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Abstract Learning classifier systems are evolutionary

machine learning algorithms, flexible enough to be ap-

plied to reinforcement, supervised and unsupervised learn-

ing problems with good performance. Recently, self or-

ganizing classifiers were proposed which are similar to

learning classifier systems but have the advantage that

in its structured population no balance between niching

and fitness pressure is necessary. However, more tests

and analysis are required to verify its benefits. Here, a

variation of the first algorithm is proposed which uses

a parameterless self organizing map (SOM). This al-

gorithm is applied in challenging problems such as big,

noisy as well as dynamically changing continuous input-

action mazes (growing and compressing mazes are in-

cluded) with good performance. Moreover, a genetic op-

erator is proposed which utilizes the topological infor-
mation of the SOM’s population structure, improving

the results. Thus, the first steps in structured evolu-

tionary machine learning are shown, nonetheless, the

problems faced are more difficult than the state-of-art

continuous input-action multi-step ones.

1 Introduction

Learning Classifier Systems (LCS) are several algorithms

inspired by evolution [29],[20]. They can be applied
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to reinforcement learning problems (actually, they can

solve supervised learning and unsupervised learning [26]

as well but we will only focus on reinforcement learn-

ing in this article). Different from most reinforcement

learning algorithms, however, LCS algorithms do not

use state-action look-up tables to predict payoff. To

solve RL problems, LCS systems use a set of individ-

uals with condition-action-prediction rules, i.e., solving

the problem with piecewise approximations [19]. In this

manner, the difficulties that arrive from complex prob-

lems, where a large number of states and/or actions are

required, can be avoided.

However, the dynamic niches1 of solutions present

in LCS allows over-generalized solutions with higher fit-

ness to compete and win against specialized ones in low-

fitness niches (niches where good solutions receive low

payoff when compared to other niches), even though

the specialized solutions would have a better perfor-

mance. One way of solving this problem is to separate

a fitness defined on a niche from fitnesses defined on

other niches (i.e., having a good fitness on other niches

would not influence the present niche). This is exactly

the niched fitness concept which was introduced and

used by Self Organizing Classifiers (SOC) (niched fit-

ness is explained in Section 6). Notice that niched fit-

ness requires well defined niches where the fitness of

individuals can be measured and compared locally in-

side each niche. This concept is difficult to insert into

current LCSs.

SOC are a recently proposed family of evolutionary

machine learning methods with a structured popula-

1 In this article, the term niche follows the Hutchinsonian
niche definition [16]. Hutchinsonian niche is an n-dimensional
hyper-volume composed of environmental features. Moreover,
niching is basically clustering, i.e., the objective is to create
niches (clusters) which are more similar in some sense.
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tion (to the knowledge of the authors the first evolu-

tionary machine learning algorithm to use a structured

population). The main objective of SOC’s construction

was to overcome over-generalization problems (over-

generalized solutions and related problems) in LCS [31].

In SOC systems, no balance between specialization and

generalization are needed, since the niched fitness con-

cept is used. Actually, the niched fitness concept indi-

rectly requires a separation between the niching pres-

sure from the fitness pressure, in other words, by requir-

ing well defined niches, both objectives (i.e. the objec-

tive of creating good niches and the objective to reach

good solutions) need to be clearly stated. SOC uses

evolution only for finding good solutions (fitness pres-

sure), letting the SOM face the clustering objective in

parallel (niching pressure). Indeed, it is similar to co-

evolutionary approaches. The fitness for each niche can

be strength based2 because the niched fitness already

solved the problems with over-generalized classifiers.

Regarding the relationship between SOC and LCS.

Although, SOC and LCS possess many similarities, it

may not be correct to classify SOC as an LCS. There

are many crucial differences that make SOC difficult to

match with other LCS algorithms, see Table 1.

This article extends [31] to include a more robust

method without modifying its simplicity. A parameter-

less SOM replaces the SOM algorithm conferring better

adaptation properties and less parameters. Previously,

SOC were applied to some complex multi-step RL prob-

lems with optimum or near optimum results even using

small population sizes. This article shows results on four

new challenging problems:

– Big mazes - Mazes with as much as four times the

area of previous mazes.

– Noisy mazes - Mazes with noise.

– Changing mazes - Mazes which have their structure

modified over a series of trials.

– Growing and compressing mazes - Mazes which in-

crease or decrease in size and structure over trials.

Additionally, a new genetic operator is proposed which

utilizes the topological information of the SOM popu-

lation. Its use is shown to improve the results.

2 Learning Classifier Systems in Multi-step

and/or Continuous

Problems

LCS have been developed for a while, forming a wide

and diverse literature. LCS are evolutionary based sys-

2 Strength based fitness that is directly proportional to the
payoff. They came into disuse in the LCS literature because
of consequential over-generalization problems.

tems capable of solving problems by evolving a set of

agents with condition-action-prediction rules which co-

operate or compete with themselves. Here we will briefly

review LCS applied to multi-step and/or continuous

problems. For a detailed review of the literature, please

refer to [29][20].

In problems with continuous actions, LCS was ap-

plied to many problems. To begin with, XCSF has been

applied to function approximation [35],[10],[28]. Other

works in function approximation include the LCS with

fuzzy logic [30],[8],[11], neural-based LCS algorithms

[7],[8] and genetic programming-based [18]. The suc-

cess of LCS also span the control of robotic arms [24,9]

and navigation problems [6,15].

However, applications to multi-step problems with

continuous actions restrict to the mobile robot in a cor-

ridor [6] and the empty room with noise [15]. Complex

multi-step problems were solved only for discrete out-

puts [19].

3 The Parameterless Self Organizing Map

The commonly used SOM is an algorithm capable of

producing a projection of the input usually into two

dimensional space. One of the most important advan-

tages of the method is the preservation of the topologi-

cal relationship of the input in the constructed map. In

SOM, for every input x the grid of weights wi compete

for it (the closest weight wins the competition, i.e., the

weight having minimum ||x − wi||). After the winning

cell is decided, all cells in the grid are updated by the

following equation:

∆wi(t) = ε(t)hi,c{x(t)− wi(t)} (1)

wi(t+ 1) = wi(t) +∆wi(t). (2)

where ∆wi(t) is the weight update in the current itera-

tion t, ε is the learning rate and hi,c is the neighborhood

function. x and wi are respectively the input array and

the weight of a given cell i when the winning cell index

is c. The learning rate ε is a monotonically decreasing

function with respect to the number of times the grid

update was realized and neighborhood function is usu-

ally an exponentially decreasing distance based func-

tion. For example:

ε = 0.1(0.999999)t (3)

hi,c = e−dist(i,c)
2

, (4)

where dist is some distance metric applied on the grid,

defining the topological relationship of the grid’s cells.

Figure 1 illustrates one iteration of the algorithm, show-

ing how the grid adapts to a given two dimensional in-

put.
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Table 1 Difference Between Systems

Algorithm Type Model Fitness
LCS set of condition-action-prediction rules Accuracy based
SOC dynamic state-table of prediction rules Strength based

Standard RL static state-action look-up tables Strength based

Fig. 1 Illustration of the SOM dynamics. The left part of
the figure shows a two dimensional input (white dot) being
presented to the SOM’s grid (black dots connected by lines).
In this scenario, the winning cell (closest to the input) is
shown in red. Afterwards, the SOM’s grid is updated and the
resulting grid is shown on the right.

A parameterless SOM is a SOM where the learning

rate function is not necessary [5]. Instead, it is automat-

ically defined by how good the SOM fits the input (in

fact, this value is strongly related to the input’s novelty

[14],[23]). In the usual SOM, by making learning rate

monotonically decreasing with the number of iterations,

the more the SOM is used the less it could learn/adapt

to new information. The parameterless SOM sets the

learning rate according to the error of the input (not a

monotonic decreasing function), therefore it is able to

increase the learning rate when an rare or unexpected

input arrives. Thus, the new parameterless SOM does

not only possess fewer parameters, but also the ability

to always adapt to changes in the environment.

Let the learning rate ε be defined as:

r(0) = ||x(0)− wc(0)|| (5)

r(t) = max(||x(t)− wc(t)||, r(t− 1)) (6)

ε(t) =
||x(t)− wc(t)||

r(t)
, (7)

where wc is the SOM winning cell’s weight array. The

weight update ∆wi(t) is similar to SOM’s weight up-

date, changing only in relation to the new learning rate

ε and the modified neighborhood function hi,c. Con-

sidering dist(i, c) the distance between cell i and the

winner cell c, we have:

Θ(ε(t)) = ε(t)θmax, Θ(ε(t)) > θmin (8)

hi,c = e
−dist(i,c)2

Θ(ε(t))2 (9)

θmax and θmin are respectively the maximum and min-

imum of Θ(ε(t)). In this article, θmax equals to the

SOM’s area (width multiplied by the height of the grid)

and θmin = 1 are used.

Fig. 2 Island model structure. Arrows indicate the infre-
quent immigration procedure, the circles are the individuals
and the oval shapes are the subpopulations.

Fig. 3 Cellular algorithm structure. Shaded area indicates
an example of neighborhood for the central individual.

4 Structured Evolutionary Algorithms

Structured evolutionary algorithms does not possess a

panmictic population. Instead they organize the indi-

viduals into a structured population [27,2]. As com-

monly considered in the literature, algorithms which

has some sort of implicit structure will not be consid-

ered structured. In fact, to avoid this type of confu-

sion the name of parallel evolutionary algorithms are

sometimes used in the literature. The need for distinc-

tion derives from the fact that algorithms with implicit

structure lose many of the benefits of ones with explicit

structure.

Two types of structured EAs will be given as exam-

ples which are somewhat related to the structure of the

proposed method.

The first type is island models (also called distributed

genetic algorithms) [4]. Figure 2 shows its structure.

Basically, the population is divided into a number of

subpopulations (“islands”) with few genetic informa-

tion exchanged between them.

The second type, cellular algorithms are structured

evolutionary algorithms where individuals are usually

positioned in a vertex of a lattice graph (Figure 3 shows

a common cellular structure). They interact solely with

adjacent individuals defined by a neighborhood func-

tion [21,3].
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Fig. 4 Structured and unstructured division.

5 Evolutionary Machine Learning - Structured

and Unstructured

Methods in evolutionary machine learning can also be

classified into structured and unstructured3. As explained

in Section 4, structured algorithms arrange their pop-

ulation in some sort of structure whereas unstructured

ones possess a single population set. That is, in the

same way that structured evolutionary algorithms dif-

fer from unstructured panmictic ones, learning classifier

systems can be classified, in this context, as a type of

unstructured evolutionary algorithms and self organiz-

ing classifiers can be seen as a structured evolutionary

algorithm. Figure 4 shows a diagram illustrating this as-

pect. Note that implicit structured algorithms such the

niched genetic algorithm can not be considered struc-

tured following the definition in Section 4.

There is a motivation behind structured evolution-

ary machine learning. Indeed, some advantages of struc-

tured against unstructured algorithms should follow the

ones from the optimization field. To cite a few:

– Diversity - By restricting the interrelation of indi-

viduals, structured populations can preserve differ-

ent subpopulations, i.e., avoid competition;

– Time Performance - Structured populations allow

easier parallelization and therefore less running time

when running in the appropriate system.

6 Novel Concepts

Two relatively novel concepts are used in the article,

both concepts were introduced in [31]. They are respec-

tively:

– Niched fitness - Niched fitness is a fitness defined

only in a given niche (place or circumstance). Out-

side of this niche, the fitness is undefined and there-

fore nonexistent. The objective here is to evaluate

3 Structured and parallel as well as unstructured and pan-
mictic terms when referring to algorithms will be used indis-
tinctly.

Fig. 5 SOM population structure. A self organizing map grid
with subpopulations inside each cell.

individuals by their performance in the given niche

independent of how they behave in other niches,

solving over-generalization problems. In fact, the

niched fitness concept expose the similarity between

niching and multiobjectivization [22].

– SOM population - SOM population is a 2D cell grid

with each cell having a subpopulation. The grid be-

have as a SOM, self-organizing itself to the input

and allowing only the subpopulation inside the win-

ning cell to interact with the input. In other words,

SOM population is a mixture of both island models

and cellular algorithms with a self-organizing struc-

ture (See Figure 5).

7 Self Organizing Classifiers

SOC are a series of algorithms based on the SOM sub-

population, sharing similar model and dynamics. The

schematic of SOC is described in Figure 6 (the schematic

style is the same as the one previously used to describe

ZCS, XCS and many other papers of the LCS literature

[34]).

A Q-learning based reinforcement scheme with niched

fitness is used by SOC. The fitness update of each in-

dividual is done using the Widrow-Hoff rule [33]:

F = F + η(F̂ − F ), (10)

where η is the learning rate, F is the current fitness and

F̂ is a new fitness estimate. Given an arbitrary classifier

c activated at its SOM’s cell cell. The fitness estimate

of the pair (cell,c) which were activated at time t− 1 is

given by the following equation:

F̂ (c, cell)t−1 = Rt−1 + γ max
c′∈cell′

{F (c′, cell′)}, (11)

where R is the reward received, γ is the discount-factor,

max
c∈cell

{F (t)} is the maximum fitness inside the activated

cell cell′ at the current cycle t and c′ is a classifier which

has the current highest fitness in cell′.
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Fig. 6 Self Organizing Classifier Schematic

Similar to learning classifier systems, to decrease

computation resources, the structure of the SOM pop-

ulation is implemented as a single array of classifiers

with a given numerosity indexed by the SOM popula-

tion structure. In this manner, the numerosity is defined

by the number of indexes a given individual possesses.

8 Why SOM?

Before going into the further details of the algorithm,

we wish to clarify one question that might surge. Among

the vast amount of algorithms that could cluster inputs,

why was SOM chosen?

The answer is that we chose SOM not for what it

does, but for what it gives as information. In this con-

text, SOM’s interesting capabilities are as follows:

– Topological Preserving Projection - high-dimensional

inputs are projected in a two-dimensional topologi-

cal preserving map.

– Novelty Measure - The error of the SOM’s cell given

the input is an approximation to the uniqueness of

the input itself, which is a measure of novelty [14],

[23]. In fact, this measure is used to affect the update

of the other cell weights in the parameterless SOM.

Evolutionary algorithms can use these pieces of in-

formation to better adapt to the problem at hand. More-

over, other procedures can be run on these information

to improve the system as a whole. For example, genetic

operators may exploit the SOM’s structure by repro-

ducing individuals with similar individuals in subpop-

ulations adjacent to them. Observe that adjacent sub-

populations are necessarily similar in input and there-

fore may share similar or even equal solutions.

9 Simplest Self Organizing Classifiers

Simplest Self Organizing Classifiers are implementa-

tions of the class of Self Organizing Classifiers (see Sec-

tion 7). Figure 6 shows how the cycle is executed and

Table 2 describes the execution cycle in details.

For the sake of comprehensibility, we give here the

name of Simplest Self Organizing Classifier (SSOC) to

the first very simple algorithm developed in [31] and the

name of ”Simplest Self Organizing Classifier 2” (SSOC2)

to the one described in this article. The method pro-

posed here replaces the SOM by a parameterless SOM,

reducing two of the parameters since the learning rate

function is not necessary [5]. There are not any other

differences, therefore the definition here applies to both

SSOC and SSOC2.

The classifiers used code directly the action by an

array of real numbers, i.e., the model is an array of real

numbers which is mapped directly to the output.

Moreover, the SOM population has particularly a

subpopulation inside each cell which is also divided

into two groups: one of best individuals and the other

of novel individuals. Best and novel individuals have

a fixed size of β and ν respectively. Considering evo-

lutionary algorithm’s cycle is an algorithm cycle when

the evolutionary algorithm (EA) is called, the following

rules take place:

– Best individuals are the best fitted individuals inside

the subpopulation in the last EA’s cycle.



6 Danilo Vasconcellos Vargas et al.

Table 2 Simplest Self Organizing Classifiers’ Cycle

1. An input is received by the system
2. The SOM population is activated on the input (a given

individual will be returned to act)
(a) The cell’s weight array which is closest to the re-

ceived input wins the competition
(b) Inside the winning cell, a random individual is cho-

sen either from the novel group or from the best
group (depending if it is an exploration or exploita-
tion cycle)

(c) The cells’ weight array of the SOM population is
updated by the SOM algorithm

(d) The chosen individual is returned
3. The chosen individual acts on the system (in the case

of SSOC, the individual’s chromosome is the action
itself).

4. The previous acted individual on the past activated
cell has its fitness updated. The equation used to up-
date is written in Section 7 (notice that the fitness is
updated only for the given cell even if the individual
is present on other cells, see the niched fitness concept
on Section 6).

5. Check if the EA should be called. If positive, execute
the EA (see Section 9.1 for the complete description of
the EA).

– Novel individuals are renewed every EA’s cycle (the

detailed process is described in the next Section).

The SOM population begins without any classifiers.

Classifiers are created when the respective cell wins the

competition inside the SOM. In one hand, novel indi-

viduals are created as random classifiers. On the other

hand, best individuals, when possible, are set equal

to another cell’s best individuals from the neighbor-
hood4 which maximize experience

chebyshevDistance2 (experience is

defined on Section 9.1). If not possible, best individuals

are initialized in the same way as the novel individuals.

Observe that a given cell’s experience are set to zero

every time the evolution happens in it. This may seem

counter-intuitive, but it alleviates a problem with hy-

per active cells which often possess a high error (see the

cell’s error for the growth of SOM in [1], [12]). A ran-

dom selection of a close cell should output the similar

results.

Cycles of exploration and exploitation are alternated

(a cycle of exploration is followed by an exploitation

cycle and so on). Within the SOM’s winning cell in a

giving exploration or exploitation cycle a random indi-

vidual from respectively the novel or best individuals

are chosen to act.

4 Neighborhood is defined as the cells within a Chebyshev
distance of less or equal to four

9.1 Evolution

For every cycle that a cell’s individual acts, this cell has

its experience counter increased. The evolutionary al-

gorithm is called locally on each cell when the cell’s ex-

perience is greater than ιS. S is the number of subpop-

ulation individuals (novel plus best individuals) present

on each cell and parameter ι defines an experience per

individual, above which they should have an accurate

fitness evaluation. After the evolution has been applied,

the experience of the cell is set to zero.

By applying the evolutionary algorithm locally, SSOC2

(the same is valid for SSOC) respects the niched fitness

concept. Its procedure consists of sorting the individu-

als of the given cell according to their fitness. On one

hand, the current best β individuals substitute the pre-

vious best individuals and the remaining individuals

are discarded (the index is removed and the individ-

ual numerosity decrease, if the numerosity reaches 0 it

is deleted). On the other hand, novel ν individuals are

created using either:

1. Indexing - A copy from (index to) a randomly se-

lected individual of the entire population;

2. Reproduction - Created by a genetic operator.

The two procedures above have equal probabilities of

happening.

The differential evolution operator is used in both

SSOC and SSOC2. Motivated by its robustness and

overall good results [25,32,17], even when compared

against complex optimization algorithms (e.g., Estima-

tion of Distribution Algorithms) [13]. In this paper, the

differential evolution’s mutant vector is created by ran-

domly choosing three vectors from the SOM’s entire

population of individuals (notice that individuals with

numerosity bigger than one are counted as one).

10 Experiments

The definitions done in Section 10.1 are important spe-

cially when discussing adaptation of the system in ques-

tion.

10.1 Definitions

Definition 1 Adaptation - Capability of a system to

modify its behavior in order to better fit to changes in

the environment.

Definition 2 Adaptation’s Time - The time necessary

for a system to adapt to changes in the environment.
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Fig. 7 Maze 1 - Static 10x20 maze problem.

A system with an adaptation’s time of zero can

be said to possess a generalized model where modifi-

cations are unnecessary to fit both past and current

environments. In this sense, generality and adaptation

are closely related terms. Although, it depends on the

details about the system, e.g., the type of model used.

10.2 Environments

The experiments were conducted on both mazes of Fig-

ure 8 as well as on the dynamic mazes of Figures 9

and 10. Figures 9 and 10 show each two maze states, in

each of these problems the maze is constantly chang-

ing every 10000 trials between one state (right side)

and the other state (left side). Notice that the problem

described in Figure 10 shows a maze which constantly

increases and decreases in size. Agents act on all en-

vironments with continuous (x,y) translation actions.

The variable observed by the agent is the agent’s posi-

tion which is also continuous.

At every trial, the agent starts at a random position

on the environment. Naturally, starting inside a wall is

not possible. Reaching the goal would give the agent a

reward of 1000, hitting an obstacle would return −20

and any other action would return −10. Additionally,

agents can not move more than 1.0 in any direction. The

collision system is simply implemented (which makes it

harder than a real system). If an agent tries to move

inside a wall, the system detects the infraction, sets the

agent in the previous position and returns the reward.

In other words, an agent constantly hitting the wall will

not move at all. However, an agent that hits the limits

of a maze will have its final position limited by the

environment. Therefore, it is possible to move sideways

when hitting the limit of the environment.

10.3 Settings and Design of Experiments

The parameters of the algorithm are fixed and described

in Table 3. Here, it means the SOM iteration num-

ber, chebyshevDistance() is the Chebyshev distance

between the current cell and the cell which won the

SOM’s competition and random(a, b) is a function which

5 10 15 20

5
1
0

1
5

2
0

Fig. 8 Maze 2 - Static 21x21 maze problem.

2 4 6 8 10
2

4
6

8
1
0

2 4 6 8 10

2
4

6
8

1
0

Fig. 9 Maze 3 - Dynamic maze problem with constant di-
mensions 10x10. The maze change from the left to the right
state and vice-versa every 10000 trials.

2 4 6 8 10

2
4

6
8

1
0

5 10 15 20

2
4

6
8

10

Fig. 10 Maze 4 - Dynamic maze problem where the dimen-
sions also change, growing from 10x10 to 10x20 state and
vice-versa.

returns a uniform random value between a and b. The

cells of the SOM are only updated if the neighborhood

function multiplied by the learning restraint surpasses

the cell update threshold.

Following the design of [19] the performance is com-

puted as the average steps to reach the goal during the

last 100 trials. Moreover, trials can not last more than

500 steps. Any trial which last more than 500 is ter-

minated and a new trial is started with the agent, as

usual, in a random position. Every result, when not

stated otherwise, are averaged over 20 experiments.

To give an overall idea of the resulting behavior of

the agent (or its fitness) after the algorithm has learned,

a sampling strategy was used. First, we divide the maze

in blocks of size 1x1, then the action of the agent (or

the fitness of the winning cell) is sampled 100 times and

averaged in a given 1x1 block. By repeating this process

for all blocks inside the maze, we have a general idea of

the behavior learned (or fitness distribution).



8 Danilo Vasconcellos Vargas et al.

Table 3 Parameters

Differential Evolution
CR 0.2
F random(0, 1)

Self Organizing Map

Matrix Size 10 × 10
Weight’s initial value random(0, 1)
Neighborhood function exp(−chebyshevDistance()2)
Cell update threshold 0.005

Self Organizing Classifiers

η 0.2
β 2
ν 5
ι 20
γ 0.90
InitialF itness 0

10.4 Big Mazes

Big mazes challenge methods to create long chains of

actions. In fact, the creation of long chains of actions

may be difficult for various reasons. For example, fitness

may not spread wisely, learning may take too long (e.g.,

due to maze bottlenecks), instabilities may arise, etc.

Figure 11 shows the behavior, population and per-

formance of SSOC2 over Maze 1 with both the default

10x10 SOM population and with a smaller 5x5 SOM

population. It can be seen that even with an insufficient

population the algorithm achieves a solution capable of

near optimal results. The same can be said for the re-

sults over Maze 2 in Figures 12 and 13. Despite the size

of the maze, the quality of the result does not decrease

much with smaller population sizes. In fact, the behav-

ior stays more or less the same with the performance

being a little worse. Both algorithms use a discount fac-

tor of 0.99 to enable a good spread of fitness.

SSOC2’s sensitivity to the size of population is ex-

istent but it is, surprisingly, not big even with such

simple classifiers. The sensitivity happens due to two

limitations:

1. The SOM’s current incapability of growing to couple

with the difficulty of the problem in question.

2. SSOC2’s classifiers are as simple as possible. There-

fore, niching’s granularity needs to increase for the

method to cope with different actions. In fact, it

is just evolving piecewise constant approximations

(neural XCSF from [15] used piecewise nonlinear ap-

proximations to solve continuous input-action multi-

step problems).

Therefore, with adaptable niching’s granularity (grow-

ing and shrinking SOM population) as well as more

complex classifiers (complex models) the sensitivity should

disappear completely.

10.5 Noisy mazes

Real world problems always have some degree of noise

involved. In some of them, the noise present can not be

disregarded, affecting some algorithms undesirably. To

simulate mazes where noisy can not be disregarded, a

±5% noisy variation is added to the observed variables.

The result is shown for both Mazes 1 and 2 on re-

spectively Figures 14 and 15. For Maze 1, Figure 14

shows very good results with no visible issues. In fact,

the performance is better than the results without noise

(see Figure 11), i.e., it has less oscillations while con-

verging to the same value. This happens because with-

out noise the algorithm may get stuck, repeating for a

long time the same input and consequently building a

poor SOM model (the weights of SOM’s cells will get

near the repeated input). With noise the input received

by the algorithm will rarely be the same. Actually, the

algorithm may even found itself fewer times stuck, since

the noise is constantly changing the input giving chance

to other SOM cells to activate and therefore the pos-

sibility of different actions to arise. Maze 2 shows a

slightly worse performance and behavior. This happens

because aliasing states with very different fitness ap-

peared. To explain this phenomenon, first take a look

at the fitness in part A, B and C. Notice that parts A

and C have greater values than part B. This is only pos-

sible because part C is getting a bit of fitness from the

high fitness northwest portion of the map just above

it. Due to the noise effects, part C may receive inputs

from the northwest portion of the map, allowing it to

receive a greater reward than it should. This influence

of a high fitness aliasing state cause the unwise behav-

ior at the frontiers. However, when the initial state is

not in this problematic regions, the result is as good as

without noise.

To give an idea of SSOC2’s performance in relation

to the evolutionary machine learning literature, Fig-

ure 16 shows the resulting behavior for the empty room

with noise of [15]. Both SSOC2 and the neural XCSF
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Fig. 11 SSOC2’s behavior (upper row), population (middle row) and performance (lower row) throughout the trials. The left
column shows the results for the default 10x10 sized population and the right show results for the smaller 5x5 SOM population.

converge to the optimum behavior. However, SSOC2

used a SOM population of size 5x5 which is equivalent

to a maximum of 175 individuals in a panmictic popu-

lation (each cell of the SOM population has 7 individ-

uals, see Table 3), while XCSF took 16000 individuals

to solve it, i.e., SSCO2 used 91 times less population.

Both SSCO2 and XCSF were not optimized and these

populations numbers are not the minimal population

required to solve the maze. However it is still a quanti-

tative measure that gives an overall picture of the pop-

ulation requirements for both algorithms on multi-step

RL problems.

10.6 Changing Mazes

Problems in the real world are never static. To reflect

this challenging characteristic, we consider a maze (see

Figure 9) which changes from time to time. In other

words, the agent’s adaptation ability is put to test.

Figure 17 shows the number of steps required by

the agent over time to solve Maze 3. Notice that the

first two peaks are bigger than subsequent ones. This

fact verifies the ability of the algorithm to reuse the

knowledge when possible. Moreover, the repetition of

exponentially decreasing learning curves demonstrate

the agent’s ability to change its model to reflect the
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Fig. 12 SSOC2 applied to Maze 2 with 20x20 SOM population and discount factor of 0.99. The figure shows the behavior
(upper left), fitness (upper right), population (lower left) and performance (lower right).

environment whenever the environment changes. This

verifies the agent’s adaptation ability.

10.7 Growing and compressing mazes

A special case of dynamic mazes are mazes which does

not only change its internal structure but also size. That

is the case for Maze 4’s growing maze (see Figure 10).

The results demonstrate that SSOC has a good ca-

pability of adaptation which is also unchanged through-

out the experiment (see Figure 18). Moreover, the de-

creasing peaks shows the reuse of knowledge from the

previous problem. The system seems to arrive at a stage

where minimal steps are required to adapt, i.e., minimal

adaptation’s time.

11 SSOC versus SSOC2

Here, SSOC2 and SSOC algorithms are compared. In

the SSOC algorithm, 0.1(0.999999)it is used as a learn-

ing rate function (parameter absent in a parameterless

SOM).

The main difference between SSOC and SSOC2 are

the incapability of changing the model when an early

distribution was biased (or when the problem has just

changed).Therefore, the results from Figure 19 are ex-

pected (SSOC was not able to continuously adapt as

the learning rate gets smaller and can not increase with

time). Figures 20 and 21 shows respectively a smaller

problem (solved by both algorithms) and a bigger prob-

lem where SSOC had difficulties. Similar to problems

that change with time, big mazes may cause the distri-

bution of input from a series of trials to differ strongly.

To make the differences explicit, Figure 22 shows a com-

parison between the resulting SOM’s structure from
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Fig. 13 Smaller population results. SSOC2 applied to Maze 2 with a discount factor of 0.99 (remaining parameters are the
default, i.e., 10x10 SOM Population, etc). The figure shows the behavior (upper left), fitness (upper right), population (lower
left) and performance (lower right).

both SSOC and SSOC2. It is clear that SSOC focuses

on the frequency of input while SSOC2 focuses on the

novelty of the input 5. That explains the poorer cover-

age of SSOC. Having said that, a poor coverage does

not mean a worse result. It depends on the system. For

example, if the high frequency of inputs coincides with

the most difficult inputs, the poor coverage would be a

very useful mapping.

12 Mixed Genetic Operator

SOM’s population is naturally a structure. However,

until now the evolutionary algorithm did not take any

5 recall that the error between the SOM’s cell and the in-
put, which is used to determine the rate of learning, is an
approximation to uniqueness, i.e., a measure of novelty [14],
[23]

benefit from this aspect. Here we show that by using

the topological preserving properties of SOM it is pos-

sible to mix global and local solutions to obtain relevant

improvements.

The mixed genetic operator used is, as before, based

on the differential evolution operator. But instead of

choosing three random global solutions, each of the

three solutions chosen come with equal probability from

either a random adjacent cell (local) or a random solu-

tion (global). Results are shown on Figure 23. The num-

ber of steps necessary to reach the goal is on average

approximately 60 after the algorithm has converged.

Recall that using the previous (only global) genetic op-

erator the average reached approximately 70 steps (see

Figures 12). This result shows that evolutionary algo-

rithms can explore the structure of the SOM with ge-

netic operators, ending up also working on the inherent

structure of the problem. In other words, it is possible
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Fig. 14 SSOC2’s behavior and performance for Maze 1 with
noise.

to efficiently reuse similar partial solutions (adjacent

solutions) to solve similar partial problems (adjacent

cells).

13 Justification

SSOC2 has a simple model. Nonetheless, it is still pos-
sible to achieve good results in complex problems with

it. One way to think about it (as described in Section 1)

is to see that niched fitness is necessary to avoid over-

generalized solutions, deriving the rest of the reasoning

from it. However, one might also think that at the heart

of any problem, there is the necessity to divide and de-

couple as much as there is the necessity to solve the

parts. In other words, divide and conquer6 is essential.

The hurdle is that it was always a multi-objective prob-

lem, treating it as a single-objective problem will con-

sequently provoke either division or conquer strategies

to prevail over another, while we may want both to co-

exist7. By separating both niching and fitness pressures

into a cooperating system, SOC managed to overcome

this problem. In this sense, niched fitness becomes a

consequence.

6 The name of a widely known algorithm but most impor-
tantly a line of thought of how to solve problems in general
7 over-generalizing solutions derives exactly from the preva-

lence of conquer strategies over division strategies
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Fig. 15 SSOC2’s behavior, fitness and performance for Maze
2 with noise. SOM population’s size is 20x20 and the discount
factor is set to 0.99.
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Fig. 16 Empty room maze with noise solved by SSOC2 with
a SOM population’s size of 5x5.
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Fig. 17 Number of steps required by the agent to reach the
objective in Maze 3. Vertical red dashed lines shows when
the maze changed. A horizontal dashed line at 20 is drawn
for orientation purposes.
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Fig. 18 SSOC2 performance on Maze 4. Vertical red dashed
lines show when the maze changed. A horizontal dashed line
at 20 is drawn for orientation purposes.
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Fig. 19 Number of steps required by SSOC2 (red) and SSOC
(blue) agents to reach the objective in Maze 4. Vertical dashed
lines show when the maze changed.

Fig. 20 Results on Maze 1 for SSOC2 (red) and SSOC
(blue).

Fig. 21 Results on Maze2 for SSOC2 (red) and SSOC (blue).
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Fig. 22 Two samples of the final distribution of SOM’s cells
for SSOC2 (above) and SSOC (below) for Maze 2. The size of
the points is directly proportional to their experience (number
of times they were selected to act).
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Fig. 23 SSOC2 with mixed genetic operator applied to
Maze 2.

13.1 The Mistake in the Metaphor

LCS are based on an amazing metaphor where individ-

uals should behave as well as choose their own niche.

There is no mistake in this metaphor. The problem

comes when fitness is defined as an exaggeratedly sim-

ple single function per individual. In this point, niches

and other interesting metaphors are discarded because

the system is using an absolute fitness, while the fitness

should be relative to the niches not only numerically but

in meaning (there is no meaning in combining a fitness

from a niche with a fitness of another niche, they are

variables from different attributes). Monkeys may be

amazingly adaptive in forests and many other environ-

ments, however, they are never able to interfere in any

sense with the lantern-fish (fish of deep seawater). That

is the metaphor mistake that niched fitness attempts to

solve.

14 Conclusion

This article evaluated deeply the benefits and challenges

of self organized classifiers (or more generally struc-

tured evolutionary machine learning). The following are

the main points:

– SSOC2 - An improved version of SSOC (named SSOC2)

that was created with the substitution of the SOM

by the parameterless SOM. Differences in the final

SOM population structured was shown as well as

better results.

– State-of-art Results On Challenging Problems - Re-

sults were shown in a variety of continuous input-

action multi-step problems. Problems with noisy and

with dynamic environments were also considered.

To the knowledge of the authors these problems are

the most difficult continuous input-action multi-step

problems faced by an evolutionary machine learning

algorithm to date. Although SSOC2 is made of very

simple classifiers (SSOC2 is capable of only piece-

wise constant approximations), near optimal results

were presented.

– Genetic Operator - Tests have shown the advantages

of using the SOM population’s topological infor-

mation inside the evolutionary algorithm. By using

global and local solutions inside the genetic opera-

tor, the average number of steps required to reach

the objective reduced in approximately 10 steps.

Thus, with the good results on very difficult prob-

lems it was possible to verify the strength of the ap-

proach even with a very simple internal model. There

are many possible branches of research that can de-

rive from SOC. In fact, structured evolutionary machine
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learning algorithms were barely researched. Numerous

widely different algorithms are possible from the combi-

nation of parallel (structured) evolutionary algorithms,

learning classifier systems and machine learning. This

is just the first step.
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