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Abstract We have recently presented an initial study

of evolutionary algorithms used to design vertical-axis

wind turbines (VAWTs) wherein candidate prototypes

are evaluated under fan generated wind conditions after

being physically instantiated by a 3D printer. That is,

unlike other approaches such as computational fluid dy-

namics simulations, no mathematical formulations are

used and no model assumptions are made. However, the

representation used significantly restricted the range of

morphologies explored. In this paper, we present ini-

tial explorations into the use of a simple generative en-

coding, known as Gielis superformula, that produces a

highly flexible 3D shape representation to design VAWT.

First, the target-based evolution of 3D artefacts is in-

vestigated and subsequently initial design experiments

are performed wherein each VAWT candidate is phys-

ically instantiated and evaluated under fan generated

wind conditions. It is shown possible to produce very

closely matching designs of a number of 3D objects

through the evolution of supershapes produced by Gielis

superformula. Moreover, it is shown possible to use ar-

tificial physical evolution to identify novel and increas-

ingly efficient supershape VAWT designs.
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1 Introduction

Renewable energy contributed over half of total net ad-

ditions to global electric generating capacity from all

sources in 2012, with wind power accounting for around

39% of the renewable power added [64, p. 13]. Cur-

rently, arrays of horizontal-axis wind turbines (HAWTs)

are the most commonly used form of wind farm used

to extract large amounts of wind energy. However, as

the turbines extract the energy from the wind, the en-

ergy content decreases and the amount of turbulence in-

creases downstream from each. For example, see [31] for

photographs and explanation of the well-known wake

effect at the Horns Rev offshore wind farm in the North

Sea. Due to this, HAWTs must be spaced 3–5 tur-

bine diameters apart in the cross-wind direction and

6–10 diameters apart in the downwind direction in or-

der to maintain 90% of the performance of isolated

HAWTs [15]. The study of these wake effects is there-

fore a very complex and important area of research [4],

as is turbine placement [53].

Thus, “modern wind farms comprised of HAWTs

require significant land resources to separate each wind

turbine from the adjacent turbine wakes. This aerody-

namic constraint limits the amount of power that can

be extracted from a given wind farm footprint. The

resulting inefficiency of HAWT farms is currently com-

pensated by using taller wind turbines to access greater

wind resources at high altitudes, but this solution comes

at the expense of higher engineering costs and greater

visual, acoustic, radar and environmental impact” [15,

p. 1]. This has forced wind energy systems away from

high energy demand population centres and towards re-

mote locations with higher distribution costs.

In contrast, vertical-axis wind turbines (VAWTs) do

not need to be oriented to wind direction and the spac-
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ing constraints of HAWTs often do not apply. VAWT

performance can even be increased by the exploitation

of inter-turbine flow effects [11]. Indeed, it has recently

been shown [15] that power densities an order of magni-

tude greater can be potentially achieved by arranging

VAWTs in layouts utilising counter-rotation that en-

able them to extract energy from adjacent wakes and

from above the wind farm.

VAWTs can also be easier to manufacture, may scale

more easily, are typically inherently light-weight with

little or no noise pollution, and are more able to toler-

ate extreme weather conditions [19]. This has resulted

in a recent expansion of their use in urban environ-

ments [78]. However, their design space is complex and

relatively unexplored. Generally, two classes of design

are predominantly under investigation and exploitation:

Savonius [67], which has blades attached directly upon

the central axis structure; and Darrieus [16], where the

blades, either straight or curved, are positioned away

from the central structure. Hybrids also exist.

We [59] have recently presented an initial study of

surrogate-assisted genetic algorithms (SGAs) [17] used

to design VAWTs wherein candidate prototypes are

evaluated under fan generated wind conditions after

being physically instantiated by a 3D printer. That is,

unlike other approaches, no mathematical formulations

are used and no model assumptions are made. Initially,

artificial evolution was used to explore the design space

of a single isolated VAWT. Subsequently, a coopera-

tive coevolutionary genetic algorithm (CGA) [38] was

applied to explore the design space of an array of two

closely positioned VAWTs.

The results showed that EAs are capable of iden-

tifying novel and increasingly efficient VAWT designs

wherein a sample of prototypes are fabricated by a 3D

printer and examined for utility in the real-world. The

use of a neural network surrogate model was found to

reduce the number of fabrications required by an evo-

lutionary algorithm (EA) to attain higher aerodynamic

efficiency (rotation speed) of VAWT prototypes. The

approach completely avoids the use of 3D computer

simulations, with their associated processing costs and

modelling assumptions. In particular, the wind turbine

array experiment showed that surrogate-assisted coevo-

lutionary genetic algorithms (SCGAs) are capable of it-

eratively increasing the performance of two closely po-

sitioned VAWTs, taking into account the inter-turbine

flow effects, which is especially difficult to achieve un-

der a high-fidelity simulation. The SCGA represents a

scalable approach to the design of wind turbine arrays

since the number of inputs to the surrogate-models re-

mains constant regardless of the number of turbines

undergoing evolution.

However, the representation used significantly re-

stricted the range of morphologies explored, including

a fixed number of blades. In this paper, we present ini-

tial explorations into the use of a simple generative en-

coding that produces a highly flexible 3D shape repre-

sentation to design VAWT that are manufactured by a

3D printer and evaluated in the real world. First, the

target-based evolution of 3D artefacts is investigated

and subsequently initial VAWT design experiments are

performed wherein each individual is physically instan-

tiated and evaluated under fan generated wind condi-

tions.

2 Background

2.1 Evolving 3D shapes

The evolution of geometric models to design arbitrary

3D morphologies has been widely explored. Early ex-

amples include Watabe and Okino’s lattice deforma-

tion approach [80] and McGuire’s sequences of polyg-

onal operators [48]. Sims [72] evolved the morphology

and behaviour of virtual creatures that competed in

simulated 3D worlds with a directed graph encoding.

Bentley [5] investigated the creation of 3D solid ob-

jects via the evolution of both fixed and variable length

direct encodings. The objects evolved included furni-

ture, heatsinks, penta-prisms, boat hulls, aerodynamic

cars, as well as hospital department layouts. Eggen-

berger [18] evolved 3D multicellular organisms with dif-

ferential gene expression. Jacob and Nazir [41] evolved

polyhedral objects with a set of functions to manipu-

late the designs by adding stellating effects, shrinking,
truncating, and indenting polygonal shapes. Jacob and

Hushlak [40] used an interactive evolutionary approach

with L-systems [61] to create virtual sculptures and fur-

niture designs.

Husbands et al. [39] used an interactive evolutionary

approach to design 3D objects with a superquadrics [2]

formula similar to the shape representation used here.

The genetic algorithm (GA) [34] used a directed graph

encoded as bitstrings that were translated into a valid

geometry. They were the first to combine superquadric

primitives and global deformations with a GA, incorpo-

rating translation, rotation, scaling, reflection, tapering

and twisting. A significant advantage of superquadrics

is the compactness of the representation since few pa-

rameters are needed for a given deformation that widely

extends the range of complex objects representable.

More recently, compositional pattern producing net-

works [74] have been used to evolve 3D objects, which

were ultimately fabricated on a 3D printer [12]. Both

interactive and target-based approaches were explored.
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Notably, Hornby et al. [36] evolved and manufactured

an X-band satellite antenna for NASA’s ST5 spacecraft,

representing the world’s first artificially evolved hard-

ware in space. Significantly, the evolved antennas out-

performed a human design produced by the antenna

contractor for the mission. Most of these approaches,

however, have used simulations to provide the fitness

scores of the evolved designs before final fabrication.

2.2 Evolving wind turbines and blades

The majority of blade design optimisation is performed

through the use of CFD simulations, typically described

with 3D Navier-Stokes equations [1]. However, 3D CFD

simulations are computationally expensive, with a sin-

gle calculation taking hours on a high-performance com-

puter, making their use with an iterative search ap-

proach difficult [23]. Moreover, assumptions need to be

made, e.g., regarding turbulence or pressure distribu-

tions, which can significantly affect accuracy.

Previous evolutionary studies have been undertaken

with types of CFD to optimise the blade profile for

both HAWT [27] and VAWT [10] to varying degrees

of success/realism. EAs have also been applied to air-

craft wing design (e.g., [55]), including transonic aero-

foils (e.g., [62, 25]), and multidisciplinary blade design

(e.g., [26].)

Most methods have used representations that define

the design directly (e.g., spline surfaces [32]), or through

representations designed specifically for the task (e.g.,

3D aerofoils [56].) Menzel and Sendhoff [49] evolved pa-

rameters to a free form deformation (FFD) [69] algo-

rithm to design the 3D stator blade of a jet turbine

using CFD simulations to evaluate solutions. Instead

of representing the object directly, FFD defines a lat-

tice of control points that manipulate a given object

to an arbitrary degree of complexity. As a consequence

of the cost of CFD analysis, currently most blade de-

sign optimisation uses surrogate models (also known as

meta models or response surface models) to reduce the

number of evaluations required [73].

A growing body of work has been exploring tech-

niques to optimise a given wind farm layout—termed

micro-siting. See [66] for a recent review of evolution-

ary computation-based techniques. Importantly, all of

this work has been based on wake models of varying de-

grees of fidelity; however, it has long been noted that as

the interaction dynamics become more complex, simu-

lation deficiencies can severely mislead the evolutionary

search, leading to a ‘reality gap’ once the design is phys-

ically instantiated [43].

2.3 Evolving physical artefacts

The evaluation of physical artefacts directly for fitness

determination can be traced back to the origins of evo-

lutionary computation [17]. For example, the first evo-

lution strategies were used to design jet nozzles with a

string of section diameters, which were then machined

and tested for fitness [63]. Other well-known examples

include robot controller design [54], electronic circuit

design using programmable hardware [77], product de-

sign via human provided fitness values [33], chemical

systems [76], and unconventional computers [30]. More

recently, [9] used an EA to evolve a morphing wing

structure where physical designs were morphed using

a set of actuators and evaluated in a closed-loop wind

tunnel.

Evolution in hardware has the potential to benefit

from access to a richer environment where it can exploit

subtle interactions that can be utilised in unexpected

ways. For example, the EA used by Thompson [77]

to work with field-programmable gate array circuits

used physical properties of the system to solve problems

where the properties used are still not understood. Hu-

mans can be prevented from designing systems that ex-

ploit these subtle and complex physical characteristics

through a lack of understanding, however this does not

prevent exploitation through artificial evolution. There

is thus a real possibility that evolution in hardware may

allow the discovery of new physical effects, which can

be harnessed for computation/optimisation [50].

Moreover, the advent of high quality, low-cost, ad-

ditive rapid fabrication technology (known as 3D print-

ing) means it is now possible to fabricate a wide range

of prototype designs quickly and cheaply. 3D printers

are now capable of printing an ever growing array of dif-

ferent materials, including food, e.g., chocolate [29] and

meat [47] for culinary design; sugar, e.g., to help create

synthetic livers [51]; chemicals, e.g., for custom drug

design [75]; cells, e.g., for functional blood vessels [42]

and artificial cartilage [81]; plastic, e.g., Southampton

University laser sintered aircraft; thermoplastic, e.g.,

for electronic sensors [45]; titanium, e.g., for prosthet-

ics such as the synthetic mandible developed by the

University of Hasselt and transplanted into an 83-year

old woman; and liquid metal, e.g., for stretchable elec-

tronics [44]. One potential benefit of the technology is

the ability to perform fabrication directly in the target

environment; for example, Cohen et al. [14] recently

used a 3D printer to perform a minimally invasive re-

pair of the cartilage and bone of a calf femur in situ.

Lipson and Pollack [46] were the first to exploit the

emerging technology in conjunction with an EA using

a simulation of the mechanics and control, ultimately
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printing mobile robots with embodied neural network

controllers.

Funes and Pollack [21] performed one of the earli-

est attempts to physically instantiate evolved 3D de-

signs by placing physical LEGO bricks according to

the schematics of the evolved individuals. A direct en-

coding of the physical locations of the bricks was used

and the fitness was scored using a simulator which pre-

dicted the stability of the composed structures. Ad-

ditionally, Hornby and Pollack [35] used L-systems to

evolve furniture designs, which were then manufactured

by a 3D printer. They found the generative encoding

of L-systems produced designs faster and with higher

fitness than a non-generative system. Generative sys-

tems are known to produce more compact encodings

of solutions and thereby greater scalability than direct

approaches (e.g., see [68]).

Recently, Rieffel and Sayles [65] evolved circular 2D

shapes where each design was fabricated on a 3D printer

before assigning fitness values. Interactive evolution was

undertaken wherein the fitness for each printed shape

was scored subjectively. Each individual’s genotype con-

sisted of twenty linear instructions which directed the

printer to perform discrete movements and extrude the

material. As a consequence of performing the fitness

evaluation in the environment, that is, after manufac-

ture, the system as a whole can exhibit epigenetic traits,

where phenotypic characteristics arise from the mechan-

ics of assembly. One such example was found when se-

lecting shapes that most closely resembled the letter

‘A’. In certain individuals, the cross of the pattern was

produced from the print head dragging a thread of ma-

terial as it moved between different print regions and

was not explicitly instructed to do so by the genotype.

3 Gielis superformula

Superquadrics [2] have long been used for modelling 3D

objects, including the more recent computational sim-

plification, ratioquadrics [7]. However, superquadrics are

limited by an intrinsic symmetry. Extensions through

additional local and global deformations have therefore

been proposed [3], with such deformations requiring

larger sets of parameters. Global deformations affect

the whole superquadric and include tapering, bending,

twisting, or any hierarchical combination thereof. Other

methods of increasing the degrees of freedom include

using Bezier curves as functions in the exponent of su-

perquadric equations [82] and hyperquadrics [28].

Despite the proposed extensions to superquadrics,

they are fixed to the orthogonal system of coordinate

axes. It is therefore difficult to describe certain shapes

such as polygons or polyhedrons with superquadrics.

Gielis [22] therefore introduced a new approach using a

generalised superellipse equation, termed the superfor-

mula, which can be defined for any symmetry. Modi-

fying the set of real-valued parameters to the superfor-

mula generates supershapes, myriad and diverse natural

polygons with corresponding degrees of freedom. The

superformula can be used to create 3D objects using

the spherical product of two superformulas.

“In general, one could think of the basic superfor-

mula as a transformation to fold or unfold a system

of orthogonal coordinate axes like a fan. This creates

a basic symmetry and metrics in which distances can

further be deformed by local or global transformations.

Such additional transformations increase the plasticity

of basic supershapes” [22, p. 337]. Gielis superformula

can be further generalised to increase the degrees of

freedom, adding twist and additional rotations, permit-

ting the creation of more complex 3D forms, including

shells, möbius strips, and umbilic tori.

Gielis superformula, which defines a supershape in

2D is given in the following equation, where r is the

radius; φ is the angle; a > 0, b > 0 control the size

of the supershape and typically = 1; and m (symmetry

number), n1, n2 and n3 (shape coefficients) are the real-

valued parameters:

r = f(φ)
1

n1

√
(| 1acos(

m
4 φ)|)n2 + (| 1b sin(m4 φ)|)n3

(1)

Using the spherical product, the basic extension to 3D:

x = r1(θ)× cos(θ)× r2(ϕ)× cos(ϕ) (2)

y = r1(θ)× sin(θ)× r2(ϕ)× cos(ϕ) (3)

z = r2(ϕ)× sin(ϕ) (4)

Where −π2 ≤ ϕ ≤ π
2 for latitude and −π ≤ θ ≤ π for

longitude.

More complex shapes can be produced through ad-

ditional deformation parameters that apply toroidal in-

stead of spherical mappings, alter the radius and di-

ameter of the toroid, modify the offset along the ro-

tation axis, and perform additional twist and further

rotations; procedures to calculate the extended super-

formula are shown in Algorithm 1.

Example shapes1 generated with the superformula

can be seen in Fig. 1 where the cube, star, and heart

can be generated from the same set of eight real-valued

parameters; the torus requiring two additional param-

eters; the shell a total of twelve; and the möbius strip

a total of fifteen.

1 A supershape visualisation tool and its source code pro-
duced by Martin Schneider, licensed under Creative Com-
mons Attribution Share Alike 3.0 and GNU GPL license, can
be found at http://openprocessing.org/visuals/?visualID=

2638.

http://openprocessing.org/visuals/?visualID=2638
http://openprocessing.org/visuals/?visualID=2638
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Algorithm 1: Extended superformula.

1 Procedure Extended Superformula(θ, φ, m1, n1,1,
n1,2, n1,3, m2, n2,1, n2,2, n2,3, c1, c2, c3, t1, t2, d1,

d2, ro)

2 t2c ← (r0 × cd2

2 × t2 × c1)/2
3 t2 ← t2 × c1 × θ
4 d1 ← (θ × c1)d1

5 d2 ← (θ × c2)d2

6 θ ← (((π × 2)× θ)− π)× c1
7 φ← ((π × φ)− (π/2))× c2
8 φ2 ← φ+ (c2 × θ)
9 r1 ← Superformula(θ, 1, 1,m1, n1,1, n1,2, n1,3)

10 r2 ← Superformula(φ, 1, 1,m2, n2,1, n2,2, n2,3)
11 x← r0 × r1 × (t1 + d1 × r2 × cos(φ2))× cos(φ)
12 y ← r0 × r1 × (t1 + d1 × r2 × cos(φ2))× sin(φ)
13 z ← r0 × d2 × (r2 × sin(φ2)− t2) + t2c
14 return x, y, z

1616

17 Procedure Superformula(φ, a, b, m, n1, n2, n3)

18 return ((|cos((m× φ)/4)/a|)n2 + (|sin((m×
φ)/4)/b|)n3)−1/n1

In contrast to the much studied superquadrics, there

is relatively little prior work exploring applications of

Gielis superformula. Morales et al. [52] used a GA to

evolve N -dimensional superformula for clustering. Sev-

eral 3D supershapes with human specified superformula

parameters have been used to represent dielectric an-

tennas that were evaluated under numerical simula-

tions [70, 71, 6], leading to the January 2013 commer-

cialisation of the representation for ultra-wideband an-

tennas by Antenna Company,2 Willemstad, Curaçao,

Kingdom of the Netherlands.

Given a target shape it is often very useful to iden-

tify a representative formula, e.g., for compression. Op-

timisation methods, such as the Levenberg-Marquardt
(LM) theory [60], have typically been used to identify

the best fitting superquadric parameters (e.g., [24]).

However LM cannot retrieve all of the parameters re-

quired for supershape fitting. Bokhabrine et al. [8] used

a GA to evolve all supershape parameters for surface

reconstruction (i.e., a target-based approach) using an

inside-outside function [20] for fitness. Voisin et al. [79]

later extended this to utilise a pseudo-Euclidean dis-

tance for fitness determination, yielding improved per-

formance.

4 Target-based evolution

The ability to inject complex geometric patterns into an

EA for further optimisation is an important area of re-

search [13]. The target-based evolution of a given design

is therefore initially explored here as this can provide

2 Antenna Company http://www.antennacompany.com

(a) Cube m1 = 4,
n1,1 = 10, n1,2 =
10, n1,3 = 10,
m2 = 4, n2,1 = 10,
n2,2 = 10, n2,3 =
10

(b) Star m1 = 6,
n1,1 = 5, n1,2 =
10, n1,3 = 10,
m2 = 4, n2,1 = 10,
n2,2 = 10, n2,3 =
10

(c) Heart m1 = 3,
n1,1 = 1.5, n1,2 =
12, n1,3 = 3, m2 =
0, n2,1 = 3, n2,2 =
0, n2,3 = 0

(d) Shell m1 = 3,
n1,1 = 1.5, n1,2 =
12, n1,3 = 3, m2 =
0, n21 = 3, n22 =
0, n23 = 0, t2 =
2, d1 = 1, d2 = 1,
c1 = 5

(e) Torus m1 =
10, n1,1 = 10,
n1,2 = 10, n1,3 =
10, m2 = 10,
n2,1 = 10, n2,2 =
10, n2,3 = 10 t1 =
2, c3 = 0

(f) Möbius Strip
m1 = 3, n1,1 =
1.5, n1,2 = 12,
n1,3 = 3, m2 = 0,
n2,1 = 3, n2,2 = 0,
n2,3 = 0 t1 = 4,
t2 = 0, d1 = 0,
d2 = 0, c1 = 5,
c2 = 0.3, c3 = 2.2

Fig. 1 Example 3D supershapes.

a simple mechanism to seed an initial population used

for physical evolution. This may allow the future seed-

ing of an EA with human designed VAWTs represented

as Gielis superformula, thus speeding up the search for

more efficient solutions.

The cube, star, and heart shapes (as seen in Fig. 1)

are here converted into 50×50×50 binary voxel arrays

and used as the desired targets, where the fitness of an

individual is the fraction of voxels that correctly match.

The genotype of each individual in the population con-

http://www.antennacompany.com
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sists of eight real-valued parameters in the range [0,50]

which affect the superformula, giving rise to the super-

shape. The GA proceeds with a population, P , of 200

individuals, a per allele mutation rate of 25%, and mu-

tation step size of ±[0, 5]; a crossover rate of 0%; the

GA tournament size for both selection and replacement

is set to 3.

Figs. 2–4 show the fraction of total voxels matched

to the target shapes during evolution of the supershapes;

results presented are an average of 10 experiments. Sim-

ilar to [12], a large number of voxels are quickly matched,

however here the target object is not identifiable until

approximately 99% are set correctly. As such, the small

differences in fitness between the individuals represent

substantial differences in whether the target object is

recognisable. In all cases, greater than 99.5% fitness

is achieved. From Fig. 2 it can be seen that, on aver-

age, the GA takes approximately 1100 evaluations to

reach >99% matching voxels of a target cube object

and 3700 evaluations to achieve >99.9%. Fig. 3 shows

that on average approximately 3900 evaluations are re-

quired to reach >99% matching voxels of a target star

object and 16100 evaluations to achieve >99.5%. Fi-

nally, Fig. 4 shows that, on average, >99% matching

voxels of a target heart object is reached after 6400

evaluations and >99.5% after 24000 evaluations.

Fig. 5 illustrates a sample of the evolved individuals

from one cube experiment, Fig. 6 similarly for the star

experiment, and Fig. 7 for the heart experiment.

5 Rotation-based evolution

As previously mentioned, we have recently undertaken

initial experimentation of EAs to design VAWT with a

vector of integers representing the width of a turbine

blade segment [58, 59]. The fitness of each individual

was scored as the maximum rotation speed achieved

during the application of constant wind generated by

a propeller fan after fabrication by a 3D printer. The

rotation speed was measured in number of revolutions

per minute (rpm) using a digital photo laser tachome-

ter (PCE-DT62; PCE Instruments UK Ltd) by placing

a 10 × 2 mm strip of reflecting tape on the individual.

When measuring a single isolated VAWT, the individ-

ual was placed at 30 mm distance from the centre of

a 30 W, 3500 rpm, 304.8 mm propeller fan generating

4.4 m/s wind speed.

One of the drawbacks of the representation used pre-

viously is that it assumes an underlying VAWT struc-

ture. In contrast, supershapes open the space of pos-

sible designs and yet can retain a compact encoding.

As a first step towards the evolution of supershapes as
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Fig. 2 Evolution of a 3D cube.
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Fig. 3 Evolution of a 3D star.
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Fig. 4 Evolution of a 3D heart.

VAWT, here a single supershape, as described previ-

ously, becomes a prototype VAWT. A workspace (max-

imum object size) of 50×50×70 mm is used so that the

instantiated prototype is small enough for timely pro-

duction (∼ 80 minutes) and with low material cost, yet
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(a) 96.71%(b) 98.50%(c) 99.29% (d) 99.97%(e) Target

Fig. 5 Evolution of a 3D cube.

(a) 94.18%(b) 96.24%(c) 98.03% (d) 99.56%(e) Target

Fig. 6 Evolution of a 3D star.

(a) 96.11%(b) 98.11%(c) 99.00% (d) 99.50%(e) Target

Fig. 7 Evolution of a 3D heart.

large enough to be sufficient for fitness evaluation. The

workspace has a resolution of 100 × 100 × 100 voxels.

A central platform is constructed for each individual

to enable the object to be placed on to the evaluation

equipment. The platform consists of a square torus, 2

voxels in width and with a centre of 10×10 empty vox-

els consistent through the z-axis, thus creating a hollow

tube; see example in Fig. 8a.

When production is required, the 3D binary voxel

array is converted to stereolithography (STL) format.

Once encoded in STL, it then undergoes post-processing

with the application of Laplacian smoothing using Mesh-

Lab3; see example in Fig. 8b. Finally, the object is con-

verted to printer-readable G-code and is subsequently

fabricated by a Stratasys Dimension Elite printer us-

ing a polylactic acid (PLA) bioplastic. See example in

Fig. 8c.

The fitness computation for each individual is the

maximum rotation speed achieved during the applica-

tion of constant wind generated by a propeller fan af-

ter fabrication by a 3D printer similar to the previ-

ous experiments as described above. Two experiments

are conducted; the first using the set of 8 basic super-

formula parameters, and the second with an extended

set of 16. In the basic superformula experiment, the

3 MeshLab is an open source, portable, and extensible sys-
tem for the processing and editing of unstructured 3D trian-
gular meshes. http://meshlab.sourceforge.net

(a) Basic superformula seed design.
Genome: m1 = 6, n1,1 = 5, n1,2 = 30,
n1,3 = 10, m2 = 4, n2,1 = 10, n2,2 = 10,
n2,3 = 10.

(b) Basic superformula seed design with 3
Laplacian smoothing steps applied.

(c) Basic superformula seed design smoothed and
printed by a 3D printer; 50 × 50 × 50 mm; 80 min-
utes printing time.

Fig. 8 Basic superformula seed design.

initial population consists of the star individual from

Fig. 8 and 19 other individuals whose parameters are

each those of the star mutated by a random number
in the range [-5,5]; that is, P = 20 and each individ-

ual consists of 8 superformula parameters. Due to the

large degree of symmetry with the basic superformula,

each candidate VAWT is positioned with an asymmet-

ric air flow of 4.4 m/s; see experimental configuration

in Fig. 9, which shows the propeller fan and the indi-

vidual placed at 30 mm distance and offset by 100 mm

from the centre.

All initial individuals are subsequently fabricated

and evaluated. Thereafter, a generational GA forms

the next generation using the evolutionary operators

as described for the target-based experiment and with

a limited form of elitism, promoting the single fittest

individual to the next generation.

The fittest evolved individual after 4 generations

from the basic superformula experiment is shown in

Fig. 10. The parameters to the superformula specify the

length of the blades in addition to the frequency and the

population has evolved an individual that forms an ‘X’

http://meshlab.sourceforge.net
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Fig. 9 Basic superformula experimental setup; asymmetric
airflow.

shape where the blades extend beyond the length of the

workspace. As the blades extend beyond the workspace

they are no longer drawn/fabricated and so the hol-

lowness of the shape can be observed. It appears that

evolution has identified that longer blades are more ef-

ficient under the current experimental conditions and

this is also observed with an increase in the average

length of the blades throughout the population. Fur-

thermore, the reduction in number of blades from the

initial 6 to 4 indicates that fewer blades may be more

efficient. In Fig. 11 the fittest evolved individual after 5

generations is shown. As can be seen, overall the shape

is more rounded and two of the blades from the ‘X’ have

merged closer together in a step towards a 3 bladed ‘Y’

shape, resulting in a lighter weight design with an in-

crease in rotation speed.

In the extended superformula experiment, the de-

grees of freedom are increased by 7 additional param-

eters that enable more complex supershapes, such as

the möbius strip in Fig. 1f. A single further parame-

ter is used to control the size of the supershape, r0,

for a total of 16. In this experiment the initial genera-

tion is seeded with designs mutated around parameters

that approximate an S-shaped VAWT and all designs

undergo 50 Laplacian smoothing steps before being fab-

ricated (see seed design in Fig. 12.) To form each initial

individual, the original 8 parameters from the seed de-

sign are mutated by a random number in the range

[-10,10] and the additional 8 parameters mutated by

a random number in the range [-1,1]; any supershape

produced with fewer than 1% active voxels is discarded

and another generated. This creates a range of very di-

verse shapes; see examples from the initial population

in Fig. 13. As such deformations enable asymmetrical

designs, each individual is placed in a more natural air-

flow, centre of the propeller fan, see Fig. 14. The GA

(a) Top view (b) Side view

Fig. 10 Basic superformula fittest individual after 4 genera-
tions. 537 rpm.

(a) Top view (b) Side view

Fig. 11 Basic superformula fittest individual after 5 genera-
tions. 581 rpm.

proceeds as before, however when mutation occurs for

one of the additional 8 parameters, the value is altered

by a random number in the range [-0.5,0.5], rather than

the usual [-5,5], due to their sensitivity.

The fittest individual from the first generation had

a fitness of 931 rpm; this increased to 985 rpm in the

second generation; 986 rpm after three generations (see

design in Fig. 15); and 1070 rpm after the fourth and

fifth generations (see design in Fig. 16), showing that

artificial evolution is capable of iteratively increasing

the aerodynamic efficiency (i.e., rotational speed) of

instantiated VAWT prototypes represented as super-

shapes.

6 Conclusions and future work

This paper has shown that it is possible to evolve a

vector of reals that are used as superformula parame-

ters to generate 3D objects. Target-based evolution was

used to explore the ability of Gielis superformula to

create complex objects. The experiments showed that

with target-based evolution very closely matching de-

signs can be identified. In addition, a methodology for

the physical evolution of supershapes as VAWT has

been introduced. A significant advantage of the ap-

proach over alternative representations is that it makes

no assumptions about the underlying VAWT structure

whilst maintaining the simplicity and compactness of
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(a) Extended superformula seed design.
Genome: m1 = 0, n1,1 = 0, n1,2 = 0,
n1,3 = 1, m2 = 0, n2,1 = 0, n2,2 = 0,
n2,3 = 1, t1 = 0, t2 = 6, d1 = 0.5, d2 = 0.7,
c1 = 4, c2 = 1, c3 = 0.4, r0 = 50.

(b) Extended superformula seed design
with 50 Laplacian smoothing steps applied.

Fig. 12 Extended superformula seed design.

Fig. 13 Example individuals from the initial population of
the extended superformula experiment.

the encoding, which may be amenable for future use in

a surrogate-assisted approach.

The use of 3D printing to physically instantiate can-

didate designs completely avoids the use of 3D com-

puter simulations, with their associated processing costs

and modelling assumptions. In this case, 3D CFD anal-

ysis was avoided, but the approach is equally applicable

to other real-world optimisation problems, for example,

those requiring computational structural dynamics or

Fig. 14 Extended superformula experimental setup; symmet-
ric airflow.

(a) Top view (b) Side view

Fig. 15 Extended superformula fittest individual after 3 gen-
erations. 986 rpm. Dimensions: 66 mm height; 28 mm diam-
eter; 1 mm thickness.

(a) Top view (b) Side view

Fig. 16 Extended superformula fittest individual from
4th/5th generation. 1070 rpm. Dimensions: 66 mm height;
39 mm diameter; 1 mm thickness.

computational electromagnetics simulations. We antic-

ipate that in the future such ‘design mining’ approaches

will yield unusual yet highly efficient designs that ex-

ploit characteristics of the environment and/or materi-

als that are difficult to capture formally or in simula-

tion. This has the potential to place knowledge discov-

ery at the core of engineering design, particularly within

an iterative framework such as in agile approaches.

The fabrication of a candidate design with exist-

ing 3D printing technology still requires a considerable
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amount of time however (∼ 90 minutes for the small

designs here.) Therefore, techniques to speed up the

process similar to those used in expensive numerical

simulations are important. For example, multiple 3D

printers can easily be used to perform parallel fabri-

cation. In addition, although here the print resolution

used to build the prototypes was set at the printer de-

fault, the resolution can be adjusted to provide coarser

designs at a faster rate for preliminary studies (e.g.,

for early evolutionary candidates), or slower higher res-

olution prints for more subtle optimisation. Thus 3D

printing offers a range of ways to customise the evo-

lutionary instantiation to the design task. Algorithmic

improvements to reduce the convergence time remain

an important area of future research, in particular the

use of surrogate models to reduce the number of fabri-

cations.

Future work will include the use of the power gen-

erated by the VAWT prototypes as the fitness compu-

tation under various wind tunnel conditions; the coevo-

lution of arrays, including turbine positioning; the ap-

plication of surrogate modelling to reduce the number

of fabrications; examination of the effect of seeding the

EA with a given design; investigation of alternative 3D

representations and the production of 1:1 scale designs.

The issue of scalability also remains an important

future area of research. When increasing the scale of de-

signs it is widely known that the changes in dimension-

ality will greatly affect performance, however it remains

to be seen how performance will change in the presence

of other significant factors such as turbine wake inter-

actions in the case of arrays. One solution is to sim-

ply use larger 3D printing and wind-tunnel capabilities

whereby larger designs could be produced by the same

method. On the opposite end of the spectrum, micro-

wind turbines that are 2 mm in diameter or smaller can

be used to generate power, e.g., for wireless sensors [37],

and in this case more precise 3D printers would be re-

quired. Moreover, wind turbines can find useful appli-

cations on any scale, e.g., a recent feasibility study [57]

for powering wireless sensors on cable-stayed bridges

examined turbines with a rotor diameter of 138 mm in

wind conditions with an average of 4.4 m/s (similar to

the artificial wind conditions used in this paper.)

If the recent speed and material advances in rapid-

prototyping continues, along with the current advance-

ment of evolutionary design, it will soon be feasible to

perform a wide-array of automated complex engineer-

ing optimisation in situ, whether on the micro-scale

(e.g., drug design), or the macro-scale (e.g., wind tur-

bine design). That is, instead of using mass manufac-

tured designs, EAs will be used to identify bespoke solu-

tions that are manufactured to compensate and exploit

the specific characteristics of the environment in which

they are deployed, e.g., local wind conditions, nearby

obstacles, and local acoustic and visual requirements

for wind turbines.
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