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

The stationary marginal distribution of the first chain is

P̂ð�Þ

From the above equations we infer

P̂1ðy1Þ ¼
X

y2

X
x
ðtÞ
1
;x
ðtÞ
2

KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � P̂1ððtÞ1 Þ � P̂2ðxðtÞ2 Þ

¼
X

y2

X
x
ðtÞ
1
;x
ðtÞ
2

KCðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ � P̂1ðy1Þ � P̂2ðy2Þ

¼
X

y2

P̂1ðy1Þ � P̂2ð2Þ �
X

x
ðtÞ
1
;x
ðtÞ
2

KCððtÞ1 ; x
ðtÞ
2 j y1; y2Þ

¼ P̂1ðy1Þ �
X

y2

P̂2ðy2Þ � 1 ¼ P̂1ðy1Þ

where we have used

P̂1ðy1Þ � P̂2ðy2Þ � KCððtÞ1 ; x
ðtÞ
2 j y1; y2Þ

¼ P̂1ðxðtÞ1 Þ � P̂2ððtÞ2 Þ � KCðy1; y2 j
ðtÞ
1 ; x

ðtÞ
2 Þ

We conclude that the marginal target distribution for the i-

th chain is Pi(�) and that this EMCMC algorithm has the

stationary distribution P1(�)9P2(�).
The EMCMC algorithm is irreducible since the proposal

distribution Q is irreducible. This algorithm is aperiodic

since the Metropolis algorithm, by construction is aperi-

odic. We conclude that this EMCMC is ergodic with the

stationary distribution P1(�)9P2(�), where Pi(�) is the mar-

ginal target distribution of the i-th chain. h

Appendix 4: Proof of Proposition 10

Consider two parents x
ðtÞ
1 and x

ðtÞ
2 and their two generated

children y1 and y2, and the coupled acceptance aC that

accepts/rejects both states and the probability to accept/

reject one or both children with a1.1. At first, we prove the

first inequality from Proposition 10

KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

�K1:1ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ þ K1:1ðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

The right side of this inequation can be rewriten as

K1:1ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ þ K1:1ðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ Qðy1; 2 j xðtÞ1 ; x
ðtÞ
2 Þ � að1 j x

ðtÞ
1 Þ � aðy2 j x

ðtÞ
2 Þ

þ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � aðy1 j x

ðtÞ
1 Þ � ½1� aðy2 j

ðtÞ
2 Þ�

¼ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � aðy1 j x

ðtÞ
1 Þ ¼ Qðy1; y2 j

ðtÞ
1 ; x

ðtÞ
2 Þ

because P̂ðy1Þ[ P̂ðxðtÞ1 Þ and, thus aðy1 j x
ðtÞ
1 Þ ¼ 1. The left

side of the inequality 3 can be rewritten as

KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

¼ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � aCðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ
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The inequality 3 holds since

aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ� 1

We now prove that the rejection probability for a less fit

child, P̂ðy1Þ\P̂ðxðtÞ1 Þ, is larger for K1.1 than for KC when

the second child is more fit than the second parent,

P̂ðy2Þ[ P̂ðxðtÞ2 Þ. Then

KCðxðtÞ1 ; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ�K1:1ðxðtÞ1 ; x

ðtÞ
2

j xðtÞ1 ; x
ðtÞ
2 Þ þ K1:1ðxðtÞ1 ; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

The right side of the inequality 4 is

K1:1ðxðtÞ1 ; x
ðtÞ
2 j

ðtÞ
1 ; x

ðtÞ
2 Þ þ K1:1ðxðtÞ1 ; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ Qð1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aðy1 j x

ðtÞ
1 Þ� � ½1� aðy2 j x

ðtÞ
2 Þ�

þ Qðy1; y2 j
ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aðy1 j x

ðtÞ
1 Þ� � aðy2 j x

ðtÞ
2 Þ

¼ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aðy1 j x

ðtÞ
1 Þ�

Rewriting the left side of the inequality 4

KCðxðtÞ1 ; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aCðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ�

The inequality 4 holds since

KCðxðtÞ1 ; x
ðtÞ
2 j

ðtÞ
1 ; x

ðtÞ
2 Þ � K1:1ðxðtÞ1 ;

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ ½1� aCðy1; y2 j
ðtÞ
1 ; x

ðtÞ
2 Þ� � ½1� aðy1 j x

ðtÞ
1 Þ�

¼ aðy1 j x
ðtÞ
1 Þ � aCðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ P̂ðy1Þ
P̂ðxðtÞ1 Þ

� P̂ðy1Þ � P̂ðy2Þ
P̂ððtÞ1 Þ � P̂ðx

ðtÞ
2 Þ
¼ P̂ð1Þ

P̂ðxðtÞ1 Þ
� 1� P̂ðy2Þ

P̂ðxðtÞ2 Þ

" #
� 0

Following the same line of reasoning, the rejection

probability that a less fit child, P̂ðy1Þ\P̂ðxðtÞ1 Þ, is lower for

K1.1 than for KC when the second child is less fit than the

second parent, P̂ðy2Þ\P̂ðxðtÞ2 Þ follows directly.

We now show that the EMCMC defined by K1.1 has

detailed balance if and only if

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ QðxðtÞ1 ; y2 j y1; x

ðtÞ
2 Þ

The detailed balance should hold only in the case that two

different children are proposed but only one of them is

accepted and the other is rejected

P̂1ðxðtÞ1 Þ � P̂2ðxðtÞ2 Þ � aðy1 j x
ðtÞ
1 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

� Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ P̂1ðy1Þ � P̂2ðxðtÞ2 Þ � aðx

ðtÞ
1 j y1Þ

� ½1� aðy2 j x
ðtÞ
2 Þ� � Qðx

ðtÞ
1 ; y2 j y1; x

ðtÞ
2 Þ

Or the above equation holds if and only if

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ QðxðtÞ1 ; y2 j y1; x

ðtÞ
2 Þ

If the detailed condition holds and the proposal distri-

bution is irreducible and symmetrical, the EMCMC

is ergodic and converge to the target distribution

P1(�)9P2(�). h

Appendix 5: Proof of Proposition 11

We show that ECA does not have detailed balance for any

non-uniform distribution. Let’s consider three states,

y1; x
ðtÞ
1 ; x

ðtÞ
2 such that P̂ðy1Þ[ P̂ðxðtÞ2 Þ[ P̂ðxðtÞ1 Þ. In our

discussion from Sect. 5.3 we show that

KECAðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ ¼ KCðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

þ
X

y2; y1;x
ðtÞ
2f g¼max2 y1;y2;x

ðtÞ
1
;x
ðtÞ
2f g

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

If ECA has detailed balance, then

Qðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ � KECAðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ QðxðtÞ1 ; x
ðtÞ
2 j y1; x

ðtÞ
2 Þ � KECAðxðtÞ1 ; x

ðtÞ
2 j y1; x

ðtÞ
2 Þ

Because Q is symmetrical we further have

KECAðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ ¼ KECAðxðtÞ1 ; x

ðtÞ
2 j y1; x

ðtÞ
2 Þ

KC is also symmetrical, so further we have thatX
y2; y1;x

ðtÞ
2f g¼max2 y1;y2;x

ðtÞ
1
;x
ðtÞ
2f g

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

¼
X

y2; x
ðtÞ
1
;x
ðtÞ
2f g¼max2 y1;y2;x

ðtÞ
1
;x
ðtÞ
2f g

QðxðtÞ1 ; y2 j y1; x
ðtÞ
2 Þ

The above equation does not hold since for the first sum

requires that

y1; x
ðtÞ
2

n o
¼ max

2
y1; y2; x

ðtÞ
1 ; x

ðtÞ
2

n o

and for the second sum that

x
ðtÞ
1 ; x

ðtÞ
2

n o
¼ max

2
y1; y2; x

ðtÞ
1 ; x

ðtÞ
2

n o

We conclude that KECA does not have detailed balance for

any Q.

When Q is irreducible, this algorithm is irreducible since

it can generate any state from any other state with a non-

zero probability. Therefore, the algorithm is also aperiodic

since the KC is aperiodic and thus the target distribution of

ECA exists. h

Appendix 6: Proof of Proposition 13

The proof is split in three parts, corresponding with the

three equations in the proposition.
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a) Both children are different from their parents. Then

K1:1ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

¼ Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ � aðy1 j x

ðtÞ
1 Þ � aðy2 j x

ðtÞ
2 Þ

The reverse transition probability is

K1:1ðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ

¼ QðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ � aðx

ðtÞ
1 j y1Þ � aðx

ðtÞ
2 j y2Þ

We now have

K1:1ðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ

K1:1ðy1; y2 j x
ðtÞ
1 ;
ðtÞ
2 Þ

¼ QðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ � aðx

ðtÞ
1 j 1Þ � aðxðtÞ2 j y2Þ

Qðy1; 2 j xðtÞ1 ; x
ðtÞ
2 Þ � aðy1 j x

ðtÞ
1 Þ � aðy2 j x

ðtÞ
2 Þ

¼ 1 � aðxðtÞ1 j 1Þ
aðy1 j x

ðtÞ
1 Þ
� aðx

ðtÞ
2 j y2Þ

að2 j xðtÞ2 Þ

where Q is symmetrical and thus QðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ ¼

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ. By replacing the definition of

acceptance rule a, we have

aðxðtÞ1 j y1Þ
aðy1 j x

ðtÞ
1 Þ
¼ P̂ðxðtÞ1 Þ

P̂ðy1Þ

and

aðxðtÞ2 j y2Þ
aðy2 j x

ðtÞ
2 Þ
¼ P̂ðxðtÞ2 Þ

P̂ðy2Þ

The coupled acceptance probability for the nested

acceptance probability is now

aCðy1; y2 j xðtÞ1 ; x
ðtÞ
2 Þ

¼ min 1;
P̂ðy1Þ � P̂ðy2Þ

P̂ðxðtÞ1 Þ � P̂ðx
ðtÞ
2 Þ
� K1:1ðxðtÞ1 ; x

ðtÞ
2 j y1; y2Þ

K1:1ðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

( )

¼ min 1;
P̂ðy1Þ � P̂ðy2Þ

P̂ðxðtÞ1 Þ � P̂ðx
ðtÞ
2 Þ
� P̂ðx

ðtÞ
1 Þ

P̂ðy1Þ
� P̂ðx

ðtÞ
2 Þ

P̂ðy2Þ

( )
¼ 1

The nested transition probability now is

KnEMCMCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ ¼ K1:1ðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

b) One child is different from its parent. For example y2

is rejected and y1 is accepted. Then

K1:1ðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ ¼ Qðy1; x

ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ � aðy1 j x

ðtÞ
1 Þ

þ
X

P̂ðy2Þ\P̂ðxðtÞ
2
Þ

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

� aðy1 j x
ðtÞ
1 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

The reverse transition probability is

K1:1ðxðtÞ1 ; x
ðtÞ
2 j y1; x

ðtÞ
2 Þ ¼ QðxðtÞ1 ; x

ðtÞ
2 j y1; x

ðtÞ
2 Þ � aðx

ðtÞ
1 j y1Þ

þ
X

P̂ðy2Þ\P̂ðxðtÞ
2
Þ

QðxðtÞ1 ; y2 j y1; x
ðtÞ
2 Þ

� aðxðtÞ1 j y1Þ � ½1� aðy2 j x
ðtÞ
2 Þ�

We now have

K1:1ðxðtÞ1 ; x
ðtÞ
2 j y1; x

ðtÞ
2 Þ

K1:1ðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ
¼ aðxðtÞ1 j y1Þ

aðy1 j x
ðtÞ
1 Þ

�
qþ

P
P̂ðy2Þ\P̂ðxðtÞ

2
Þ QðxðtÞ1 ; y2 j y1; x

ðtÞ
2 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

qþ
P

P̂ðy2Þ\P̂ðxðtÞ
2
Þ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

where q ¼ QðxðtÞ1 ; y2 j y1; x
ðtÞ
2 Þ ¼ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ. Now,

the coupled acceptance is

aCðy1; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ min 1;
P̂ðy1Þ
P̂ðxðtÞ1 Þ

� K1:1ðxðtÞ1 ; x
ðtÞ
2 j y1; x

ðtÞ
2 Þ

K1:1ðy1; x
ðtÞ
2 j vecx

ðtÞ
1 ; x

ðtÞ
2 Þ

( )

¼ min 1;
qþ

P
P̂ðy2Þ\P̂ðxðtÞ

2
Þ QðxðtÞ1 ; y2 j y1; x

ðtÞ
2 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

qþ
P

P̂ðy2Þ\P̂ðxðtÞ
2
Þ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ � ½1� aðy2 j x

ðtÞ
2 Þ�

8<
:

9=
;

where
P̂ðy1Þ
P̂ðxðtÞ

1
Þ
¼ aðy1jx

ðtÞ
1
Þ

aðxðtÞ
1
jy1Þ

. The second equation from the

proposition now follows directly.

c) Both children are rejected. Then

KnEMCMCðxðtÞ1 ; x
ðtÞ
2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ

¼ 1�
X

y1;y2 6¼x
ðtÞ
1
;x
ðtÞ
2

KnEMCMCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

h

Appendix 7: Proof of Proposition 14

The coupled acceptance probability for the nested accep-

tance probability is now

aCðy1; y2 j xðtÞ1 ; x
ðtÞ
2 Þ

¼ min 1;
P̂ðy1Þ � P̂ðy2Þ

P̂ðxðtÞ1 Þ � P̂ðx
ðtÞ
2 Þ
� KCðxðtÞ1 ; x

ðtÞ
2 j y1; y2Þ

KCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

( )

¼ min 1;
P̂ðy1Þ � P̂ðy2Þ

P̂ðxðtÞ1 Þ � P̂ðx
ðtÞ
2 Þ
� Qðx

ðtÞ
1 ; x

ðtÞ
2 j y1; y2Þ

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

(

� aCðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ

aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ
g ¼ 1

where Q is symmetrical

QðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ ¼ Qðy1; y2 j x

ðtÞ
1 ; x

ðtÞ
2 Þ
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and

aCðxðtÞ1 ; x
ðtÞ
2 j y1; y2Þ

aCðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ
¼ QðxðtÞ1 ; x

ðtÞ
2 j y1; y2Þ

Qðy1; y2 j x
ðtÞ
1 ; x

ðtÞ
2 Þ

The equation in the proposition follows directly. h
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