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Abstract
Permutation-based statistics for evaluating the significance of class prediction, predictive
attributes, and patterns of association have only appeared within the learning classifier system
(LCS) literature since 2012. While still not widely utilized by the LCS research community,
formal evaluations of test statistic confidence are imperative to large and complex real world
applications such as genetic epidemiology where it is standard practice to quantify the likelihood
that a seemingly meaningful statistic could have been obtained purely by chance. LCS algorithms
are relatively computationally expensive on their own. The compounding requirements for
generating permutation-based statistics may be a limiting factor for some researchers interested in
applying LCS algorithms to real world problems. Technology has made LCS parallelization
strategies more accessible and thus more popular in recent years. In the present study we examine
the benefits of externally parallelizing a series of independent LCS runs such that permutation
testing with cross validation becomes more feasible to complete on a single multi-core
workstation. We test our python implementation of this strategy in the context of a simulated
complex genetic epidemiological data mining problem. Our evaluations indicate that as long as the
number of concurrent processes does not exceed the number of CPU cores, the speedup achieved
is approximately linear.
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1. INTRODUCTION
Large scale investigations of genetic variation related to human disease have become
increasingly complicated by the acknowledgement of, and search for complex patterns of
association, including multivariate effects, epistatic interactions, and heterogeneous
relationships [11]. Previously, we introduced a promising new methodology to address these
complexities using a Learning Classifier System (LCS) algorithm [13]. Learning classifier
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systems (LCSs) [17] are a rule-based class of algorithms which combine machine learning
with evolutionary computing and other heuristics to produce an adaptive system. LCSs
represent solutions as sets of rules affording them the ability to learn iteratively, form
niches, and adapt. These characteristics make the application of LCSs to the problem of
heterogeneity, in particular, intrinsically appealing.

In [13] we applied our own extended supervised-learning classifier system, called AF-UCS
[12], and a statistical and visualization guided knowledge discovery pipeline [14] to a real
world genetic epidemiology study of bladder cancer susceptibility. As a result, we
successfully replicated the identification of previously characterized factors that modify
bladder cancer risk: i.e. single nucleotide polymorphisms from a DNA repair gene, and
smoking. Furthermore, we identified potentially heterogeneous groups of subjects
characterized by distinct patterns of association. While successful, this study was performed
on a relatively small dataset, and the computation was aided by a 1576 processor cluster, a
resource to which few researchers may have access. Due to the complexity of LCS and the
demands of large-scale data mining, the issue of scalability remains both a key challenge
and opportunity for the LCS research community [4].

To date, formal significance testing of LCS run statistics, such as test accuracy, has been
limited to the aforementioned study [13]. One of the major goals of the LCS research
community is to extend these unique and powerful algorithms to real world applications. In
the context of real world classification and data mining tasks one of the first questions that
should be asked when reviewing results is: what is the confidence (i.e. probability) that these
results are real or meaningful? Formalized evaluation of confidence avoids subjective biases
such as: what constitutes a large sample size?, or what is considered to be small enough
variance that we believe our findings to be true? To address these questions, we adopt
permutation testing which boasts a number advantages as a strategy for formal significance
testing. First, a permutation test can be applied to any statistic, whether or not it’s
distribution is known. Second, they overcome the problems introduced by unbalanced
datasets (i.e. permutation testing can differentiate whether high testing accuracy is
meaningful, or the product of a large class imbalance.) Lastly, the generation of a dataset-
specific permutation as opposed to a theoretical distribution (such as found in parametric
statistics such as the student’s t-test) accounts for other potential spurious relationships
specific to the the dataset being analyzed. Notably, even formal significance testing is
imperfect, since it relies on probability and the traditional yet arbitrary 95% significance
cutoff. Regardless, communicating LCS results in the context of the formalized p-value
standard is a critical step towards making LCS algorithms accessible, interpretable, and
comparable within real world applications.

In order to obtain statistical significance measures in [13], k-fold cross validation (CV) was
paired with p-fold permutation testing (where k = 10 and p = 1000). While CV had been
previously applied in various LCS studies, it had yet to be combined with permutation
testing for LCS significance evaluations. CV has typically been utilized to determine
average testing accuracy and account for algorithm over-fitting. CV is performed by
randomly partitioning a dataset into k equal partitions and applying the algorithm k separate
times during which k − 1 partitions are used to train the algorithm, and the remaining
partition is set aside for testing the resulting model. Permutation testing offers a non-
parametric strategy for evaluating whether an observed test statistic (such as test accuracy) is
significantly different from what might be observed by random chance. This
characterization as a non-parametric strategy is particularly important in LCS evaluations
where the probability distribution of different statistics of interest would not be known ahead
of time. This is critical to LCS data mining, in that it offers researchers a measure of
confidence when evaluating algorithm performance or extracting knowledge from the rule
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population. Permutation testing yields a null distribution for a given target statistic by
repeating the analysis on variations of the dataset (with class status shuffled). This null
distribution is then used to determine the likelihood that the observed result could have
occurred by chance. In [13], 1000 permuted versions of the original dataset were generated
by randomly permuting the affection status (class) of all samples, while preserving the
number of cases and controls. It should be noted that for each permuted dataset the
algorithm was run using 10-fold CV. Thus, this testing strategy required k ∗ p or 10,000 runs
of the algorithm in total. Figure 1 illustrates the combination of cross validation and the
permutation test as applied in [13]. Without access to large scale multi-processor clusters
(i.e. completed serially on a single workstation), this task quickly becomes impractical.

Parallelization presents one strategy to ameliorate the cost of running LCS repeatedly for
both CV and permutation testing. The time complexity of LCS algorithms, specifically those
of the Michigan style, are generally bounded by the number of generations used to evolve
the solution set. Due to the inherent data dependency between each iteration of rule set
generations, parallelization of this major term in the asymptotic time analysis is not feasible.
Previous works have focused on parallelizing mechanisms of the LCS algorithm itself using
General Purpose Graphics Processing Units (GPGPUs) with NVIDIA’s Compute Unified
Device Architecure (CUDA). These included strategies to parallelize (1) matching in XCS
[9], (2) fitness calculation in BioHEL, and (3) prediction computation (also in XCS) [10].
While these strategies successfully decrease the time burden of LCS, gains may also be
achieved through careful consideration of the analytical workflow. Specifically, since both
cross validation and permutation testing are“embarrassingly parallel”, there is a clear
opportunity for performance improvement through running the individual instances of the
LCS algorithm concurrently.

In the present study, we have implemented a modified version of AF-UCS which capitalizes
on the multi-core architecture of most modern computers. Consistent with parallelization
work in other python projects [8, 7, 6], we use the multiprocessing [2] module in Python 2.6
and greater to enable AF-UCS to launch multiple instances concurrently. This enables AF-
UCS to internally manage both CV and permutations parallelized over processes run on
separate cores of the CPU. Further, we show that use of this implementation on typical
Windows and Linux desktops can offer significant time savings without the use of enthusiast
level hardware. The remainder of this paper is organized as follows. Methods for the
implementation and evaluation of this strategy are given in Section 2. The results with
discussion are given in section 3. Conclusions are drawn and ongoing efforts outlined in
section 4.

2. METHODS
In this section we describe (1) the LCS algorithm and the run parameters used, (2)
implementation of the parallelization, (3) the evaluation strategy and benchmark dataset, and
(4) the hardware utilized in testing.

2.1 AF-UCS
In order to implement and test our parallelization scheme, we used the Python encoding of
AF-UCS, described in [12]. AF-UCS (attribute feedback UCS), is an expanded and modified
implementation of UCS [5]. UCS, or the sUpervised Classifier System, is a michigan style
LCS based largely on the popular XCS algorithm [19] but replaced reinforcement learning
with supervised learning. UCS was designed specifically to address single-step problems
such as classification and data mining, where delayed reward is irrelevant, and showed
particular promise when applied to epistasis and heterogeneity in [18].
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The selection of AF-UCS run parameters for this evaluation was arbitrary. We adopted
mostly default michigan-style LCS run parameters. Parameters unique to this study include:
10,000 learning iterations, a rule population size of 1000, tournament selection, uniform
crossover, and sub-sumption on. Parallelization code was incorporated into the Main.py
class. The implementation described above is available on request
(ryanurbanowiczgmail.com) and will be posted on the LCS and GBML Central webpage
[1].

2.2 Implementation
We begin our discussion of implementation with some background. Generally, a process is a
collection of data and instructions. These instructions allow the CPU to perform operations
on the associated memory in order to complete a task. Processes can range in complexity
from simply writing keyboard presses on screen to retrieving data from an HTML server and
displaying the formatted data in a web browser. In modern computing, hundreds of
processes may be organized by the operating system (OS) at one time. Users often desire or
require concurrent execution of CPU tasks such as: loading web pages, playing music or
videos, perform word processing, etc. On a machine with one CPU, the OS provides users
with the illusion of concurrently executing these processes through clever time slicing. A
portion of the instructions in one process will be executed then placed back in a queue while
a portion of another process is executed. It is this intelligent juggling of processes by the OS
that enables most concurrent execution. The process juggling is more formally called
context switching and can be a costly, in terms of time, endeavor. If the processes between
which the OS is switching both require large amounts of data in order to perform their
instructions, the context switch can be slow. Threads, which are subunits of processes,
alleviate this to some degree by enabling light weight context switching. A thread, similar to
a process, is a collection of data and instructions. However, threads belong to a process and
have access to their parent process’ memory. In cases where concurrent tasks should be
carried out on relatively constant data, context switching between threads requires little
memory management and simply instructs the CPU to juggle lists of instructions. While this
is clearly true for machines with a single CPU, it also extends to machines with multiple
CPUs. So long as the number of processes or threads being organized by the OS exceeds the
number of CPUs available, context switching will take place.

The multithreading framework is a good fit for simple parallel versions of AF-UCS.
Specifically, in the case of k-fold cross validation testing, k threads can be initialized to
perform model training and testing and all k threads can access the same data belonging to
their parent process. The same can be argued for permutation testing; p threads (one per
permutation) can be initialized all accessing the same data with the only distinction being
changes in the sample labels. Both of these AF-UCS parallelizations would benefit from the
light weight context switching that would be provided by a multithreading approach to
parallelization. Unfortunately, multithreading in Python is hampered by the global
interpreter lock (GIL). The GIL is a form of memory access lock that prevents multiple
python threads from running at the same time. In the case of a single CPU, the GIL does not
present a problem for a multithreaded implementation of AF-UCS. Each thread would be
juggled by the OS and the context switching between them would be relatively light weight.
However, in the presence of multiple CPUs the GIL ensures that only one thread can be
executed at a time; this means that if an AF-UCS thread is executing on CPU1, another AF-
UCS thread cannot simply be executed on CPU2 or any other available CPUs. Effectively,
the GIL removes the benefit of the increased number of available compute hardware.

To circumvent the GIL and more effectively capitalize on the common multi-core hardware
in modern workstations, we implement our parallel AF-UCS using the Python
multiprocessing package. Using this package we forego the creation of threads for CV and
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permutation testing and instead create processes. Each process launched contains not only
unique CPU instructions but a copy of the data necessary to carry out those instructions.
Relative to multithreading, the time necessary to launch a process is greater than that
necessary to launch a thread and the context switching is similarly slower. Despite this, we
expect a greater overall performance increase as processes are not regulated by the GIL and
are free to make use of whatever compute units are available.

Our parallelization of AF-UCS hinges on the ‘Pool’ object provided by
the ’multiprocessing’ package in Python (v 2.6 and greater) [2]. As shown in Algorithm 1,
the size of the pool is initialized at the start based on a user modifiable input parameter
which specifies the number of processes (nProcesses). Next, the input data is partitioned
into k partitions in preparation for CV. Each CV job is then submitted to the process pool.
For each of the (nPermutations) permutations specified by the user, the data labels are
scrambled then submitted to the process pool. Finally, the jobs in the process pool are
executed nProcesses at a time. Thus, the number of jobs submitted to the pool depends both
on the number of CV partitions and the number of permutations. While the permutation
threads are relatively independent of each other, the CV processes do require shared input
data which must be copied to each process and a final synchronization in order to calculate
the average testing accuracy. To improve performance, we delay the CV synchronization
until the end of the run at which time we also perform a permutation synchronization in
order to generate a p-value based on the null distribution.

2.3 Evaluation
Test runs were submitted, and wall-times to the millisecond were recorded using
the ’Measure-Command’ provided by Windows Powershell [3] or the ’time’ command in
the Linux Bash shell. Evaluations were completed on four separate workstations and all tests
were completed after a fresh boot of the respective workstation. The hardware specifications
for each machine are listed in Table 1. On each machine we ran three distinct LCS analysis
scenarios: (1) 10-fold CV alone, (2) 100-fold permutation testing alone, and (3) both 10-fold
CV and 100-fold permutation testing. In order to decrease the amount of time necessary for
these analyses, we opted to examine only 100-fold permutation testing. We expect that the
wall-time results can be extrapolated to 1000-fold permutation testing in a linear fashion.
Though the wall-time results are informative, we focus on the speedup and efficiency of our
implementation in order to give an indication of expected performance on a variety of
computer hardware.

Algorithm 1

Pseudo Code for CPU Parallelization

Require: data, nGen, k, nPermutations, nProcesses

  jobPool = Pool(nProcesses)

  partitions = Partition(data, k)

  for part ∈ partitions do

    jobPool.add(LCS(part, nGen))

  end for

  for permute ∈ nPermutations do

    data = Permute(data)

    partitions = Partition(data, k)

    for part ∈ nPartitions do
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      jobPool.add(LCS(part, nGen))

    end for

  end for

  result = jobPool.execute()

  accuracy = result.averageTestAccuracy()

  sig = result.significance(alpha = .05)

  return result, accuracy, sig

Speedup and efficiency, both of which are computed from the raw wall-time data, are
measures of the scalability of parallel implementations. Speedup for a specific number of
processes indicates the fold improvement in wall-time relative to a single process serial

implementation. Speedup with t processes is calculated as , where Walltime1
is the total wall-time for the analysis using only a single process. Efficiency is the slope of
the speedup line for a specific number of processes. The efficiency of using t processes is

simply calculated as . Ideally, the wall-time fold change is equal to the total number
of processes used which would result in a linear speedup and an efficiency value of 1.

In this evaluation we used a single simulated dataset as a benchmark for comparing across
workstations, number of threads, and analysis scenarios. In keeping with our biological
problem of interest, our benchmark dataset was simulated to concurrently possess patterns of
epistasis and heterogeneity. The genetic models used to simulate our benchmark dataset
were generated using GAMETES [16]. The datasets generated from these models were
merged to produce our benchmark dataset containing two distinct underlying two-locus
epistatic models, adding a heterogeneous component to the dataset. The first model was used
to generate 75% of the dataset with a heritability of 0.05 and minor allele frequencies of 0.2.
The second model was used to generate the remaining 25% of the dataset with a heritability
of 0.025 and minor allele frequencies of 0.4. Both simulated models were selected to be of
high difficulty based on model architecture according the model difficulty score prediction
implemented in GAMETES [15]. This benchmark dataset included 200 instances, and a total
of 20 attributes (4 of which were predictive). This dataset was selected to be extremely
challenging such that AF-UCS would not be able to quickly converge on a solution.

2.4 Hardware
Four consumer computers were used to perform testing. The hardware details of these
workstations are listed in Table 1. These machines possess a range of multicore CPUs which
allow the assessment of scaling and performance on hyper-threaded and non-hyperthreaded
hardware.

3. RESULTS AND DISCUSSION
As shown in Figure 2, our parallelized algorithm scales approximately linearly up to the
number of cores in representative consumer level computers. All computers used for testing
had quad-core processors and the speedup achieved using 1 to 4 processes is approximately
linear. The Intel Core i7 processors (Desktop 1, Desktop 3, and Laptop) make use of Intel
Hyperthreading technology which allows two processes to execute concurrently using one
CPU core. Thus, these CPUs offer eight concurrent processes of execution to the Operating
System. Scaling results for 5 to 8 threads, however, is less than ideal. Generally, the
hyperthreaded performance plateaus and little performance improvement is achieved. This is
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consistent across all four analysis scenarios with the exception of the CV scenario in which
performance deteriorates with the addition of hyperthreaded processes. The scaling of
performance was best on Desktop 1 which achieved at least a 4-fold increase in performance
in all 3 analysis scenarios (i.e. CV, permutation testing, and CV combined with permutation
testing). Across all four work- stations, the CV combined with permutation testing analysis
showed the most linear scaling. This was the longest running analysis and the improved
scaling suggests that initialization and synchronization costs were overshadowed by the LCS
computation.

Figure 3 illustrates the efficiency of our parallel implementation across the different analysis
scenarios. Efficiency is the slope of the speedup curve which is ideally ≥ 1. The more the
efficiency falls below 1, the less the additional thread contributes to overall performance
increases. The results in Figure 3 are consistent with those in Figure 2, i.e. processes 1–4
achieve approximately 80% efficiency. However, as the number of processes exceeds the
number of cores and the algorithm begins to make use of hyperthreading, efficiency drops
precipitously.

While measures of scaling suffer when hyperthreading is used, there remain tangible
benefits to making use of all concurrent processes. For example, using all 8 processes of
Desktop 1 in the CV and permutation testing analysis yielded an approximate 1.2-fold
increase in performance in comparison to using 4 processes (the number of physical CPU
cores available). Relative to a single process, using all 8 processes increased performance by
approximately 4.3-fold. In our small testing example, the improvement decreased the
running time by approximately 1,672 and 29,100 seconds respectively. In larger analyses,
however, the difference is potentially much greater. A similar pattern of performance is seen
in the results for Desktop 3. Relative to a single process, using eight processes resulted in an
approximate 4 fold decrease in wall-time compared to a 3.8 decrease when using four
processes. Though the difference in wall-time between four and and eight process
benchmarks was minimal (2.7 minutes), we expect the difference to be much greater in more
practical analysis situations with larger input data, population size, and number of
generations. More importantly, our results indicate consistent performance across a range of
hardware and operating systems; both Windows 7 and Ubuntu 13.04 analysis workstations
showed similar patterns in scaling and efficiency. The results support a simple operational
heuristic of number of processes equal to the total number of concurrent processes available
(including hyperthreading).

While successful, it should be noted that the major bottle-neck of the current implementation
of parallel AF-UCS is the final synchronization between all of the processes. We terminate
each process with a write to the hard drive in order to save the process results. Once all the
processes have completed, AF-UCS processes the output file on the hard drive and tabulates
the average testing accuracies and p-values. This bottleneck could greatly be relieved
through the use of a data structure in main memory. Access to this data structure would be
controlled by a memory lock but we expect communication with main memory to be faster
than reading and writing to the hard drive.

4. CONCLUSIONS
This study extends previous work by Urbanowicz et. al. [14, 13] by parallelizing AF-UCS in
order to accelerate k-fold CV and permutation testing. While GPGPU based parallelization
strategies can yield dramatic reductions in the run time of an algorithm, we focus on a CPU
parallelization strategy that is likely to benefit a larger group of potential users in reducing
the run time involved in performing permutation testing based statistical analysis in LCS
algorithms. Our results show a consistent improvement in run time for CV, permutation
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testing, and CV combined with permutation testing, when parallelizing the analysis over the
available cores of the CPU. As long as the number of processes does not exceed the number
of CPU cores, the speedup achieved is approximately linear. This suggests a significant
increase in performance for multi-core workstations which, we hope, will make this
algorithm more approachable to a wider range of users. While a workstation with additional
cores was not available for this study, the results suggest that additional CPU cores would
likely yield similar, near-linear speedups. In the present study we focused our
implementation evaluation on Windows 7 and Ubuntu workstations. While this workstation
selection was based largely on our own hardware availability, the similar patterns of
performance across operating systems suggest that our results are robust and should
generalize to most user hardware.

This work constitutes a first step in the direction of adapting our AF-UCS algorithm to the
computational demands inherent both in the determination of statistical significance as well
as the analysis of large-scale data which are rapidly becoming more massive. Our future
efforts will concentrate on further improvement of AF-UCS scalability as well as migration
of the code base to an MPI based cluster implementation.
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Figure 1.
An illustration of cross validation and the permutation test used simultaneously to obtain
train and test statistics along with associated p-values.
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Figure 2.
Speedup of parallelized AF-UCS by number of processes. Red lines indicate ideal linear
scaling. Performance is approximately linear up to threads equal to the number of physical
CPU cores.
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Figure 3.
Efficiency of parallelized AF-UCS by number of processes. Red lines indicate ideal
efficiency. Efficiency exceeds 80% up to threds equalling the number of physical CUP
cores.
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Table 1

Hardware Specifications

Part Laptop Desktop 1 Desktop 2 Desktop 3

CPU Intel Core i7-3840QM Intel Core i7 950 Intel Xeon E3-1225 Intel Core i7-3770

RAM 16 GB DDR3 798 Mhz 12GB DDR3 1600Mhz 8GB DDR3 667 MHz 16GB DDR3 1600 MHz

Hard Drive Samsung
PM830 477 GB SSD
SATA Gen 3.0 6Gb/s

Western Digital
7200 RPM
1TB SATA 3Gb/s

Samsung
PM830 238GB SSD
SATA Gen 3.0 6Gb/s

Samsung 840
120GB SSD
SATA Gen 3.0 6Gb/s

Cores 4 4 4 4

Hyperthreading Yes Yes No Yes

Processes 8 8 4 8

OS Windows 7 ×64 Windows 7 ×64 Windows 7 ×64 Ubuntu Linux ×64

Python 2.7 2.7 2.7 2.7
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