Skip to main content
Log in

MASCA–PSO based LLRBFNN model and improved fast and robust FCM algorithm for detection and classification of brain tumor from MR image

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

A novel modified adaptive sine cosine optimization algorithm (MASCA) integrated with particle swarm optimization (PSO) based local linear radial basis function neural network (LLRBFNN) model has been proposed for automatic brain tumor detection and classification. In the process of segmentation, the fuzzy C means algorithm based techniques drastically fails to remove noise from the magnetic resonance images. So, for reduction of noise and smoothening of brain tumor magnetic resonance image an improved fast and robust fuzzy c means algorithm segmentation algorithm has been proposed in this research work. The gray level co-occurrence matrix technique has been employed to extract features from brain tumor magnetic resonance images and the extracted features are fed as input to the proposed modified ASCA–PSO based LLRBFNN model for classification of benign and malignant tumors. In this research work the LLRBFNN model’s weights are optimized by using proposed MASCA–PSO algorithm which provides a unique solution to get rid of the hectic task of radiologist from manual detection. The classification accuracy results obtained from sine cosine optimization algorithm, PSO and adaptive sine cosine optimization algorithm integrated with particle swarm optimization based LLRBFNN models are compared with the proposed MASCA–PSO based LLRBFNN model. It is observed that the result obtained from the proposed model shows better classification accuracy results as compared to the other LLRBFNN based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Webpage. https://consumer.healthday.com/cancer-information-5/brain-cancer-news-93/brain-cancers-both-common-and-deadly-among-teens-young-adults-report-708339.html

  2. Ding Y, Fu X (2016) Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188:233–238. https://doi.org/10.1016/j.neucom.2015.01.106

    Article  Google Scholar 

  3. Pereira DC, Ramos RP, do Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Programs Biomed 114(1):88–101. https://doi.org/10.1016/j.cmpb.2014.01.014

    Article  Google Scholar 

  4. Mahapatra D (2017) Semi-supervised learning and graph cuts for consensus based medical image segmentation. Pattern Recognit 63:700709. https://doi.org/10.1016/j.patcog.2016.09.030

    Article  Google Scholar 

  5. Bahadure NB, Ray AK, Thethi HP (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Hindawi Int J Biomed Imaging 2017, Article ID 9749108. https://doi.org/10.1155/2017/9749108

    Article  Google Scholar 

  6. Satheeskumaran S, Sabrigiriraj M (2014) A new LMS based noise removal and DWT based R-peak detection in ECG signal for biotelemetry applications. Natl Acad Sci Lett 37(4):341–349. https://doi.org/10.1007/s40009-014-0238-3

    Article  Google Scholar 

  7. Shanmuga Priya S, Valarmathi A (2018) Efficient fuzzy c-means based multilevel image segmentation for brain tumor detection in MR images. In: Design automation for embeded system. Springer, Berlin. https://doi.org/10.1007/s10617-017-9200-1. ISSN: 1572-8080

    Article  Google Scholar 

  8. Javed A, Kim YC, Khoo MCK, Ward SLD, Nayak KS (2016) Dynamic 3-D MR visualization and detection of upper airway obstruction during sleep using region-growing segmentation. IEEE Trans Biomed Eng 63(2):431–437. https://doi.org/10.1109/TBME.2015.2462750

    Article  Google Scholar 

  9. Abd-Ellah MK, Awad AI, Khalaf AM, Hamed FA (2016) Design and implementation of a computer-aided diagnosis system for brain tumor classification. In: 28th international conference on microelectronics (ICM), Cairo, pp 73–76

  10. Li Z, Chen J (2015) Super pixel segmentation using linear spectral clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Boston, pp 1356–1363

  11. Nandi AK, Basel AJ, Rui F (2015) Integrative cluster analysis in bioinformatics. Wiley, Berlin

    Google Scholar 

  12. Demirhan A, Güler I (2011) Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation. Eng Appl Artif Intell 24:358–367. https://doi.org/10.1016/j.engappai.2010.09.008

    Article  Google Scholar 

  13. Shree NV, Kumar TNR (2018) Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inform 5:23–30. https://doi.org/10.1007/s40708-017-0075-5

    Article  Google Scholar 

  14. Chatzis SP, Varvarigou TA (2008) A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation. IEEE Trans Fuzzy Syst 16(5):1351–1361. https://doi.org/10.1109/TFUZZ.2008.2005008

    Article  Google Scholar 

  15. Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst 26(5):3027–3041. https://doi.org/10.1109/tfuzz.2018.2796074

    Article  Google Scholar 

  16. Issa M, Hassanien AE, Oliva D, Helmi A, Ziedan I, Alzohairy A (2018) ASCA–PSO: adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Syst Appl 99(1):56–70. https://doi.org/10.1016/j.eswa.2018.01.019

    Article  Google Scholar 

  17. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199. https://doi.org/10.1109/42.996338

    Article  Google Scholar 

  18. Chen S, Zhang D (2004) Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B Cybern 34(4):1907–1916. https://doi.org/10.1109/tsmcb.2004.831165

    Article  Google Scholar 

  19. Szilagyi L, Benyo Z, Szilagyii SM, Adam HS (2003) MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceeding of the 25th annual international conference of the IEEE EMBS, pp 17–21

  20. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit 40(3):825–838. https://doi.org/10.1016/j.patcog.2006.07.011

    Article  MATH  Google Scholar 

  21. Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337. https://doi.org/10.1109/tip.2010.2040763

    Article  MathSciNet  MATH  Google Scholar 

  22. Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151. https://doi.org/10.1109/TIP.2011.2170702

    Article  MathSciNet  MATH  Google Scholar 

  23. Gong M, Liang Y, Shi S, Ma J (2013) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584. https://doi.org/10.1109/TIP.2012.2219547

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo F, Wang X, Shen J (2016) Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation. IET Image Process 10(4):272–279. https://doi.org/10.1049/iet-ipr.2015.0236

    Article  Google Scholar 

  25. Rezaei K, Agahi H (2017) Malignant and benign brain tumor segmentation and classification using SVM with weighted kernel width. Sig Image Proc Int J (SIPIJ). https://doi.org/10.5121/sipij.2017.8203

    Article  Google Scholar 

  26. Torheim T, Malinen E, Kvaal K et al (2014) Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans Med Imaging 33(8):1648–1656. https://doi.org/10.1109/TMI.2014.2321024

    Article  Google Scholar 

  27. Lang R, Zhao L, Jia K (2016) Brain tumor image segmentation based on convolution neural network. In: 2016 9th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI), Datong, pp 1402–1406

  28. Deepa SN, Arunadevi B (2013) Extreme learning machine for classification of brain tumor in 3D MR images. Informatologia 46(2):111–121. ISSN 1330-0067

  29. Krishna TG, Sunitha KVN, Mishra S (2018) Detection and classification of brain tumor from MRI medical image using wavelet transform and PSO based LLRBFNN algorithm. Int J Comput Sci Eng 6(1). https://doi.org/10.26438/ijcse/v6i1.1823. E-ISSN: 2347-2693

    Article  Google Scholar 

  30. Nayak PK, Mishra S, Dash PK, Bisoi Ranjeeta (2016) Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances. Neural Comput Appl 27(7):2107–2122. https://doi.org/10.1007/s00521-015-2010-0

    Article  Google Scholar 

  31. Patra A, Das S, Mishra SN, Senapati MR (2017) An adaptive local linear optimized radial basis functional neural network model for financial time series prediction. Neural Comput Appl 28(1):101–110. https://doi.org/10.1007/s00521-015-2039-0

    Article  Google Scholar 

  32. Liu B, Wang L, Jin YH (2007) An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans Syst Man Cybern B Cybern 37(1):18–27. https://doi.org/10.1109/tsmcb.2006.883272

    Article  Google Scholar 

  33. Senapati MR, Vijaya I, Dash PK (2007) Rule extraction by training radial basis functional neural network with particle swarm optimization. Am J Sci 3(8):592–599. ISSN: 1549-3636

  34. Yang X-S, Deb S, Fong S (2011) Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: International conference on networked digital technologies, NDT 2011. Communications in computer and information science, vol 136, pp 53–66. Springer, Berlin

    Chapter  Google Scholar 

  35. Kaur T, Saini BS, Gupta S (2016) Optimized multi threshold brain tumor image segmentation using two dimensional minimum cross entropy based on co-occurrence matrix. In: Medical imaging in clinical applications. Part of the studies in computational intelligence, vol 651. Springer, Berlin, pp 461–486. https://doi.org/10.1007/978-3-319-33793-7_20

    Chapter  Google Scholar 

  36. Garg H (2016) A hybrid PSO–GA algorithm for constrained optimization problems. Appl Math Comput 274(1):292–305. https://doi.org/10.1016/j.amc.2015.11.001

    Article  MathSciNet  MATH  Google Scholar 

  37. de Fátima Araújoa T, Uturbey W (2013) Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand. Int J Electr Power Energy Syst 47:205–217. https://doi.org/10.1016/j.ijepes.2012.11.002

    Article  Google Scholar 

  38. Santra D, Mukherjee A, Sarker K, Chatterjee D (Oct 2016) Hybrid PSO–ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system. In: 2016 international conference on intelligent control power and instrumentation (ICICPI), pp 21–23

  39. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  40. Tasnin W, Saikia LC (2018) Maiden application of an sine–cosine algorithm optimised FO cascade controller in automatic generation control of multi-area thermal system incorporating dish-Stirling solar and geothermal power plants. IET Renew Power Gener 12(5):585–597. https://doi.org/10.1049/iet-rpg.2017.0063

    Article  Google Scholar 

  41. Nenavath H, Jatoth RK, Das S (2018) A synergy of the sine–cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2018.02.011

    Article  Google Scholar 

  42. Gonçalves H, Gonçalves JA, Corte-Real L (2011) HAIRIS: a method for automatic image registration through histogram-based image segmentation. IEEE Trans Image Process 20(3):776–789. https://doi.org/10.1109/TIP.2010.2076298

    Article  MathSciNet  MATH  Google Scholar 

  43. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):150–194. https://doi.org/10.1504/IJMMNO.2013.055204

    Article  MATH  Google Scholar 

  44. Smith TM, Bonacuse P, Sosa J, Kulis M, Evans L (2018) A quantifiable and automated volume fraction characterization technique for secondary and tertiary γ′ precipitates in Ni-based super alloys. Mater Charact 140:86–94. https://doi.org/10.1016/j.matchar.2018.03.051

    Article  Google Scholar 

  45. Pal C, Das P, Chakrabarti A, Ghosh R (2017) Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering. Int J Imaging Syst Technol 27(3):248–264. https://doi.org/10.1002/ima.22230

    Article  Google Scholar 

  46. Aja-Fernandez S, Alberola-Lopez C, Westin C-F (2008) Noise and signal estimation in magnitude MRI and Rician distributed images: A LMMSE approach. IEEE Trans Image Process 17(8):1383–1398. https://doi.org/10.1109/tip.2008.925382

    Article  MathSciNet  Google Scholar 

  47. Dataset: Webpage of Medical School of Harvard University. www.med.harvard.edu/AANLIB/home.html

  48. Cocosco CA, Kollokian V, Kwan RK-S, Evans AC (2011). BrainWeb: online interface to a 3D MRI simulated brain database (Online). http://www.bic.mni.mcgill.ca/brainweb

  49. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  50. Aja-Fernandez S, San-José-Estépar R, Alberola-Lopez C, Westin C (Sept 2006) Image quality assessment based on local variance. In: Proceeding of the 28th IEEE EMBS, New York, pp 4815–4818

  51. Nenavatha H, Jatotha RK, Das S (2018) A synergy of the sine–cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm Evol Comput 43:1–30. https://doi.org/10.1016/j.swevo.2018.02.011

    Article  Google Scholar 

  52. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Slap swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  53. Mirjalili S, Mirjalili SM, Lewis A (2014) Gary wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  54. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  55. Mirjalili S (2015) Mouth –flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  56. Xu Y, Fan P, Yuan L (2013) A simple and efficient artificial bee colony algorithm. Math Probl Eng 2013:1–9, Article ID 526315, Hindawi. http://dx.doi.org/10.1155/2013/526315

    Google Scholar 

  57. Mahesh KM, Renjit JA (2018) Evolutionary intelligence for brain tumor recognition from MRI images: a critical study and review. Evol Intell. https://doi.org/10.1007/s12065-018-0156-2

    Article  Google Scholar 

  58. Nayak DR, Dash R, Majhi B (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 117:188–197. https://doi.org/10.1016/j.neucom.2015.11.034i

    Article  Google Scholar 

  59. Mohana G, Subashini MM (2018) MRI based medical image analysis: survey on brain tumor grade classification. Biomed Signal Process Control 39:139–161

    Article  Google Scholar 

  60. Mohanaiah P, Sathyanarayana P, GuruKumar L (2013) Image texture feature extraction using GLCM approach. Int J Sci Res Publ 3(5):1

    Google Scholar 

  61. Das S, Chowdhury M, Kundu MK (2013) Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res 137:1–17. https://doi.org/10.2528/PIER13010105

    Article  Google Scholar 

  62. Nayak DR, Dash R, Majhi B (2017) Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.12.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ranjan Senapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Sahu, P. & Senapati, M.R. MASCA–PSO based LLRBFNN model and improved fast and robust FCM algorithm for detection and classification of brain tumor from MR image. Evol. Intel. 12, 647–663 (2019). https://doi.org/10.1007/s12065-019-00266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-019-00266-x

Keywords

Navigation