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Abstract
Local search can be introduced into genetic algorithms to create a hybrid, but any improvement in performance is dependent 
on the learning mechanism. In the Lamarckian model, a candidate solution is replaced by a fitter neighbour if one is found 
by local search. In the Baldwinian model, the original solution is retained but with an upgraded fitness if a fitter solution is 
found in the local search space. The effectiveness of using either model or a variable proportion of the two within a hybrid 
genetic algorithm is affected by the topology of the fitness function and the details of the hybrid algorithm. This paper inves-
tigates an intelligent adaptive approach to decide on the learning mechanism to be used by an individual over the course of 
the search. Evolution is used to self-adapt both the frequency of a steepest-descent local search and the relative proportions 
of Lamarckian and Baldwinian inheritance. Experiments have shown that this form of adaptive learning can improve the 
ability to find high-quality solutions and can accelerate the hybrid search without the need to find optimal control parameters 
for the learning process.

Keywords  Hybrid genetic algorithms · Evolution strategies · Learning strategies · Self-adaptive learning · Reinforcement 
learning · Memetic algorithms · Metaheuristics · Baldwinism · Lamarckism

1  Introduction

The exploitation and exploration abilities of genetic algo-
rithms [1] can be further improved by incorporating local 
search methods such as steepest-descent search [2]. The 
capability of local search methods to integrate with genetic 
algorithms is widely used to solve real-world problems using 
minimum resources [3, 4]. Hybridization of a genetic algo-
rithm with a local search method can enhance the global 
search with local knowledge that can guide and accelerate 
the search towards the global optimum [5]. Such hybrids are 
often described as memetic algorithms [2].

The way in which the information gained through local 
search within a hybrid genetic algorithm is used has a strong 

influence on the performance of the search process [6]. As 
the local search within the genetic search algorithm plays 
a similar role to learning within the evolution process, the 
local search method is often viewed as a learning process.

Local search information is utilized within a genetic 
search according to strategies that are inspired by biologi-
cal learning. The Lamarckian and the Baldwinian learning 
strategies [7] have been widely used [8]. In addition, partial 
Lamarckism [9–14], which is a hybrid of those basic models 
[15], has also been used.

The effectiveness of a learning approach depends on the 
control parameter settings of the hybrid genetic algorithm 
and the optimization problem to be addressed. The fitness 
landscape [11], the genetic algorithm setup [12, 16], the 
percentage of population performing local search [17], the 
duration of local search [18], and the local search method 
used [19] are among the factors that impact the effective-
ness of a learning model. Applying different mixtures of the 
Lamarckian and the Baldwinian approaches over the course 
of the genetic search can be more beneficial than applying 
a single basic learning model or a fixed mixture of learning 
models during the entire run [11]. With no strategy avail-
able for choosing the learning model that best matches a 
given black-box problem in a hybrid search, the question 
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remains whether the effects of this choice might be mitigated 
via some form of intelligent adjustment while the search is 
progressing [20].

The aim of this paper is to investigate the use of an adap-
tive approach to decide on the learning mechanism. Assign-
ing different learning strategies to the population’s individu-
als over the course of the run using some intelligent means 
is investigated through applying evolution to self-adapt the 
learning mechanism within a hybrid genetic algorithm. The 
effect of this form of adaptation on the hybrid’s performance 
is examined to get some insight into its advantages and dis-
advantages. This paper also investigates the interactions 
between this form of adaptive learning and two different 
adaptive hybrid genetic algorithms.

The paper starts with a very brief review of the learn-
ing approaches used in hybrid genetic algorithms. Then it 
proceeds to describe the proposed adaptation mechanism 
and the way it works. The paper concludes by presenting 
and discussing the results of the experiments that have been 
conducted using two different adaptive hybrid genetic algo-
rithms on a selected set of test functions.

2 � Local knowledge and learning models

Local search methods are incorporated into genetic algo-
rithms to improve the algorithm’s performance through 
learning [21]. The utilization of local knowledge of a sam-
pled solution through learning can improve the chances of 
good building-blocks, i.e. schemata [1], propagating into 
the next generation even when solutions of below-average 
fitness are sampled. Learning can also refine sampled solu-
tions to build better building-blocks. Learning can introduce 
diversity and help to overcome the genetic drift problem 
[22]. It also enables the fair representation of different search 
areas and helps to avoid premature convergence. The way 
in which gained information is used within a hybrid genetic 
algorithm can influence the performance of the search pro-
cess. Using an appropriate learning mechanism can accel-
erate the search towards the global optimum [23, 24]. On 
the other hand, the use of an inappropriate mechanism can 
either cause premature convergence or decelerate the search 
towards the global optimum [25].

The two basic learning models that have been used to 
exploit local information are the Lamarckian and the Bald-
winian approaches [26]. A mixture of the basic models has 
also been used and its effectiveness has been proven in solv-
ing real-world problems [2].

2.1 � Lamarckian learning

The Lamarckian approach is based on the inheritance of 
characteristics that have been acquired through experience 

and learning. Although this model was widely refuted in 
biology in the past, more recent advances in epigenetics and 
their mechanisms have again raised the concept of transgen-
erational inheritance of acquired traits [27]. Lamarckism is 
often associated with memes, i.e. conceptual mental units, 
rather than genes, to avoid contradicting Darwinism [28]. 
The genetic structure and the fitness are changed to match 
the improved solution found by a local search method. In the 
Lamarckian approach, the local search method is used as a 
refinement genetic operator. Through its action, the genetic 
structure of an individual is modified and placed back in the 
genetic population.

Lamarckian evolution can accelerate the search process 
of genetic algorithms [29–31]. On the other hand, it can 
interrupt schema processing by changing the genetic struc-
ture of individuals, which can badly affect the exploration 
abilities of genetic algorithms and may lead to premature 
convergence [6]. The Lamarckian approach requires inverse 
mapping from the phenotype, on which learning works, to 
genotype, on which evolution works. The inverse mapping 
can be difficult to achieve for real-world problem solving 
[32].

2.2 � Baldwinian learning

Baldwinian learning is similar to Lamarckian learning in its 
use of local search, but with a different mechanism. As with 
Lamarckian learning, it allows an individual’s fitness to be 
improved by applying a local search and hence raising its 
chances to propagate its genes to subsequent generations. 
However, unlike Lamarckian learning, the learning process 
does not change the individual’s genetic structure. As in nat-
ural evolution, the learning process increases an individual’s 
chances of survival without any genetic changes. So Bald-
winian learning does not allow parents to pass their acquired 
characteristics to their offspring but, instead, the potentially 
enhanced fitness after learning is retained. The local search 
method uses local knowledge to produce a new fitness score 
that can be used by the genetic algorithm during selection 
for reproduction. The increase in the fitness through local 
search is equivalent to the individual’s ability to improve.

The Baldwin effect can accelerate the genetic acquisition 
of learned traits that are acquired during an individual’s life-
time, without any direct Lamarckian transfer of traits from 
phenotype to genotype. With a strong correlation between 
genotype and phenotype space, the Baldwinian learning 
can speed up the genetic acquisition of learned traits [33] 
indirectly through the genetic assimilation mechanism [34].

The Baldwin effect can transform a challenging fitness 
landscape, associated with a difficult optimization prob-
lem, into an easier one [7] and enable fair representation 
of different search areas. The hindering effect [8] associ-
ated with the Baldwinian search can hinder the evolution 
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process by obscuring genetic differences [33]. Compared 
with the Lamarckian approach, the Baldwinian strategy can 
follow a protracted path towards the global optimum but 
can nevertheless be more effective [6]. It can aggravate the 
problem of multiple genotype to phenotype mappings [11, 
18], unlike the Lamarckian approach, which has been shown 
to help alleviate this problem [35]. While the Baldwinian 
strategy can be more suitable for dynamic environments, 
the Lamarckian strategy can suit static environments [36].

2.3 � Hybrid Lamarckian–Baldwinian models

Hybrid models of Lamarckian and Baldwinian learning 
are designed to combine the advantages of both forms of 
learning models [14]. The hybridization can be done in two 
different ways. Firstly, some individuals evolve using the 
Lamarckian approach, while the other individuals evolve 
using the Baldwinian approach [11, 17]. Secondly, some 
genes evolve using the Lamarckian method and the remain-
ing genes evolve using the Baldwinian method [15].

In a selected set of test problems, the individual-level 
approach outperformed both the pure Lamarckian and the 
pure Baldwinian approaches [9–11, 17]. On the other hand, 
the gene-level approach has been shown to reduce the search 
space and produce an efficient search when tackling the sort-
ing-network problem [15].

The selected form of learning in a hybrid genetic algo-
rithm has been shown to affect its performance [37]. Several 
researchers have compared the performance of pure genetic 
algorithms with alternative learning strategies in hybrid 
genetic algorithms [18]. The effectiveness of the Lamarck-
ian approach, the Baldwinian approach, or a mixture of the 
two, depends on the details of the hybrid genetic algorithm 
and the problem to be solved.

The optimal fraction of the population that should evolve 
using the Lamarckian approach depends on the problem at 
hand. Orvosh and Davis [14] have shown that a 5% Lamarck-
ian strategy is optimal for solving the survival-network design 
problem and the graph-colouring problem. Michalewicz and 
Nazhiyath [16] used the equivalent of a 20% Lamarckian strat-
egy when replacing 20% of the repaired solutions in a hybrid 
algorithm for the solution of numerical optimization problems 
with nonlinear constraints. In a selection of problems, Houck 
et al. [11] found that 20% and 40% partial Lamarckian strate-
gies produced the best balance of solution quality and compu-
tational efficiency. Joines et al. [35] found that a pure Lamarck-
ian approach (i.e. 100%) produced the fastest convergence to 
the best known solution of the cell-formation problem. Espi-
noza et al. [9, 10] used a 75% partial Lamarckian learning 
strategy, which they considered optimal in their algorithm for 
optimizing two simple continuous functions. Ishibushi et al. 
[12] showed that the 5% partial Lamarckian was effective for 
a single-population model when tackling the multi-objective 

0/1 knapsack problem, yet the 50% partial Lamarckian was the 
best choice for the island model.

3 � Evolutionary self‑adaptation 
of the learning strategy

It is almost impossible to know which learning strategy 
is most suitable for a problem when there is only limited 
available knowledge of the topology of the fitness landscape. 
Given the restricted amount of theory currently available for 
selecting the learning strategy for a hybrid search in these 
circumstances, the use of an effective adaptive technique to 
decide on the learning strategy while the search is process-
ing would clearly be beneficial.

The idea behind the adaptive strategies is that, as the 
search progresses, the effectiveness of each learning strategy 
in dealing with the current problem can be learned. Knowl-
edge about the current population of solutions and each 
learning strategy can be built dynamically online, thereby 
identifying the strengths and weaknesses of the learning 
approach for the problem currently being worked on, given 
its current state.

The use of evolution to self-adapt the learning mechanism 
in this way can help to discover the effectiveness of each 
learning approach in relation to a given problem. This kind 
of adaptation can improve the hybrid’s chances of finding 
good solutions by enabling different learning approaches to 
compete and cooperate with each other. By encoding the 
learning strategy used by an individual into its chromo-
some, the global genetic algorithm can promote competition 
among the different learning strategies based on its abil-
ity to improve the fitness of its associated solution. A good 
learning strategy will lead to good individuals and these 
will probably have more chance to survive and to propagate 
the encoded learning approach. Applying the evolutionary 
self-adaptation metaphor to decide on the learning strategy 
can also promote cooperation between the two basic learn-
ing models in order to improve the search’s performance. 
The use of a suitable learning approach depending on the 
genetic structure of an individual, and the current search 
state, may lead to a search algorithm that makes use of the 
available learning strategies to improve the whole popula-
tion’s performance. By ensuring the participation of the two 
basic learning models in the problem search, the strategy 
promotes joint operation and hence cooperation between 
learning models.

4 � The algorithms

The evolutionary self-adaptive learning mechanism was 
incorporated into two hybrids with different mechanisms 
for deciding between global and local search, in order to 



1568	 Evolutionary Intelligence (2021) 14:1565–1579

1 3

investigate its effect on their performance. It was incorpo-
rated into the novel Self-Adaptive local-search-Duration 
Hybrid (SADH) algorithm, based on three previously pre-
sented hybrids [8], where the number of local iterations that 
should be performed by an individual is encoded into its 
chromosome. It was also used with Espinoza’s [9, 10] self-
adaptive hybrid genetic algorithm (SAHGA) for compari-
son. This latter algorithm is referred to here and elsewhere 
[17] as the Adaptive Staged Hybrid (ASH) as it is a staged 
hybrid algorithm according to the definition by Mathias 
et al. [38] and it adapts by controlling the probability of the 
local search using a deterministic rule.

In the SADH algorithm, the representation of an indi-
vidual incorporates the number of local search iterations. 
This parameter defines the number of local iterations that 
should be performed by the associated individual, thereby 
controlling the duration of the local search. At the global 
level, this parameter is evolved by the genetic algorithm and 
used as a control parameter to optimize the fitness-function 
variables. The global genetic algorithm decides dynami-
cally, by evolutionary self-adaptation, which individuals 
will perform a local search. It also cooperates with the local 
search to determine the duration of the local search method 
by modifying the number of local iterations. In this way, the 
control parameter that determines the number of local search 
iterations can be adapted without external control.

The ASH algorithm decides between global and local 
search using feedback from the current state of the search 
process. It restricts the performance of local search to situa-
tions in which local knowledge can help to guide the search 
and new regions of search space are being discovered. A 
deterministic rule controls the probability of the local search 
and keeps it below a specific value. When the improvement 
in the average fitness using local search is no greater than 
the most recent global search iteration, the model reverts to 
global search.

The evolutionary self-adaptive learning mechanism was 
implemented by appending an additional bit that represents 
the learning strategy to the end of an individual’s chromo-
some. In the SADH algorithm, the learning strategy bit is 
located after the genes that represent the number of local 
search iterations. For the ASH algorithm, it is located after 
the genes that represent the function variables. After per-
forming a local search operation and before returning to 
the global genetic algorithm, the algorithm reads the value 
of the learning strategy bit. It does so in order to decide 
whether to change the genetic structure and the fitness score 
of the initial solution to match that of the improved solution 
or to keep its genetic structure unchanged and to modify the 
fitness score only. Depending on the value of the learning 
strategy gene, the hybrid decides on the learning strategy 
to use in order to utilize local search information of a given 
solution.

The association of the learning strategy with a solution 
through binding them into the same chromosome can help to 
associate the success or the failure of a learning technique to 
a specific solution or solutions of similar genetic structures. 
However, in cases where the learning strategy changes sig-
nificantly during evolution, the encoded strategy will only 
represent a snapshot of the strategy at one point during the 
evolution process. Table 1 shows the pseudocode of the evo-
lutionary learning algorithm with the SADH.

5 � Experiments

In order to evaluate the proposed learning adaptation 
mechanism, it was incorporated into the two adaptive 
hybrid algorithms mentioned above. The performance of 
the resulting algorithms was compared with the perfor-
mance of the two hybrids using fixed percentages of par-
tial Lamarckian. The quality of the solutions produced by 
each algorithm and the speed of convergence were used 
to assess the algorithm’s performance. The percentage 
of experiments that successfully converged on the global 

Table 1:   Pseudocode of evolutionary learning algorithm with SADH
Start

set(CrossoverRate)

set(MutationRate)

t=1

initialize(Population(t))

evaluate(Population(t))

While termination criteria not satisfied

  MatePool(t)=select(Population(t))

  MatePool(t)=crossover(MatePool(t))

  evaluate(MatePool(t))

  For each Chromosome(i) of the MatePool(t)

    LocalIterations=getNumberOfLocalIterations(chromosome(i))

    If LocalIterations > 0 then

      Solution(i)=mapToPhonetype(chromosome(i))

      For k=1 to LocalIterations

        Solution(i)=performLocalSearch(Solution(i))

      End (For k=…)

      LearningStrategy=getLearningStrategy(Chromosome(i))

      Fitness(Chromosome(i))=Fitness(Solution(i));

      If LearningStrategy = "Lamarckian"

        Chromosome(i)=mapToChromsome(Solution(i));

      End (If Learning…)

    End (If LocalIter…)

  End (For each)

  t=t+1

  Population(t)=MatePool(t-1);

End (While)

print(Results)

Stop
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optimum was used as an indicator of the ability of the 
proposed adaptive learning mechanism to produce high-
quality solutions. The performance was compared using 
different population sizes in order to evaluate the ability 
of the proposed mechanism to adapt to different search 
environments. The population sizes used were 50,100, 
150, 200 and 250. The speed of finding the global opti-
mum was also used to evaluate the performance of the 
self-adaptive learning strategy. The learning strategy was 
also evaluated in terms of its ability to adapt to different 
fitness landscapes.

A set of test functions has been chosen to evaluate the 
use of evolution to self-adapt the learning strategy. Four 
test functions have been used to evaluate the ability of this 
form of adaptation to improve the search performance. 
The test functions suite includes the 10-dimensional ellip-
soidal, the 10-dimensional Rastrigin, the 10-dimensional 
Schwefel, and the 10-dimensional Griewank test functions 
[39]. A string of 16 bits was used to represent each func-
tion variable.

The results of optimizing the test functions using the 
self-adaptive learning mechanism were evaluated against 
the results obtained by using fixed learning strategies. The 
fixed learning strategies tested were the pure Baldwinian 
(0% partial Lamarckian), the 25% partial Lamarckian, the 
50% partial Lamarckian, the 75% partial Lamarckian and 
the pure Lamarckian (100% partial Lamarckian).

The hybrids used an elitist genetic algorithm with binary 
tournament selection, two-point crossover, and simple muta-
tion with independent identically distributed mutation at 
each gene. The crossover probability was 0.7 and the muta-
tion probability was 1/N where N was the population size. 
For the ASH algorithm, the number of local iterations was 
limited to three, e was set to 0.2 (i.e. the probability of local 
search reduced by 20% after each local iteration), and the 
local threshold value was 0.6 [9, 10]. The ASH algorithm 
was tested using three different values of initial local search 
probability: 0.1, 0.2, and 0.99. For the SADH algorithm, 
the maximum number of local search iterations was set to 3.

For all experiments, the stopping criterion was the num-
ber of function evaluations. This parameter was set to 2000 
times the population size for the Rastrigin, the Schwefel, 
and the Griewank test functions, and to 500 for the ellipsoi-
dal test function due to its simplicity. Each experiment was 
repeated 50 times.

Steepest descent was used as the local search method. It 
was combined with Brent’s method [40] to estimate the best 
step size towards the local optimum from the current posi-
tion. Whereas the standard steepest-descent algorithm uses the 
derivatives of the fitness function to estimate the best step size, 
Brent’s method fits a parabola to three initial solutions and uses 
the maximum of the parabola as the next potential solution of 
the overall function [40].

6 � Results

6.1 � Search effectiveness

The percentage of times a hybrid algorithm found a global 
optimum using the proposed adaptation mechanism is 
compared with that found by using fixed learning strate-
gies. These percentages were used to evaluate the effec-
tiveness of the proposed adaptive learning mechanism.

Figure 1 compares the different hybrid algorithms using 
the proposed adaptive learning mechanism with those 
using fixed learning strategies. The comparison is based 
on the percentage of times that the algorithm found the 
global optimum of the ellipsoidal function. The graphs 
show that combining the adaptive learning technique with 
the ASH algorithm produced a better performance than 
that produced by combining it with the pure Baldwinian 
approaches for different initial probabilities of local search 
and different population sizes. The combination produced 
a performance that is similar to that produced using the 
25% partial Lamarckian. The graphs of the SADH algo-
rithm illustrate that the adaptive learning mechanism pro-
duced the best performance for population sizes of 150, 
200 and 250 compared with that produced by using differ-
ent fixed learning strategies.

The results of the experiments that evaluate the effect of 
the self-adaptive learning mechanism on the search effec-
tiveness on the 10-dimensional Griewank test function are 
shown in Fig. 2. The plots illustrate that, for most of the 
tested population sizes and probabilities of local search, 
the performance of the ASH algorithm was improved when 
combined with the self-adaptive learning compared with 
when combined with fixed learning techniques. The results 
of applying the adaptive mechanism to the self-adaptive 
hybrid algorithm show that this mechanism outperformed 
the pure Baldwinian and the 25% Lamarckian approaches 
for all the tested population sizes.

The self-adaptive learning mechanism when applied to 
optimize the 10-dimensional Rastrigin function using the 
two hybrids produced a similar performance in terms of 
the number of experiments that found the function’s global 
optimum as shown in Fig. 3. The two hybrids when com-
bined with self-adaptive learning produced a performance 
similar to that produced by the partial 25%, 50%, 75% and 
100% Lamarckian approaches, which produced the best 
performance for most of the tested population sizes.

Since the self-adaptive learning mechanism encodes the 
learning strategy into the chromosomes, the original prob-
lem is transformed to a new problem with an additional 
dimension. Introducing an additional variable to optimize 
in the problem can raise the minimum population size for 
a genetic algorithm. Using small populations with the 
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adaptive learning approach might not enable evolution to 
the global optimum within a given allocation of function 
evaluations, resulting in some small differences that can 
be seen in Fig. 3. As the combination of the self-adaptive 
strategy with the SADH introduces an additional variable 
to the search space, larger population sizes are required 
for good performance.

The self-adaptive learning technique outperformed the 
pure Baldwinian approach in terms of solution quality when 
applied to solve the 10-dimensional Schwefel problem 
using the different adaptive hybrid algorithms as depicted 
in Fig. 4. The self-adaptive learning mechanism, when com-
bined with the ASH algorithm, outperformed the partial 25% 
Lamarckian approach in all experiments except the one that 
combined a population size of 200 with a local search prob-
ability of 0.1. No results are shown for 0.99 probability of 
local search with the Schwefel function as such a high prob-
ability prevented achievement of the global optimum. The 
graphs for the ASH algorithm show that there is no sig-
nificant difference between the performance of this adapta-
tion mechanism and the best found fixed learning strategy 
in about half of the tested combinations of population sizes 
and local search probabilities.

The plots of the SADH algorithm show that the adaptive 
learning strategy technique outperformed pure Baldwinian 

learning, which produced the worst performance in these 
experiments. This observation can be explained by the fact 
that allowing a small fraction of the population to evolve 
according to Lamarckian learning can help to alleviate the 
hindering effect, which in turn improves the possibility of 
finding the global optimum.

6.2 � Search efficiency

The number of function evaluations needed by a hybrid 
algorithm to find the global optimum of a specific function 
was used to measure the effect of the self-adaptive learning 
mechanism on the search efficiency. This number is the sum 
of function evaluations used by the genetic algorithm and 
that used by the local search. The convergence speed of the 
hybrids that use the adaptive learning technique was com-
pared with those using fixed learning strategies.

The results of these experiments are shown in Figs. 5, 6, 
7 and 8. The graphs compare the speed of the self-adaptive 
learning technique with the selected set of fixed learning 
strategies. The graphs of the pure Baldwinian learning strat-
egy were excluded from these figures since in most of the 
cases it failed to find the global optimum.

Figure 5 compares the performance of the self-adaptive 
learning mechanism with different fixed learning strategies 

Fig. 1   Percentages converged to the global optimum of the ellipsoidal function
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on the ellipsoidal function in terms of convergence speed. 
The graphs for the ASH algorithm show that the adaptive 
learning technique found the global optimum of the ellipsoi-
dal function faster than those using fixed learning strategies. 
The difference in the convergence speed becomes apparent 
as the population size increases. However, the self-adaptive 
learning technique, when combined with the SADH algo-
rithm, produced the worst performance compared with the 
fixed learning techniques excluding the pure Baldwinian 
approach.

The results of comparing the convergence speed of the 
adaptive learning with the fixed learning approaches on the 
Griewank function are shown in Fig. 6. These graphs show 
no significant difference between the adaptive and the fixed 
learning strategies when combined with the ASH algorithm 
regardless of the local search probability. However, the adap-
tive learning technique produced the worst performance 
when combined with the SADH algorithm in comparison 
with the fixed learning strategies, excluding the pure Bald-
winian approach.

The graphs in Fig. 7 show the speed of finding the global 
optimum of the Rastrigin function. It can be seen that the 
adaptive learning strategy is the second fastest learning 
mechanism when combined with the ASH algorithm using 
a local search probability of 0.2. However, it is the second 

slowest when used with a local search probability of 0.99. 
The curves also illustrate that the self-adaptive learning 
mechanism produced the worst performance when combined 
with the SADH algorithm.

The adaptive learning mechanism was almost the fast-
est in finding the global optimum of the Schwefel function 
when combined with the two adaptive hybrid algorithms 
and using different population sizes, as illustrated in Fig. 8. 
These graphs also show that the proposed learning mecha-
nism was the fastest when combined with the ASH algo-
rithm regardless of the probability of local search used.

7 � Discussion

The ability of the self-adaptive learning strategy to adapt to 
different fitness landscapes and population sizes was evalu-
ated through monitoring the changes in the learning strat-
egy over time. The graphs of the evolution of the learning 
strategy and the best fitness for two test functions and two 
population sizes are presented and discussed in this section. 
The changes in the percentages of the population that used 
the different local search iterations over generations are also 
presented in the case of the SADH algorithm. Each graph 
shows the results of 50 experiments.

Fig. 2   Percentages converged to the global optimum of the Griewank function
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Figure 9 shows the evolution of the best fitness, the learn-
ing strategy and the duration of local search of the SADH 
algorithm when used to solve the ellipsoidal problem. The 
graphs illustrate that, at the early stages of search, the frac-
tion of the population that evolved using the Baldwinian 
learning increased slightly. After that, the percentage of 
the population that used Lamarckian learning increased as 
the search progressed until the whole population was using 
the Lamarckian approach. The figure clearly shows that the 
increase in the number of individuals using the Lamarckian 
approach is accompanied by an increase in the use of long 
durations of local search.

The graphs of the Rastrigin function in Fig. 10 show a 
similar trend to that found in Fig. 9. They show that the 
fraction of the population that evolved using the Lamarck-
ian approach increased as the search progressed. Figure 10 
also shows that there is a trend to use short durations of local 
search accompanied with the use of the Baldwinian search. 
This trend is apparent at the final stages of the search using 
a population size of 100, where individuals tended to use 
short durations of local search to overcome the hindering 
effect problem associated with the Baldwinian strategy. This 
observation clearly shows the ability of the self-adaptation 
mechanism to discover the relations between different con-
trol parameters such as the relations between the learning 

strategy and the duration of local search. The difference in 
the number of function evaluations consumed by each local 
search process caused the algorithm to evolve to different 
numbers of genetic generations. For example, the graphs 
for the population size of 100 in Fig. 10 show that most 
of the experiments consumed their allocation of function 
evaluations by the 11th generation. The graphs also illus-
trate that the evolution trajectory of the learning strategy in 
the Rastrigin function is more complicated than that of the 
ellipsoidal function.

Figure 11 shows how the learning strategy evolved over 
time when combined with the ASH algorithm to solve the 
ellipsoidal function using a population size of 100. The fig-
ure shows the same trend as the figures of the SADH algo-
rithm. As the search progressed, the number of solutions 
that evolved according to Lamarckian learning increased. 
The plots show that, for a local search probability of 0.1, the 
proportion of the population that evolved using the Lamarck-
ian approach was in the range 70–100%. However, for a local 
search probability of 0.99, the proportion approached 100% 
as the search progressed. This difference can be explained 
by the fact that using a small probability of local search 
can help to fight the hindering effect, which in turn enables 
the algorithm to find the global optimum even when com-
bined with the Baldwinian approach. On the other hand, the 

Fig. 3   Percentages converged to the global optimum of the Rastrigin function
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probability of finding the global optimum increases with 
the increase in the partial Lamarckian approach for high 
probabilities of local search once the algorithm has guided 
the search towards the global optimum’s basin of attraction. 
These graphs also demonstrate that the hybrid that used a 
local search probability of 0.1 was faster than the one using 
a probability of 0.99 in optimizing the learning strategy con-
trol parameter. This improvement was because the algorithm 
has more chances to evolve in the first case than in the latter 
one, due to the differences in the number of function evalu-
ations consumed at each local search process.

Figure 12 shows the results of optimizing the Rastrigin 
function using a population size of 200. The fitness land-
scape of this function is more complicated than that of the 
ellipsoidal function. This, in turn, makes the evolution path 
of the learning strategy more complicated. The graphs also 
show that as the local search probability increases, the trend 
towards using more Lamarckian learning increases.

A binary coding scheme has been used in this work. 
Changing the coding scheme would change the fitness land-
scape of the problem, the effects of which would depend on 
the details of the scheme and the operators used. Since each 
individual has only two options for learning, i.e. Lamarckian 
or Baldwinian, evolution of a learning strategy is expected 
to be effective with a small overhead cost. Encoding the 

learning strategy within the chromosome eliminates the need 
for tuning the learning strategy as a control parameter. How-
ever, it increases the influence of other control parameters 
such the crossover rate and mutation rate on the evolution 
path of the search algorithm.

8 � Conclusion

The experiments conducted illustrate that the use of the self-
adaptive learning strategy can be beneficial. It can improve 
the search’s ability to find solutions of high quality and can 
accelerate the search. The experiments also show that this 
mechanism was able to adapt to different environments. That 
finding was illustrated by testing this mechanism on a set of 
different test functions using two different adaptive hybrid 
algorithms with different control parameters. A further 
advantage of self-adaptive learning is that there are fewer 
control parameters to set manually.

These experiments demonstrate that combining the self-
adaptive mechanism with the ASH algorithm produced an 
algorithm that is faster than the tested fixed learning strate-
gies on most of the tested functions. However, combining 
this mechanism with the SADH algorithm produced a slower 
search algorithm. The latter combination was nevertheless 

Fig. 4   Percentages converged to the global optimum of the Schwefel function
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able to find the global optimum of the whole set of test func-
tions more often and faster than the fixed pure Baldwinian 
approach.

As further work, investigations could be conducted into 
the benefits of applying the proposed self-adaptive learning 

approach to both static and dynamic real-world problems. 
More research is also needed into the balance between the 
benefits of hybrid algorithms with evolving control parame-
ters and the computational cost of the additional complexity.

Fig. 5   Convergence speed of the ellipsoidal function



1575Evolutionary Intelligence (2021) 14:1565–1579	

1 3

Fig. 6   Convergence speed of the Griewank function

Fig. 7   Convergence speed of the Rastrigin function
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Fig. 8   Convergence speed of the Schwefel function

Fig. 9   Evolution of the learning strategy when solving the ellipsoidal function using the SADH algorithm
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Fig. 10   Evolution of the learning strategy when solving the Rastrigin function using the SADH algorithm

Fig. 11   Evolution of the learning strategy when solving the ellipsoidal function using the ASH algorithm
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