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Abstract The most popular and successful way to maintain a healthy body is to have

a rich and balanced diet, combined with physical exercise. Since it was proposed the

diet dilemma, several works in the literature suggested calculating a diet that respects

an individual’s nutritional needs. In the Caloric-Restricted Diet Problem (CRDP), the

goal is to find a reduced-calorie diet that meets an individual’s dietary needs aiming

for weight loss. This paper proposes a Hybrid Island-Based Evolutionary Algorithm

(IBHEA) that combines a Genetic Algorithm (GA) with a Differential Evolution (DE)

communicating through a migration policy to solve the CRDP. Computational exper-

iments showed that IBHEA outperforms the non-distributed and non-hybrid imple-

mentations, generating a greater variety of diets with a small calorie count.
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1 Introduction

A high-calorie diet and a lack of physical activities are the main causes of overweight

and obesity [11]. An efficient treatment for obesity consists of the ingestion of a

hypocaloric diet [1,6]. It is indicated that a hypocaloric diet with 1200 kilocalories

(kcal) can be used to reduce their body fat [15]. Besides, a hypocaloric diet with 1000

to 1200kcal can improve the life quality of obese individuals in less than 30 days [5].

However, these diets also need to provide all the necessary vitamins and nutrients to

the individuals, such as carbohydrates, iron, zinc, fibers, among others [18].

The Diet Problem (DP) proposed in [22] aims to calculate the minimum financial

cost of a diet that satisfies an individual’s nutritional needs. The CRDP, a DP varia-

tion, was introduced in [19] to minimize the calorie count of a diet instead to reduce

the financial cost. More precisely, CRDP aims to build a diet that minimizes the num-

ber of ingested calories while respecting the minimal amount of nutrients necessary

for an individual. The result of CRDP represents a diet composed of six daily meals

applied in real-life nutrition.

It is difficult to develop a caloric-restricted diet that provides all necessary nutri-

ents for an individual, such as proteins, zinc, and iron. The first attempt to develop an

algorithm for computing a healthy diet was presented in [22]. However, it only seeks

a minimum financial cost for the diet, not concerning the diet’s application in the

daily routine.In [19] it was proposed the CRDP, an optimization problem to compute

healthy caloric-restricted diets while preserving the nutritional needs of an individual.

The CRDP can be expressed by



















minimize f (kcal, p,y) =

∣

∣

∣

∣

∣

1200−
T

∑
i=1

kcali × pi × yi

∣

∣

∣

∣

∣

subject to g j =
T

∑
i=1

mi, j × pi × yi ≥ b j, j = 1,2, ...,N

, (1)

where T is the total of available foods to be included in diets, kcali is the calorie count

of one portion of food i, pi ∈ [0.5,3] is the portion of food i to be consumed in diet,

yi ∈ {0,1}, such that yi = 1 if the food i is included in the diet and y = 0 otherwise, N

is the total of nutrients considered in the problem and mi, j is the amount of nutrient j

in food i and b j is the minimal amount of the nutrient j required in diet. In Equation

(1), the values for kcali and b j are properly indicated by professionals and regulatory

agencies in the area.

The objective function f (kcal, p,y) in Equation (1) aims to develop a diet with

1200kcal, the most indicated one to reduce weight [5,15]. A diet with a higher amount

of calories does not greatly contribute to this objective. On the other hand, a diet with

a smaller amount of calories can represent a risk to individual health. The model con-

siders portions of 100g and 100mL for solid and liquid foods, respectively. Besides,

pi ∈ [0.5,3] ensures that no food will be prescribed in relatively low or high quantity.

It prevents real impracticable situations as cooking, for example, only 10g of fish at

dinner, or that it dominates the diet due to its high quantity.

In Equation (1) is considered 9 nutrients, namely dietary fibers (D f ), carbohy-

drates (C), proteins (Pt), calcium (Ca), manganese (Mn), iron (Fe), magnesium (Mg),
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phosphor (P), and zinc (Zn). Table 1 presents the daily ingestion recommended for

considered nutrients according to the Brazilian Table of Food Composition (TBCA)

[13].

Table 1 Recommended nutrient daily intake considered in CRDP according to TBCA.

Unit Requirement

(g) D f ≥ 25, C ≥ 300, Pt ≥ 75

(mg) Ca ≥ 1000, Mn ≥ 2.3, Fe ≥ 14, Mg ≥ 260, P ≥ 700, Zn ≥ 7

The TBCA contains data regarding many foods and beverages, with a description

of 25 of their nutrients. Each data refer to a portion of 100g or 100mL appropriately.

This work only considers the nine most important nutrients from 25 in TBCA. Con-

cerning the alternatives of food to built the diets, this work selected 9 groups of food

products to CRDP, with the participation of a specialist in the area. They were classi-

fied into 9 categories according to their characteristics displayed in Table 2. In Table

2, beverages, except natural juices J and alcoholic beverages, are symbolized by B.

Milk-derived products have the symbol L. Carbohydrates are separated into two dif-

ferent groups, symbolized by C1 and C2. C1 contains snacks, like bread, cookies, and

crackers, while C2 are the main meal carbohydrates, such as rice, potato and cassava.

Grains and leguminous foods, such as lentils and beans, are represented as G. The

proteins category P contains high protein foods, such as meat, chicken and eggs.

Table 2 Classification of food products from TBCA [13]. In table, Interval is the range of codes associated

to foods in each category.

Category Symbol Number of foods Interval

beverages B 21 1–21

juices J 11 22–32

fruits F 62 33–94

lacteal L 19 95–113

carbohydrates 1 C1 21 114–134

carbohydrates 2 C2 12 135–146

grains G 12 147–158

vegetables V 41 159–199

proteins P 95 200–294

When proposed in [19], the CRDP was solved by a DE. This work proposes to

solve it by the IBHEA, which distributes the population into sub-populations to be

evolved individually by DE and GA instances. However, they maintain periodic com-

munication by the migration operator, by which sub-populations exchange solutions

among themselves. The results demonstrate the better performance of IBHEA com-

pared to isolated algorithms and non-hybrid implementations of the Island Model.

The use of the IBHEA achieved significant results for the CRDP since it was able to

reduce the amount of calories of diets without violating the constraints, contributing

to the solution quality to optimization problems present in routine of anyone, such as

the definition of a daily healthy diet.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



4 João Gabriel R. Silva et al.

2 Island-Based Hybrid Approach for CRDP

The concept of evolution has been considered in solving the optimization problem of

different areas by Evolutionary Algorithms (EA) since the 1950s. Commonly these

algorithms build a population of candidate solutions to a given problem and apply op-

erators inspired by natural genetic variation and natural selection [14]. Over the years

different alternatives to implement EAs have also been proposed in the literature. One

of those alternatives is the Island Model (IM) by which it is possible to run EAs in

parallel computing environments. An IM is a class of distributed EAs in which the

population is divided into multiple sub-populations called islands. Each island run its

own EA independently, but periodically they interact through the migration operator

[3,21]. The islands exchange solutions between themselves according to topology

and a set of rules defined by the user through IM parameters by migration.

To develop a populational algorithm, it is necessary to define the individual shape,

i.e., how the solution is numerically represented in the algorithm. Each solution can

be evaluated to give a fitness value that shows how fit is the specific individual to the

expected solution. The following sections first present concepts and features to be

considered for both Genetic Algorithm (GA) and Differential Evolution (DE). Then

specific operators for each evolutionary algorithm are described.

2.1 Representation of Solutions

On the adjust of IBHEA to solve the CRPD, the candidate solutions is represented as

proposed in [19]. Figure 1 illustrates the general model for a solution for CRPD. This

model represents a daily routine of meals in diets. Figure 1 presents the organization

of the 6 ordered daily meals, namely breakfast, two snacks, lunch, dinner and supper.

In this sense, in addition to the number of food groups that must be in each meal,

Figure 1 clarifies which are those food groups.

Fig. 1 Solution encoding for CRPD: 6 ordered different meals, each one compose by a specific number

and groups of food products.

Based on the model presented in Figure 1, the dimension of CRPD is 17 and the

candidate solution of EAs in IBHEA can be represented as illustrated in Figure 2. In

this case, each solution consists of two vectors, both with 17 values which describe

the 6 daily meals. The first vector (top vector in Figure 2), called portions vector, indi-

cates the portions pi ∈ [0.5,3] of each selected food product i, such that i = 1,2, ...,T .

The second vector (bottom vector in Figure 2), denoted as ID vector, contains integer

values ∈ [1,294] corresponding to the code of food product included in diet according

to Table 2. Each value in ID vector is mapped to the respective food and nutritional

characteristics by a bijective function f : N 7→ T applied in IBHEA. Besides, each
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An Island-Based Hybrid Evolutionary Algorithm for Caloric-Restricted Diets 5

value in ID vector is restricted to those in Table 2. Initially, each portions vector and

ID vector in population is randomly generated according to the respective domains.

Fig. 2 Representation of an IBHEA candidate solution for CRDP.

2.2 Population Initialization, Fitness Function and Constraint Handling

IBHEA initial population X is randomly generated with |X | = pop individuals. For

the portions vector, a random real number is generated in the interval [0.5;3] for

each gene. A random integer number is generated for each gene of the ID vector

considering the interval of its class.

Concerning the evaluation of each IBHEA candidate solution according to Equa-

tion (1), when any constraints are violated, a mechanism to handle these violations

must be adopted. Hence, the fitness function becomes the objective function f (kcal, p,y)
plus a penalization term [8].

Let N′ represent the set of violated constraints and M is a large constant value

used as a penalty term. The penalized fitness function is given by

minimize |Kcal −1200|+M× ∑
j∈N′

(

∣

∣∑i∈T (mi, j × pi × yi)−b j

∣

∣

b j

)

, (2)

where Kcal is the objective function f (kcal, p,y) in Equation (1).

2.3 Evolutionary Algorithms

2.3.1 Genetic Algorithm

John Holland [10] described the Genetic Algorithm (GA) inspired in the evolution

theory proposed by Darvin. GA is based on the operations selection, recombination

(Crossover), mutation, and population update. GA was initially proposed for binary

representation of the individuals, but then it was extended for several variations.

GA operations have many different implementations and, in general, GA works as

shown in Figure 3. First, parents are selected. Then, the recombination, mutation and

evaluation phases are executed, in this order. Finally, the most fitted individuals are

selected to go to the next generation. The operations and some parameters considered

in this were defined as follows.

The parent selection is performed considering the tournament selection strategy.

Each tournament (which will generate two individuals of the intermediate population)

involves two parents. For the selection of each of the two parents in the tournament,

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



6 João Gabriel R. Silva et al.

1: Initialize the population

2: Evaluate the population

3: while stopping criterion is not met do

4: Parents Selection

5: Recombination

6: Mutation

7: Evaluate the intermediary population

8: New population Selection

9: end while

10: return the best solution found

Fig. 3 GA pseudocode

two distinct candidates are chosen among all individuals in the population. The fittest

candidate is selected as a parent.

The two vectors that represent a candidate solution are recombined in distinct

ways. The αβ−blend crossover recombines portions vector with a randomly selected

value between the parent’s values. Two points-crossover recombination operator re-

combines the ID Vector. The mutation operator works as follows: for the portions

vector, the mutation operator chooses a random value for a portion between 0.5 and

3. For the ID Vector, the mutation operator chooses another food ID for the chosen

position.

To select the survivors for the next generation, each individual of the new gener-

ation was compared with the individual in the same position in the population of the

previous generation, and the individual with the best fitness is selected for the next

generation. This operation guarantees the monotonicity of the algorithm, and the best

solution is never lost.

2.3.2 Differential Evolution Algorithm

The Differential Evolution algorithm (DE) [16] is a classical evolutionary algorithm

originally designed to deal with real-valued variables. It is a general algorithm that

can be easily adapted to a wide range of problems. In the literature, it is possible to

find DE applications in engineering [12], chemistry [2], biology [4], finances [17],

artificial intelligence [23] and other areas [7].

The application of DE algorithm operators is performed in a different order com-

pared to other evolutionary algorithms, as shown in Figure 4. First, parents are se-

lected. Then, the mutation, recombination, and evaluation phases are executed in this

order. Finally, most fitted individuals are chosen to go to the next generation.

The mutation operator is in the core of DE, since it is the process that inserts

random information in the population, thus expanding the search space. Mutation

produces a new population of candidate individuals V = {v0, . . . ,vpop}, such that

|V | = |X | = pop. The IBHEA for CRDP applies two different mutation operators,

one for each vector of the solution.

The portions vector of a candidate individual vs ∈ V is generated as the sum

of an individual from X to the difference between two other individuals, also from

X . This process employs a factor of perturbation F ∈ [0;2] that weighs the inserted

randomness. This factor needs to be set as a parameter for IBHEA. There are many
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An Island-Based Hybrid Evolutionary Algorithm for Caloric-Restricted Diets 7

1: Initialize the population

2: Evaluate the population

3: while stopping criterion is not met do

4: Parents Selection

5: Mutation

6: Recombination

7: Evaluate the intermediary population

8: New population selection

9: end while

10: return the best solution found

Fig. 4 DE pseudocode

different mutation processes described in the literature, as reported in [16]. However,

the most adopted is the DE/rand/1, described as follows.

Let Xg denote the IBHEA population at a generation g. Also, let xα ,xβ and xγ be

three distinct random individuals that belong to Xg and let xk
j denote the k-th gene of

an individual x j ∈ Xg. DE/best/1 generates a candidate individual vs that belongs to

the generation g+ 1 as show in Equation (3). This operator is applied to each gene

separately. If vk
s results in a value less than 0.5 or greater than 3, then it is rounded to

the nearest acceptable value of the interval.

vk
s = xk

α +F(xk
β − xk

γ) (3)

The ID vector of the trial individual vs is generated by a different operator. Each

gene k ∈ {1, . . . ,17} from vs is generated by randomly selecting one of the k-th gene

from solution xα ,xβ or xγ with the same probability. Thus, each gene of the trial

individual also respects its food category and does not compromise the modeling of

the solution.

The recombination operator intensifies the search into good solutions by reusing

previously successful individuals. For each target individual xs ∈ X a trial individual

vs ∈V is generated from mutation. Then, an individual us, denominated offspring, is

generated as

uk
s =

{

vk
s , if r ≤ Rr

xk
s , if r > Rr

, ∀i ∈ {1, . . . ,17},r ∈ [0;1],

where uk
s ,v

k
s and xk

s are the k-th gene of the individuals us,vs, and xs, respectively.

These solutions are inserted into a new population U = {u0, . . . ,upop}. The value r ∈
[0;1] is randomly generated at each iteration of IBHEA. Rr is a parameter required by

IBHEA that represents the recombination ratio, i.e. the probability that an offspring

inherits the genes from the trial individual vs. As r, Rr is in the interval [0;1]. When

Rr = 1, the offspring will be equal to the trial individual vk
s , and IBHEA does not

intensify any solution. On the other hand, when Rr = 0, the offspring will be equal

to the target vector xk
s , and IBHEA does not insert any randomness in the population

during its evolution process. If 0 < Rr < 1, the offspring can receive genes from both

vk
s and xk

s . One can see that this is a crucial parameter for IBHEA, as it controls the

exploration/intensification ratio.

As the number of offsprings is the same as the number of individuals in the current

generation, the selection operator compares one offspring with one individual from
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8 João Gabriel R. Silva et al.

the current population. Then, the individual with the worst fitness is discarded, and

the other undergoes to the next generation. This procedure ensures that generation

g+1 will always be equal or better than the generation g.

2.4 The island-based implementation

The concept of evolution has been considered in solving the optimization problem of

different areas by Evolutionary Algorithms (EA) since the 1950s. Commonly these

algorithms build a population of candidate solutions to a given problem and apply op-

erators inspired by natural genetic variation and natural selection [14]. Over the years

different alternatives to implement EAs have also been proposed in the literature. One

of those alternatives is the Island Model (IM) by which it is possible to run EAs in

parallel computing environments. An IM is a class of distributed EAs in which the

population is divided into multiple sub-populations called islands. Each island run its

own EA independently, but periodically they interact through the migration operator

[3,21]. Figure 5 represents an island graphically as a group of individuals evaluated

separately. The islands exchange solutions between themselves according to topology

and a set of rules defined by the user through IM parameters by migration.

Fig. 5 Island representation.

Between user decisions on implementation of IM is the choice of EAs to be ap-

plied in islands. Note that it is possible to apply different EAs between islands, what

characterizes the IM as hybrid. This type of implementation can be very beneficial

for solving the optimization problem.

The IBHEA is composed by 24 islands with different EAs and different values

defined for their respective parameters. The choice for hybrid implementation for

IBHEA aims to provide different evolutionary behavior between islands. The DE and

GA were the EAs applied in the islands of IBHEA. Thus, islands with DE exploit the

population, while islands with GA acts on the population diversification.

A random ring topology arranges the islands of IBHEA. In this case, each island

is randomly connected to other two ones. From this topology, in IBHEA the selected

solutions for migration in each island are sent to the neighboring island on the right-

hand side. Figure 6 illustrates the evolution process of IBHEA, basically composed

by three steps. After distributing the population between islands, each one of them is

randomly connected to two other ones to receive solutions from just one of them and

send it to another. Then, each island evolves its population by its algorithm indepen-

dently in the Evolution phase. Then, the Migration phase starts, and each island sends

and receives the same number of solutions. After each Migration phase, the islands

are randomly connected again for a new execution of the Evolution phase, followed
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An Island-Based Hybrid Evolutionary Algorithm for Caloric-Restricted Diets 9

by a new Migration phase by the new connections. This sequence of steps is repeated

until the stop condition is met.

Fig. 6 Sequence of steps in execution of IBHEA.

3 Computational Experiments

The computational experiments were performed in a personal computer with Intel

Core i5 CPU 5200U with 2.2GHz and 4GB of RAM, running a Linux operating

system. The IBHEA was implemented in C and compiled with the GNU GCC 4.7.3

version. To the EAs in islands were defined 100 generations and 100 individuals.

Different parameters setting were set for each of 12 DE and 12 GA applied in the 24

islands according to Table 3.

The GA has two main parameters to be defined by the user: the crossover prob-

ability CGA ∈ [0,1] and the mutation probability MGA ∈ [0,1]. The DE has also two

main parameters to be defined by the user: the perturbation factor FDE ∈ [0,2] and the

crossover probability CDE ∈ [0,1]. Table 3 shows the parameter settings for DE and

GA applied in islands of IBHEA, defined according to the scenarios applied by Silva

et al. [19].

The parameters that describe a migration policy are the migration rate (the num-

ber of individuals that will migrate) and the migration frequency (the frequency of

generations in which the migrations occur). In this work, IBHEA was evaluated un-

der different configurations regardin combinations of these parameters. The migra-

tion rate varied from 1% to 20% of solutions, randomly chosen from each island. The

migration frequency varied from 1 to 20 generations. Each IBHEA configuration was

executed 100 times.
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Table 3 Parameter setting for EAs applied in islands of IBHEA.

DE Island FDE CDE GA Island CGA MGA

1 0.30 0.40 13 0.75 0.05

2 0.30 0.60 14 0.75 0.10

3 0.30 0.80 15 0.75 0.15

4 0.60 0.40 16 0.75 0.20

5 0.60 0.60 17 0.95 0.05

6 0.60 0.80 18 0.95 0.10

7 0.80 0.40 19 0.95 0.15

8 0.80 0.60 20 0.95 0.20

9 0.80 0.80 21 1.00 0.05

10 1.30 0.40 22 1.00 0.10

11 1.30 0.60 23 1.00 0.15

12 1.30 0.80 24 1.00 0.20

Table 4 presents the Minimum, Mean and Maximum values of the objective func-

tion of the solutions obtained in the 100 runs of different IBHEA configurations

identified in first column. Table 4 indicates that the migration operator in IM can

positively contribute to the solution quality of EAs. Table 4 demonstrates that the

IBHEA configuration that produced the best set of solutions, according to the Mini-

mum and Mean metrics, was the one in which the migration was performed at each

generation of the EAs and which exchanged the largest number of solutions between

the islands. The configuration associated to the lowest value for the Maximum metric

also presents similar characteristic of IBHEA regarding the application of migration.

The main results of this work are shown in Tables 5 and 6, where it is verified that,

for the best parameters set for GA and DE islands the island migrations improves the

average calories of the final solutions Notice that the hybrid model implementing GA

and DE runs the same number of evaluations of the objective function. IBHEA results

achieved better performance when compared to the results present by Silva in [20],

which used a DE with island implementation to solve the CRDP.

From Tables 5 and 6 it is possible to state that the goals of the work were achieved

comparing with DE and GA. The proposed implementation using islands shows bet-

ter results than the original model in 100% of the tests. One of the major and most

likely reasons for the improvement in the quality of the results arises from the di-

versity of the population introduced by the migration between islands with different

evolutionary algorithms. Table 7 shows an example of a daily diet generated by IB-

HEA, in which a large diversity of foods and drinks in all meals can be noticed.

Another relevant feature of IBHEA is its applicability to real-world contexts since

it can solve CRPD with short execution time. Moreover, IBHEA can solve many

instances of CRPD in seconds, thus generating different diets at each execution. The

great diversity of foods and drinks makes diets easier to be followed, so the taste

will not be tired with repetitive meals, thus becoming more comfortable with losing

weight.
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Table 4 Results obtained in 100 runs for different configurations of IBHEA identified in first column

according to their migration frequency and migration rate values.

(Migration frequency/migration rate(%)) Minimum Mean Maximum

(1/1) 1424.56 1468.03 1490.21

(1/5) 1427.24 1454.76 1486.02

(1/10) 1419.26 1448.87 1476.93

(1/15) 1416.69 1447.92 1470.78

(1/20) 1407.66 1444.01 1472.58

(5/1) 1438.37 1483.89 1519.26

(5/5) 1419.95 1469.58 1505.01

(5/10) 1422.48 1466.59 1494.37

(5/15) 1419.43 1464.97 1485.59

(5/20) 1430.04 1462.65 1490.32

(10/1) 1424.03 1490.35 1545.22

(10/5) 1425.74 1478.06 1521.72

(10/10) 1409.04 1474.12 1509.82

(10/15) 1415.03 1474.21 1519.49

(10/20) 1428.40 1470.88 1506.06

( 15/1) 1436.98 1492.30 1544.97

( 15/5) 1435.20 1484.92 1547.35

(15/10) 1419.54 1478.14 1521.11

(15/15) 1433.95 1477.32 1517.95

(15/20) 1422.39 1475.44 1517.68

(20/1) 1423.08 1496.98 1609.26

(20/5) 1425.79 1488.26 1560.74

(20/10) 1428.68 1484.57 1539.71

(20/15) 1423.89 1482.40 1535.03

(20/20) 1433.14 1481.78 1525.89

Table 5 Mean - Island-based model × DE model.

FDE CDE DE result Difference (%)

0.3 0.4 1505.64 -61.64

0.3 0.6 1492.04 -48.04

0.3 0.8 1485.73 -41.73

0.6 0.4 1506.92 -62.92

0.6 0.6 1499.66 -55.66

0.6 0.8 1483.31 -39.31

0.8 0.4 1512.12 -68.12

0.8 0.6 1500.36 -56.36

0.8 0.8 1507.57 -63.57

1.3 0.4 1521.05 -77.05

1.3 0.6 1510.33 -66.33

1.3 0.8 1510.02 -66.02

4 Conclusions

The key point to solve CRDP is to generate a great diversity of solutions. Thus,

various diets can be easily generated by DE. Deterministic methods, such as branch-

and-bound approaches or mathematical programming methods, can not be adequately

used to solve CRDP as it would always generate the same diet.

The use of the hybrid island-based model achieved significant results since it was

able to reduce the amount of calories of the diets without violating the restrictions in
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Table 6 Mean - Island-based model x GA model.

CGA MGA GA result Difference (%)

0.75 0.05 1575.70 -131.7

0.75 0.10 1531.17 -87.17

0.75 0.15 1512.37 -68.37

0.75 0.20 1502.37 -58.37

0.95 0.05 1553.95 -109.95

0.95 0.10 1515.55 -71.55

0.95 0.15 1501.73 -57.73

0.95 0.20 1507.23 -63.23

1.00 0.05 1550.50 -106.5

1.00 0.10 1507.14 -63.14

1.00 0.15 1502.74 -58.74

1.00 0.20 1503.98 -59.98

Table 7 Diet Example

1444.72kcal

breakfast

coconut water 1.492

banana 1.638

whole wheat bread 0.743

snack

lime orange 1.163

lunch

sweet potato 1.170

split bean 0.872

alfavaca 1.877

white cabbage 1.491

crab 0.868

lemon suice 2.374

snack

lemon clove suice 1.501

green corn cream 0.623

dinner

cooked potato 1.383

bean 1.862

broccoli 1.609

crab 0.790

supper

banana 2.079

Nutrition Facts

Proteins 75.6

Carbohydrate 300.0

Food Fiber 57.8

Calcium 1613.2

Magnesium 634.9

Manganese 4.9

Phosphorus 1156.0

Iron 16.9

Sodium 1020.9

Zinc 16.7

the majority of the scenarios. This work can be applied in real situations, as it can

generate a lot of diets in a short time.

For future works, we propose to develop a multi-objective version of CRDP, to

minimize, in addition to the number of calories, the financial cost, or the sodium con-

sumption, while maximizing the amount of fiber and protein, for example. Another

approach is to turn this work a configurable toll for use in specific diets for diabetic

or hypertensive patients.
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Figures

Figure 1

Solution encoding for CRPD: 6 ordered different meals, each one compose by a speci�c number and
groups of food products.

Figure 2

Representation of an IBHEA candidate solution for CRDP.

Figure 3

GA pseudocode

Figure 4



DE pseudocode

Figure 5

Island representation

Figure 6

Sequence of steps in execution of IBHEA
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