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Abstract
Comparison is a powerful tool for decision support. Many measures have been proposed for comparing two metric spaces, 
but they do not consider the data dispersion in each metric space. Furthermore, no dedicated measure has yet been proposed 
for comparing two metric spaces containing elements belonging to various subtypes of a global datatype. In order to attenu-
ate the aforementioned limitations, this paper proposes a new technique for comparing two metric spaces. More formally, 
given a metric space X, histograms are used for performing a gradual analysis of the data dispersion inside the neighborhood 
of each element of X. This is a refinement of the neighborhoods’ analysis realized in an existing work. Then, another exist-
ing technique is used for associating one hidden Markov model �

X
 with X such that �

X
 learns the bin values and the visual 

shapes of the histograms derived from the instances in X. Meta-data derived from �
X
 are then saved as the components of 

a descriptor vector �⃗X associated with X. Finally, the comparison between two metric spaces is performed through the com-
parison of their respective associated descriptor vectors using existing distance or similarity measures between two vectors. 
The proposed approach inherits the accuracy and the efficiency of the existing techniques on which it relies. Therefore, the 
experiments realized in this paper are only intended to show how it can be used for comparing particular metric spaces 
containing geolocations or stars in the celestial sphere.
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1  Introduction

Human being daily faces situations for which he must make 
choices. To achieve this, he generally makes comparisons 
because comparison is a powerful tool for decision support. 
The comparison usually consists either in calculating the 
similarity between two elements, or calculating the distance 
separating the two elements. For this reason, several similar-
ity and distance measures between two elements belonging 
to the same datatype have been proposed. Given a set � , 
a distance (also called a metric) is a function dist which 

assigns a positive real number dist(x, y) to every pair x, y∈� 
satisfying the 4 axioms [1]1.defined in Eq. 1.

A similarity is a function d which also outputs a real number 
d(x, y) satisfying the 5 axioms [1]2defined in Eq. 2.

Due to the huge sizes of the data manipulated in many 
domains, humans must also now be able to compare not 
just two single elements, but two sets composed of many 

(1)

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇔ (x = y)

3. d(x, y) = d(y, x)

4. d(x, z) + d(z, y) ≥ d(x, y), ∀z ∈ �

(2)

1. d(x, y) ≥ d(y, x)

2. d(x, x) ≥ 0

3. d(x, x) ≥ d(x, y)

4. d(x, y) + d(y, z) ≤ d(x, z) + d(y, y), ∀z ∈ �

5. d(x, x) = d(y, y) = d(x, y) ⇔ (x = y)
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elements. This paper exclusively deals with particular sets 
called metric spaces. A metric space is a pair (�, d) where 
� is a set and d is a metric on � [2]3. The metric space (�, d) 
will be noted as � in the rest of this paper for simplicity. 
Given a metric space � , we will indifferently use the terms 
individual, instance or element to designate any x∈� in the 
rest of this paper.

Metric spaces can be organized in two categories: a 
metric space � can either be composed of elements from 
the same datatype T, or it can rather be composed of 
elements from various subtypes of T. In this second case, � 
contains elements belonging to the datatype T, which can be 
viewed itself as n≥2 distinct subtypes T1, … , Tn . If we note 
�i = {x ∈ �|sub type(x) = Ti} , then � = {�1,… , �n}.

Depending on the targeted application, a given metric 
space can belong to both categories. For example, the area 
covered by a department in a country can first be seen as a 
set composed of ’venues’ scattered in the considered area. 
In this example, the datatype is T = ’venues’. But each 
venue can itself be precisely identified as a football field, a 
pharmacy, a library, or a spectacle venue. In this context, the 
main datatype is still T = ’venues’, but here T is composed 
of the n = 4 following subtypes: T1 = ’football fields’, T2 = 
’pharmacies’, T3 = ’libraries’ and T4 = ’spectacle venues’. 
Consequently, a department can also be viewed as a set 
composed of elements whose possible subtypes are ’football 
fields’, ’pharmacies’, ’libraries’, and ’spectacle venues’.

In order to distinguish these two categories in the rest 
of this paper, the expression ’dataset’ will refer to the 
first category, while the expression ’data collection’ will 
designate the second category.

The result of a comparison between two datasets X and Y 
can most often be a logic outcome that can be evaluated as 
true or false (e.g: is X a subset of Y?). As analyzed in [3]4, 
such binary spatial relations can be classified according to 
the three following geometric categories: topological (e.g: 
does X touches Y?), projective (e.g: is X inside the concavity 
of Y?) and metric (e.g: is X bigger than Y?). But there are so 

many situations where it is hardly possible to perform such 
comparisons, this is for example the case for the datasets 
X = {1, 2, 4, 6} and Y = {1, 3, 4, 5} . In such situations and 
for the particular case of metric spaces where a metric is 
defined, the comparison can still be realized and the result of 
this comparison is generally a positive numeric value repre-
senting the formal distance (as defined in Eq. 1) between the 
two metric spaces. It is in this perspective that many metrics 
have been proposed to address the problem of comparing 
two datasets [4–10]. These existing measures can be organ-
ized into two groups: 

1.	 In the first group, cluster-based comparison is per-
formed [4, 5]. Here, existing distance measures between 
two elements are used in a specific algorithm for deriv-
ing the result.

2.	 In the second group, model-based comparison is 
performed [6–10]. A model is initially designed for 
capturing the content of each dataset. The comparison 
between the two datasets is then realized through 
the comparison of their associated models. These 
approaches are more reliable than cluster-based 
approaches because they consider each dataset as a 
single entity.

The aforelisted existing techniques share at least two 
common limitations, irrespective of the group to which 
they belong. On the one hand, they do not consider the way 
how elements are scattered inside the datasets. However, 
the dispersion of the elements inside a dataset is obviously 
a fundamental descriptor for this dataset. On the other hand, 
none of these existing techniques specifically addresses the 
problem of comparing two data collections.

This paper attempts to overcome these drawbacks through 
the proposal of a histogram-based technique for comparing 
two metric spaces using hidden Markov models (HMMs). 
This is realized by initially transforming each element x of 
a dataset X into a histogram which gradually captures the 
data dispersion inside the neighborhood of x. Proceeding 
this way, each dataset X becomes a set HX containing the 
|X| histograms derived from its elements. The HMM-based 

Table 1   Main characteristics 
of the existing techniques for 
comparing two datasets

Principle Authors [Ref.] Year Method/Model Type

Cluster-based Shalizi [5] 2009 Ward’s method Generic
Hahsler [4] 2020 Minimum, maximum, average 

and centroid linkages
Model-based Tatti [6] 2007 Frequency f ∈ ℝ

n Samples
Facundo [7] 2017 Isometric copies Generic
Iloga & al. [8] 2018 Hidden Markov models Histograms
Iloga & al. [9] 2020 Generic
Iloga [10] 2021 Trees

3  See the first footnote of [2] at the end of page 3.
4  See Table 1 (column 2) of [3].
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technique proposed in  [8] is then used for associating 
a HMM �X with X such that �X learns the bin values and 
the visual shapes of the histograms found in HX . Meta-
data derived from �X are later saved as the components of 
a descriptor vector �⃗X associated with X. Finally, the com-
parison between two metric spaces is performed through the 
comparison of their respective associated descriptor vec-
tors using existing distance or similarity measures between 
two vectors. The proposed approach is experimented for 
the comparison of datasets and data collections containing 
geolocations or stars in the celestial sphere.

The rest of this paper is organized as follows: the state 
of the art is presented in Sect. 2, followed by a summarized 
presentation of HMMs in Sect. 3. The description of the 
proposed approach is realized in Sect. 4, while experimen-
tal results are presented in Sect. 5. In Sect. 6, a discussion 
related to relevant research problems and perspectives that 
can be explored in future work is proposed. The last section 
is dedicated to the Conclusion.

2 � State of the art

2.1 � Comparison of two single elements

Many existing metrics used for comparing two datasets are 
based on the comparison of two single elements belonging 
to the same datatype. For this reason, a short overview 
of some relevant metrics used for comparing two single 
elements is first proposed in this section. Considering both, 
the high number of the possible existing datatypes and the 
high number of existing metrics, it is not reasonable to 
make an exhaustive review of all the existing metrics in this 
paper. Nevertheless, a review of relevant existing metrics 
between two elements belonging to one of the five following 
datatypes is performed in the next sections: ℝn , histograms, 
trees, geolocations on the earth and stars in the celestial 
sphere.

2.1.1 � Comparison of two elements of ℝn

An element of ℝn is an object (vector, point) which is fully 
described by its n components, all belonging to ℝ . They 
are widely used in several domains including mathematics, 
physics and computer science. The most used distance for 
comparing two elements of ℝn is the Euclidean distance. 
Given two elements x and y of ℝn , this measure evaluates 
the straight-line distance between x and y. Another popular 
distance in ℝn is the Manhattan distance which evaluates 
the distance traveled by a taxi when it moves from x to y in 
a city where the streets are organized as a grid. Equation 3 
shows how to compute these distances for two elements 
x = [x1,… , xn] and y = [y1,… , yn] of ℝn . Formal details 

about more than 60 other existing distances are available 
in [11]5.

Many similarities are also available for comparing two 
elements of ℝn . This is the case of the Cosine similarity 
which is the cosine of the angle (̂x, y) between x and y. This 
angle is obtained by computing the arccos of the Cosine 
similarity. If the comparison aims at discovering any 
rank correspondence between x and y, several correlation 
coefficients are available and among them we can list: the 
Pearson correlation coefficient, the Spearman’s � rank 
coefficient, the Kendall � coefficient and the Goodman-
Kruskal’s � rank correlation. A detailed presentation of 
these correlation coefficients is available in [12]6.

2.1.2 � Comparison of two histograms

A histogram can be seen as a finite ordered sequence of 
bin values (positive real numbers) whose variations are 
meaningful because they determine the visual shape of 
the histogram  [8]7. Histogram-based local descriptors 
are used in several application domains including music, 
image and text processing. Most of the existing measures 
used for comparing two histograms h1 and h2 apply bin-to-
bin functions. It is for example the case of the Intersection 
distance which returns the sum of minimum bin-to-bin 
values between h1 and h2  [13]. It is also the case of the 
�2-statistics divergence which evaluates how likely it is 
that any observed difference between h1 and h2 arose by 
chance [14].

Unlike the aforelisted metrics, other metrics using cross-
bin information for comparing two histograms have also 
been proposed. This is the case of the Diffusion distance [15] 
which defines the distance between two histograms as a 
temperature field and considers the diffusion process on the 
field. Another important member of this category of met-
rics is the Earth Movers distance [16] which evaluates the 
least amount of work needed to transport earth or mass from 
h1 to h2 . Other authors rather focused on metric learning 
approaches. In [17] for example, a non-linear metric learn-
ing approach dedicated to histograms is proposed. This 
metric generalizes the bin-to-bin �2-statistics distance in 
order to learn a metric that strictly preserves the histograms 

(3)
d1(x, y) =

√
√
√
√

n∑

i=1

(xi − yi)
2 (Euclidean)

d2(x, y) =

n∑

i=1

|xi − yi| (Manhattan)

5  See Tables 1, 2, 3, 4, 5, 6, 7, 8 and Table 10 of [11].
6  See Section 2.5 of [12].
7  See the Introduction of [8].
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properties. This approach exhibits more reliable results than 
the original �2-statistics distance. A detailed state of the 
art on existing metrics between two histograms is available 
in [8]8.

2.1.3 � Comparison of two trees

A tree is a connected acyclic graph. No specific details 
related to graph/tree concepts will be presented in this paper. 
Nevertheless, a detailed overview on graph theory and appli-
cations is available in [18]. Many distances have yet been 
proposed for comparing trees and they are mostly based on 
one of the five following principles: 

1.	 Tree edit [19–21].
2.	 Tree alignment [22, 23].
3.	 Tree inclusion [24, 25].
4.	 Tree pattern matching [26–28].
5.	 Subtrees or supertrees similarity [29–31].

The tree edit distance is based on the analysis of the number 
of edit operations required to transform a tree t1 into another 
tree t2 . The three following edit operations are considered 
for a given node: insertion, deletion and substitution. Tree 
alignment is a particular case of tree edit where insertions 
are always performed before deletions. Let t1 and t2 be two 
rooted trees with labeled nodes. t1 is included in t2 if there 
is a sequence sec(t1, t2) of node deletions performed on t2 
which makes t2 isomorphic to t1 . The tree inclusion problem 
is to decide if t1 can be included in t2 and the tree inclu-
sion distance is the sum of the costs of the delete operations 
found in sec(t1, t2) . Tree pattern matching consists in find-
ing the instances of a given pattern tree in a specific target 
tree [26–28]. Subtrees or supertrees similarity are generally 
realized by finding the maximum agreement sub-tree [29], 
the largest common sub-tree [30] or the smallest common 
super-tree [31]. Details related to all these principles are 
available in [10]9.

2.1.4 � Comparison of two geolocations on Earth

The acronym GPS stands for Global Positioning System. It 
is a system used for worldwide navigation and surveying. 
The system can localize any element (person, venue, object) 
anywhere on the Earth’s surface. The expression ’GPS coor-
dinates’ generally refers to a pair of coordinates: the lati-
tude and the longitude. In the experiments realized in this 
paper, the ’Decimal degrees’ notation of these coordinates 
is adopted. In this notation, the latitude and the longitude are 

expressed as decimals belonging to the interval [−180, 180] . 
Consider two elements A and B whose GPS coordinates are 
respectively (latA, lonA) and (latB, lonB) . The Haversine for-
mula [32] presented in Eq. 4 is selected in this paper for 
calculating the distance between A and B. In this equation, 
the function rd(�) returns the value in radians of the angle 
� initially measured in degrees. The result of Eq. 4 is in 
Kilometers and the constant 6371 is the mean radius of the 
Earth in Kilometers.

2.1.5 � Comparison of two stars

In order to localize a star in the celestial sphere, one must 
select a planet from which this star is observed. Generally, 
the Earth is the selected planet. A star observed from the 
Earth can be fully localized in the celestial sphere by its 
celestial coordinates (Ra, Dec) and the distance r between 
the Earth and the considered star. Ra is the right ascension 
of the star, generally expressed in degrees between −90◦ and 
+90◦ . Dec is the declination of the star, generally expressed 
in hours (between 0h and 24h), but it can be converted in 
degrees in which case 360◦ corresponds to 24h. Consider 
two stars S1 and S2 observed from the Earth whose celestial 
coordinates are respectively (a1, b1) and (a2, b2) . The values 
a1, a2 and b1, b2 are respectively the right ascensions and 
the declinations of the considered stars. Let us now assume 
that the distance from the Earth to S1 is r1 and the distance 
from the Earth to S2 is r2 . It is demonstrated in [33]10 that 
the distance dstar between S1 and S2 is computed by Eq. 5 
where the right ascensions are converted in degrees. This 
distance measure has been selected in this paper to be the 
distance between two stars. The unit of the result of dstar is 
the light-year.

(4)

dgps(A,B) = 6371×arccos(c1 + c2)

where c1 = sin(rd(latA))× sin(rd(latB))

and c2 = cos(rd(latA))× cos(rd(latB))× cos(c3)

and c3 = rd(lonA − lonB)

(5)

dstar(S1, S2) =

√

r2
1
+ r2

2
− 2.r1.r2. cos � where

cos � = sin b1. sin b2 + cos b1. cos b2. cos (a1 − a2)

9  See Section 2.2 of [10]. 10  See Eqs. 1 and 2 of [33].
8  See Sect. 2.1 and Table 1 of [8].
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2.2 � Existing metrics for comparing two datasets

2.2.1 � Cluster‑based comparison

Consider two datasets X and Y, both containing elements 
belonging to the same datatype T which can be ℝn , histo-
grams, trees, geolocations, stars, etc. Let dist be a metric 
between any two elements of type T, the measures reviewed 
in Sect. 2.1 can be used for this purpose. The following clus-
ter distances analyzed in [4] and whose formulas are pre-
sented in Eq. 6 are most often used for comparing X and Y: 

1.	 The minimum linkage distance also called the single-link 
distance: Here, the distance between the two nearest ele-
ments of X and Y is considered.

2.	 The maximum linkage distance also called the com-
plete-link distance: this measure evaluates the distance 
between the most distant elements of X and Y.

3.	 The average linkage distance which is the mean of the 
distances between every pair (x, y) ∈ X×Y .

4.	 The centroid linkage distance where an initial centroid 
calculation is realized in each dataset. If we respectively 
note X̃ and Ỹ  the centroids of X and Y, then the distance 
between X and Y is computed as the distance between X̃ 
and Ỹ .

Beside these metrics, it is also possible to compute the dis-
tance between X and Y when they are members of a par-
ticular taxonomy. A well-known method to do this is the 
Ward’s method which computes the merging cost Δ(X, Y) of 
combining X and Y [5]. Equation 7 shows how to compute 
the merging cost of X and Y.

2.2.2 � Model‑based comparison

When a formal model is designed for each dataset, it 
becomes possible to compare two datasets through the com-
parison of their associated models.

In 2007, a Malahanobis distance between datasets 
based on summary statistics is defined [6]. Here, datasets 
are finite collections of samples belonging to the same 

(6)

Minimum(X, Y) = min
(x,y)∈X×Y

{dist(x, y)}

Maximum(X, Y) = max
(x,y)∈X×Y

{dist(x, y)}

Average(X, Y) =
1

|X|.|Y|

∑

x∈X

∑

y∈Y

dist(x, y)

Centroid(X, Y) = dist(X̃, Ỹ)

(7)Δ(X, Y) =

(
|X|.|Y|

|X| + |Y|

)

×dist(X̃, Ỹ)
2

sample space � (itemsets, binary data, etc.). Before com-
paring two datasets D1 and D2 , a feature function 
� ∶ � → ℝ

n which maps every element of � to a vector in 
ℝ

n is initially defined. The authors then model each dataset 
Di as its frequency fi =

1

�Di�

∑
�∈Di

�(�) which is the aver-
age of the values of � taken over Di . Finally, Theorem 1 
of [6] shows how to compute the distance dCM(D1,D2|�) 
between two datasets D1 and D2 considering the feature 
function � by comparing their frequencies (models) f1 and 
f2 . Consequently, the efficiency of dCM strongly depends 
on the choice of �.

In 2017, the Gromov-Hausdorff distance is proposed for 
comparing two compact metric spaces [7]. More formally, 
in order to compare two compact metric spaces X and Y, 
one initially needs to consider a third sufficiently rich com-
pact metric space Z inside which isometric copies �X(X) 
and �Y (Y) of X and Y are respectively available. �X(X) and 
�Y (Y) are considered here as the models respectively asso-
ciated with X and Y. Equation (3.1) of [7] shows how to 
finally compute the Gromov-Hausdorff distance between 
X and Y by computing the simple Hausdorff distance 
between �X(X) and �Y (Y) which roughly evaluates the 
inclusion of each dataset in specific subsets of the other.

In 2018, an accurate HMMs-based approach for com-
paring finite sets of histograms was proposed [8]. Consider 
N datasets H1,… ,HN containing histograms. In that work, 
each histogram was first represented as a Markov chain. 
Then, a HMM �i was trained to capture the visual shapes 
and the bin values of the |Hi| histograms in Hi (1≤i≤N) . 
Finally, the similarity rate between two distinct datasets Hi 
and Hj (1≤i, j≤N) was obtained by considering the value of 
the similarity between their respective associated models 
�i and �j , weighted by a suitable amplitude coefficient. 
The technique proposed in [8] exhibited better results than 
existing techniques in several domains including color 
images comparison, text documents comparison, auto-
matic taxonomy generation of music genres and the com-
parison of the curves associated with 2D and 3D functions.

In 2020, an efficient generic approach for automatic tax-
onomy generation using HMMs was proposed [9]. Con-
sider N classes (datasets) C1,… ,CN containing elements 
belonging to the datatype T. In that work, an analysis of 
the neighborhood of each element is first performed. More 
precisely, the number of elements of each class Ci found 
in this neighborhood is captured inside a Markov chain 
from the most dominant class to the least dominant. The 
Markov chains resulting from this analysis are used to ini-
tialize, then to train a HMM for each class. The similari-
ties between any two classes Ci and Cj (1≤i, j≤N) , derived 
from the similarity between their respective associated 
HMMs, are finally used for constructing the taxonomy. 
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The taxonomies resulting from this technique outper-
formed the state of the art in the hierarchical classification 
of 20 widespread datasets containing elements belonging 
to several datatypes.

More recently in 2021, a customizable HMM-based 
technique was proposed for accurately comparing two tree 
sets, irrespective of the characteristics verified by the trees 
they contain [10]. This technique was therefore applicable 
to rooted and unrooted trees, to labeled and unlabeled trees, 
as well as to weighted and unweighted trees. Unlike former 
techniques for tree comparison, this technique enables the 
user to explicitly specify the node properties on which the 
comparison must be performed. More formally, a HMM was 
associated with each tree set for each target node property. 
The model associated with a tree set T for the target node 
property p learned how much the nodes of the trees in T ver-
ify property p. The resulting HMMs were finally compared 
for deriving both, a distance and a similarity between the 
two finite tree sets. Flat classification experiments conducted 
on two online available synthetic datasets11, both containing 
4 classes of 100 rooted ordered trees whose node proper-
ties were clearly defined, exhibited a perfect accuracy of 
100% for these two datasets when the tree distance proposed 
in [10] was selected as metric for the Nearest Neighbor clas-
sifier. This performance is 41% higher than the accuracy 
exhibited when the tree Edit distance is used. Table 1 sum-
marizes the main characteristics of the existing techniques 
for comparing two datasets reviewed in this section.

2.3 � Problem statement

Existing cluster-based techniques [4, 5] and model-based 
techniques  [6–10] for comparing datasets do not take 
into consideration the dispersion of the elements inside 
each dataset. However, this is obviously a fundamental 
descriptor of each dataset for several real-world applications. 
Furthermore, comparing two data collections remains an 
open field of research because existing techniques do not 
specifically address this problem. Consider for example 
an employee of a company that must move from a city X 
to a city Y of his choice for professional reasons. If that 
employee is very attached to the way in which the venues 
(football fields, libraries, pharmacies, spectacle venues, etc.) 
are scattered in X, he will therefore seek to settle in a city 
Y whose venues are scattered in a similar way. But, he will 
do the opposite in the event that the dispersion of venues 
in X does not suit him. In such a context, a metric that can 
evaluate the distance between X and Y while considering the 
dispersion of venues in these two cities is required.

This paper aims at solving these limitations through the 
proposal of a new histograms-based approach for comparing 

two metric spaces using HMMs. This is realized by trans-
forming a metric space X into a set HX of histograms which 
gradually capture the data dispersion inside the neighbor-
hood of each element of X. Then, following [8], a HMM �X 
is trained to learn the bin values and the visual shapes of the 
histograms contained in HX . Meta-data derived from �X are 
later saved as the components of a descriptor vector �⃗X asso-
ciated with X. The comparison between two metric spaces 
is finally performed through the comparison of their respec-
tive associated descriptor vectors using existing distance or 
similarity measures between two vectors.

3 � Summarized presentation of HMMs

The current section is dedicated to a summarized presen-
tation of some essential HMMs-related concepts. More 
detailed presentations can be found in [8–10] as well as in 
the tutorial on HMMs and selected applications in speech 
recognition available in [34].

A HMM � = (S, �,A,B,�) is fully characterized by [34]12: 

1.	 Its set S = {s1,… , sN} of states.
2.	 Its set � = {v1,… , vM} of symbols.
3.	 Its state transition probability matrix A such that A[si, sj] 

is the probability that � transits from state si to state sj.
4.	 Its symbols probabilities matrix B such that B[si, vk] is 

the probability that � observes symbol vk from state si.
5.	 Its initial state probability vector � such that �[si] is the 

probability that the initial state of � is si.

For convenience, the notation � = (S, �,A,B,�) is generally 
reduced to � = (A,B,�) . A HMM can be used for generat-
ing a Markov chain which is a finite sequence of states such 
that a specific symbol is observed from each state of the 
sequence.

Consider a sequence of symbols O = o1…oT  and a 
HMM � = (A,B,�) . The probability Prob(O|�) to observe 
O given � is efficiently computed by the Forward-Backward 
algorithm [34]13 which runs in �(T .N2).

The Baum-Welch algorithm [34]14 is generally used for 
iteratively re-estimating the parameters of a HMM 
� = (A,B,�) in order to maximize the value of Prob(O|�) , 
where � = (A,B,�) is the re-estimated model. This algo-
rithm runs in �(� .T .N2) where � is the user-defined maxi-
mum number of iterations. The Baum-Welch algorithm can 
also be used to train a HMM for multiple sequences 15. The 

12  See Section II-B of [34].
13  See Section III-A of [34].
14  See Section III-C of [34].
15  See Section V-B of [34].11  http://​perso-​etis.​ensea.​fr/​sylva​in.​iloga/​First​Last/​index.​html.

http://perso-etis.ensea.fr/sylvain.iloga/FirstLast/index.html
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a l g o r i t h m  m a x i m i z e s  t h e  v a l u e  o f 
Prob(O��) =

∑K

k=1
Prob(O(k)��) where O = {O(1), … , 

O(K)} is a set of K sequences and O(k) = O(k)
1 …O(k)

Tk
 is the kth 

sequence of O. The time complexity of the Baum-Welch 
algorithm for multiple sequences is approximated by 
�

�

� .(
∑K

k=1
Tk).N

2

�

A stationary distribution of a HMM � = (A,B,�) is a 
vector � = (�[s1],… ,�[sN]) such that �[sj] estimates the 
overall proportion of time spent by � in state sj after a suf-
ficiently long time [35]16. � can be extracted from any line 
of the matrix Ar = A×A×…×A (r times) when r→ +∞ . 
Therefore, the computation of � requires �(r.N3) arithmetic 
operations.

4 � The proposed approach

4.1 � Main idea

Consider a finite metric space X containing elements from a 
datatype T and let dist be a metric between any two elements 
of T. Given a user-defined positive real number R, the main 
idea of the technique proposed in the current paper is that 
each individual x∈X can be characterized by the dispersion 
of the individuals localized in its neighborhood of radius R. 
This idea arises from a limitation of the main idea of [9]17 
where the neighborhood of each instance was also analyzed, 
but the resulting analysis suffered from the lack of infor-
mation related to the dispersion of the instances inside the 
neighborhood18.

To achieve this goal, we first divide the neighborhood 
of x into p consecutive slices of identical width, where p is 
a user-defined integer. This division allows us to graduate 
the neighboring zones of x depending on their proximity 
to x. As an example, for p = 5 , we can adopt the following 

graduation: ’very close’, ’close’, ’slightly distant’, ’distant’ 
and ’very distant’. Thereafter, the number of neighbors 
found in each zone is saved into a characteristic histogram 
hx in such a way that the ith bin value hx(i) is the number of 
neighbors found in the ith slice (1≤i≤p) . When this principle 
is applied for each individual x∈X , a dataset HX containing 
|X| characteristic histograms is obtained.

4.2 � Methodology

The proposed methodology for comparing two metric spaces 
presented in Fig. 1 clearly specifies the main contribution 
of the current paper. As it can be observed in that figure, the 
proposed technique is composed of the 4 following steps: 

1.	 The transformation of each metric space into a set of 
characteristic histograms by performing a gradual 
analysis of the neighborhood of every individual in the 
metric space.

2.	 The bin values and the visual shapes of the histograms 
contained in each set of characteristic histograms are 
learned through the training of a HMM using the Baum-
Welch algorithm following [8].

Fig. 1   Proposed methodology for comparing two metric spaces X and Y 

x →
Construct
a ball of
radius R

→ ℵx →
Divide
ℵx into
p slices

↓
ℵx(j)

(1≤j≤p)
↓

hx ←
Compute

the
histogram

Fig. 2   Construction of the characteristic histogram hx of an instance 
x in a dataset

16  See Definition 9.1 of [35].
17  See Section 4.1 of [9].
18  See the Conclusion of [9].
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3.	 Analogically to  [36], meta-data extracted from the 
resulting HMMs are saved as the components of a 
descriptor vector for each metric space. These meta-data 
are related to the overall behavior of each HMM regard-
ing every symbol after a sufficiently long time.

4.	 The comparison between the two input metric spaces is 
performed through the comparison between their asso-
ciated descriptor vectors using any existing distance or 
similarity d between vectors.

4.3 � Construction of the histograms

4.3.1 � The case of datasets

Consider a finite dataset X containing elements from a 
datatype T and let dist be a metric between any two elements 
of T. Consider now two user-defined numbers R and p 
respectively representing the radius of the neighborhood 
of each instance and the number slices resulting from the 
division of this neighborhood. As it is summarized in Fig. 2, 
the characteristic histogram hx derived from each x ∈ X is 
constructed as follows: 

1.	 Construct a ball of radius R centered at x named ℵx 
which materializes the neighborhood of x in X.

2.	 Divide ℵx into p consecutive slices such that ℵx(j) refers 
to the elements of X found inside the jth slice, each slice 
having a width of R

p
 . Equation  8 gives the formal 

definition of ℵx(j).
3.	 For every (1≤j≤p) , compute hx using Eq. 9.

(8)ℵx(j) =

{

y ∈ X|(j − 1).
R

p
≤ dist(x, y) < j.

R

p

}

(9)hx(j) = |ℵx(j)|

When this principle is applied to each instance of X, the 
set HX = {hx|x ∈ X} is obtained. As an example, consider 
the instance x of the dataset X identified in Fig. 3a, where 
all the instances in X are represented as dots. In b, the 
neighborhood ℵx of x having as radius R is divided into 
p = 5 consecutive slices of identical width represented 
by circles. Finally, the characteristic histogram hx of x is 
constructed in Fig. 3c in such a way that hx(j) is the number 
of neighbors found in the jth slice (1≤j≤5).

4.3.2 � The case of data collections

As described in Fig.  4, given a data collection 
A = {A1,… ,An} , the following procedure describes how 
to construct the characteristic histogram hx associated with 
any instance x∈A , irrespective of its corresponding subtype:

1.	 Construct a ball of radius R centered at x named ℵx 
which materializes the neighborhood of x in A.

2.	 Divide ℵx into p consecutive slices such that ℵx(j) refers 
to the elements of A found inside the jth slice irrespective 
of their corresponding subtypes, each slice having a 

(a) Identification of x in X (b) Division of ℵx into 5 slices (c) The characteristic histogram hx

Fig. 3   Construction of the characteristic histogram hx of the instance x ∈ X

x →
Construct
a ball of
radius R

→ ℵx →
Divide
ℵx into
p slices

↓
ℵx(j)

(1≤j≤p)
↓

hx ←
Compute

the
histogram

←
ℵx(i,j)

(1≤i≤n) ←
Organize
ℵx(j) per
subtype

Fig. 4   Construction of the characteristic histogram hx of an instance x 
in a data collection
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width of R
p
 . Equation 10 gives the formal definition of 

ℵx(j).
3.	 For every (1≤j≤p) , organize the content of ℵx(j) regard-

ing the subtypes of its elements such that ℵx(i, j) refers to 
the elements of ℵx(j) belonging to Ai as shown in Eq. 11.

4.	 For every (1≤i≤n) and every (1≤j≤p) , compute hx using 
Eq. 12.

Consider for example a data collection � = {X, Y} 
composed of two subsets: X containing dots and Y 
containing stars, both dots and stars being subtypes of a 
datatype T. Consider now the instances x∈X  and y∈Y  
identified in Fig. 5a. The neighborhoods ℵx and ℵy of x and 
y are respectively divided into p = 5 slices represented by 
circles as shown in Fig. 5b, c. When Eq. 11 is applied, the 
characteristic histograms hx and hy respectively presented 
in Fig. 5d, e are derived. When this procedure is applied 
on a data collection A = {A1,… ,An} , the collection 
HA = {HA1

,… ,HAn
} containing n sets of characteristic 

histograms is obtained.

(10)ℵx(j) =

{

y ∈ A|(j − 1).
R

p
≤ dist(x, y) < j.

R

p

}

(11)ℵx(i, j) =
{
y ∈ ℵx(j)|y ∈ Ai

}

(12)hx[n.(j − 1) + i] = |ℵx(i, j)|

4.4 � HMM training

In order to derive the HMM associated with each set of char-
acteristic histograms, the authors of [8] initially normalize 
the histograms of each input set in order to make their bin 
values belong to the interval [0, 100]. Given a set HX of 
characteristic histograms, this normalization first consists in 
dividing each bin value by the highest bin value appearing 
in HX (noted here as X ), all the resulting bin values are then 
multiplied by 100. Thereafter, each normalized histogram 
is transformed into a Markov chain where each state is the 
absolute value of the difference between two consecutive bin 
values, while each bin value is considered as a symbol. The 
resulting Markov chains are finally used to initialize then to 
train a HMM with the Baum-Welch algorithm for multiple 
sequences.

4.5 � Meta‑data extraction

4.5.1 � Vector associated with a dataset

The descriptor vector �⃗X = [X1,X2,… ,X|𝜗|+1] associated 
with a dataset X is derived from its corresponding HMM 
�X = (AX ,BX ,�X) by analyzing its behavior regarding each 
symbol analogically to [36]19 where the authors realized 
human activity recognition using HMMs. More precisely, 
we consider that: 

(a) Identification of x and y (b) Division of ℵx into 5 slices (c) Division of ℵy into 5 slices

(d) The characteristic histogram hx (e) The characteristic histogram hy

Fig. 5   Construction of the characteristic histograms hx and hy associated with the instances x∈X and y∈Y

19  See Section IV-E and Eq. 7 of [36].
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1.	 The kth component Xk of �⃗X (1≤k≤|�|) is the overall pro-
portion of time spent by �X observing symbol vk after 
a sufficiently long time, irrespective of the state from 
which this symbol is observed.

2.	 The last component X|�|+1 of �⃗X is the value X used 
during the normalization of the input histograms (to 
consider the effects of this normalization).

In order to compute the value of Xk (1≤k≤|�|) , the overall 
proportion of time spent by �X observing symbol vk from each 
state si after a sufficiently long time is evaluated as follows: 

1.	 The overall proportion of time spent by �X in state si after 
a sufficiently long time is evaluated. This proportion is 
the ith component �X[si] of the stationary distribution of 
�X.

2.	 The value obtained at step 1 is then multiplied by 
the probability of observing vk from state si which is 
BX[si, vk].

The value of Xk is finally obtained by repeating this process 
for every state si and summing the resulting proportions as 
shown in Eq. 13.

4.5.2 � Vector associated with a data collection

We propose to consider that the descriptor vector �⃗A 
associated with a data collection A = {A1,… ,An} is 
obtained by realizing the sequential concatenation of the 
components of the descriptor vectors ���⃗A1,… , ���⃗An respectively 
associated with A1,… ,An as shown in Eq. 14.

4.6 � Comparison of two metric spaces

Consider two metric spaces X and Y. For any existing 
distance (resp. similarity) measure d between two vectors, 
we define in Eq. 15 the corresponding �-distance (resp. �
-similarity) between X and Y noted �d , as the distance (resp. 
similarity) d between their respective associated descriptor 
vectors �⃗X and �⃗Y .

(13)

⎧
⎪
⎨
⎪
⎩

�⃗X = [X1,X2,… ,X�𝜗�,X] where

Xk =
∑N

i=1

�
𝜑X[si]×BX[si, vk]

�
with (1≤k≤�𝜗�)

(14)
�⃗A = [A1

1
,A2

1
,… ,A

|𝜗|

1
,A1

���������������������

��⃗A1

,… ,A1

n
,A2

n
,… ,A|𝜗|

n
,An

���������������������

��⃗An

]

4.7 � Pseudo‑code of the proposed technique

As it is described in Algorithm 1, the proposed method 
for comparing two metric spaces X and Y according to a 
selected metric d between vectors simply consists in first 
generating their corresponding descriptor vectors calling 
Algorithm 2 (lines 1-2) before performing the comparison 
between these two vectors using d following the principle 
stated in Section 4.3 (line 3). The parameters p and R of 
Algorithms 1 and 2 respectively refer to the number of slices 
and the radius of the neighborhood of each instance which 
is analyzed.

Algorithm 1 Comparison
Inputs: X,Y, p,R, d

Output: z

1:
→
X ← DescriptorV ector(X, p,R)

2:
→
Y ← DescriptorV ector(Y, p,R)

3: z ← d(
→
X,

→
Y )

4: return z

Algorithm 2 provides a step-by-step description of the 
derivation of the descriptor vector �⃗X associated with a 
metric space X. After initializing the set HX of characteristic 
histograms to the emptyset (line 1), HX is gradually 
constructed by adding the characteristic histogram hx of 
each instance (x∈X) following the procedure described in 
Sect. 4.3 (lines 2-5). The HMM �X associated with X is then 
trained using the content of HX as explained in Sect. 4.4 (line 
6). Finally, meta-data extracted from �X enable to derive and 
to return the descriptor vector �⃗X of X following the principle 
presented in Sect. 4.5 (lines 7-8).

Algorithm 2 DescriptorV ector
Inputs: X, p,R

Output:
−→
X

1: HX ← ∅
2: for each (x ∈ X) do
3: hx ← HistogramConstruction(x, p,R)
4: HX ← HX∪{hx}
5: end for
6: λX ← HmmTraining(HX)
7:

→
X ← MetaDataExtraction(λX)

8: return
→
X

(15)𝜎
d(X, Y) = d( �⃗X, �⃗Y)
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4.8 � Accuracy and efficiency of the proposed 
technique

The technique proposed in the current paper for comparing 
two metric spaces: 

1.	 Is based on a gradual analysis of the neighborhood of 
each instance, which is a refinement of the neighbor-
hood’s analysis performed in [9] where the dispersion 
of the instances inside the neighborhood was not taken 
into account. The accuracy and the efficiency of the 
neighborhood’s analysis realized in [9] have been dem-
onstrated through the good performances exhibited by 
that work.

2.	 Relies on the HMMs generated in [8] whose accuracy 
and efficiency were also demonstrated through the very 
good performances exhibited by that work.

3.	 Analogically to  [36], extracts meta-data from each 
HMM for generating a descriptor vector associated with 
each metric space. The good performances obtained 
in [36] demonstrate the accuracy and the efficiency of 
these descriptor vectors.

As a consequence, the proposed technique implicitly embeds 
the accuracy and the efficiency inherited from [8, 9, 36]. For 
these reasons, the experiments realized in the current paper 
do not aim at demonstrating the accuracy or the efficiency of 
the proposed technique. They are only intended to show how 
to use it in practice. The experiments realized in Section 5 
have been intentionally limited to metric spaces containing 
geolocations or stars in the celestial sphere. We have avoided 
performing additional experiments for other datatypes ( ℝn , 
trees, etc.) in order to reduce the paper length.

5 � Experimental results

5.1 � Experimental parameters

All the experiments realized in this section were executed 
on a personal computer with the following properties: (1) 
RAM: 16 GB, (2) Processors: Intel(R) Core(TM) i7-8665U 
CPU @1.9GHz 2.11GHz. Given that the proposed approach 
establishes a graduation in the neighborhood ℵx of each 
instance x of a dataset X, this neighborhood must on the one 
hand cover a surface that is large enough to semantically 

correspond to each level (slice) of the graduation. On the 
other hand, this surface shall not be too large because it 
just represents the neighborhood of an instance. For these 
reasons, a suitable value of the radius R of ℵx will be 
selected for each experience to fulfill these constraints. The 
values p = 5 and p = 10 have been experimented as the 
number of slices used for the division of ℵx . Given that the 
proposed approach relies on the technique proposed in [8] 
for generating HMMs, the following HMM-related settings 
adopted in [8] have been preserved here: 

1.	 In [8], the number of states of each HMM was (N + 1) 
and the authors experimentally selected the value 
N = 50 . Consequently, the HMMs designed in the cur-
rent work have 51 states.

2.	 In [8], the number of symbols of each HMM was also 
(N + 1) . Therefore, the number of symbols of the HMMs 
designed in the current work is also 51.

The maximum number of iterations of the Baum-Welch 
algorithm is limited to � = 50 in the current paper 
considering the very large size of some experimental metric 
spaces. In the same way, the value r = 100 was selected 
for computing the stationary distribution of each HMM. 
The Euclidean and the Manhattan distances have both been 
selected as the distance d between two vectors required for 
computing the �d distance between two metric spaces using 
Eq. 15.

The experimental GPS coordinates used in this section 
were made publicly available in the year 2014 through the 
following official website of the French government: https://​
www.​data.​gouv.​fr/. All the raw data used during the experi-
ments of the current work, their corresponding sets of char-
acteristic histograms and their complete URLs have been 
gathered in an online available archive file20 No descriptor 
vector is presented in this section due to space constraints. 
Indeed, each descriptor vector has at least 51 components. 
Nevertheless, the descriptor vectors associated with all the 
metric spaces experimented in this section are also available 
online in the aforementioned archive file.

5.2 � Examples of comparison of two datasets

In this section, we show how to use the proposed approach 
for comparing four French prefectures according to the GPS 
coordinates of the communes they contain and four stars 
constellations regarding the celestial coordinates of the stars 
they contain. There is no scientific justification for the choice 
of the selected prefectures and the selected stars constella-
tions. They have been arbitrarily selected.

Table 2   Number of communes in the 4 selected prefectures in France 
in 2014

Cergy Evry Melun Versa.

Communes 186 183 478 250

20  http://​perso-​etis.​ensea.​fr/​sylva​in.​iloga/​index.​html.

https://www.data.gouv.fr/
https://www.data.gouv.fr/
http://perso-etis.ensea.fr/sylvain.iloga/index.html
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5.2.1 � Comparison of French prefectures

We decided to compare French prefectures which are con-
sidered here as datasets composed of ’communes’, each 
commune being described by its GPS coordinates. We have 
first downloaded the GPS coordinates of all the communes 
located in the four following prefectures in France: Cergy, 
Evry, Melun and Versailles. Table 2 presents the number of 
communes in each prefecture. During this experience, we 
fixed R = 10 Km. Therefore, each slice had a width of 2 
Km when p = 5 and 1 Km when p = 10 . The �-Euclidean 
and �-Mahattan distance between each pair of prefectures 
was computed and the results are respectively presented in 

Tables 3 and 4. According to these two tables, ’Melun’ and 
’Evry’ are the nearest prefectures when p = 5 , but when 
p = 10 the nearest prefectures are ’Melun’ and ’Versailles’. 
This experimentally demonstrates the influence of the gradu-
ation of the neighborhood of each instance (i.e: the value 
of p) on the final comparison result. The durations (in sec-
onds) required for computing the descriptor vectors of the 4 
selected prefectures are presented in Table 5.

5.2.2 � Comparison of stars constellations

A constellation is a group of stars forming a recognizable 
pattern in the sky. A constellation is traditionally named 
according to its apparent form or identified with a mytholog-
ical figure. This why there are constellations named Dragon 
and Swan because when their brightest stars are conveniently 
connected by imaginary lines in the sky, the resulting figures 
respectively look like each of these animals. Humans have 
thus divided the sky into 88 disjointed constellations in such 
a way that every star can belong to a unique constellation. 
A complete list of these constellations is provided in [37]. 

Table 3   �-Euclidean distance between the 4 selected prefectures in France in 2014 when R = 10 Km

(a)- When p = 5

Cergy Evry Melun Versailles

Cergy 0 5.01 5.01 6.02
Evry 5.01 0 0.27 1.08
Melun 5.01 0.27 0 1.08
Versailles 6.02 1.08 1.08 0

(b)- When p = 10

Cergy 0 0.61 1.24 1.24
Evry 0.61 0 1.11 1.11
Melun 1.24 1.11 0 0.11
Versailles 1.24 1.11 0.11 0

Table 4   �-Manhattan distance between the 4 selected prefectures in France in 2014 when R = 10 Km

(a)- When p = 5

Cergy Evry Melun Versailles

Cergy 0 6.20 6.28 7.80
Evry 6.20 0 0.90 2.78
Melun 6.28 0.90 0 2.67
Versailles 7.80 2.78 2.67 0

(b)- When p = 10

Cergy 0 1.57 2.99 2.99
Evry 1.57 0 2.79 2.81
Melun 2.99 2.79 0 0.34
Versailles 2.99 2.81 0.34 0

Table 5   Durations (in seconds) required for computing the descriptor 
vectors of the 4 selected prefectures

Cergy Evry Melun Versa.

p = 5 11.7 11.2 26.6 14.9
p = 10 33.4 20.0 54.5 28.2
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A constellation is considered in the current experiment as 
a dataset composed of ’stars’ scattered in the sky, each star 
being described by its right ascension, its declination and its 
distance to the Earth.

Several catalogs listing the stars of the celestial sphere 
have yet been made publicly available. The most popular 
are the ’Hipparcos’, the ’Yale Bright Star’ and the ’Gliese’ 
catalogs. In most of these catalogs, each star is described 
by many properties including: its name, its right ascension, 
its declination, its distance to the Earth, its spectrum, its 
color index, etc. We have downloaded from [38] the ’HYG 
3.0 database’ which contains all stars in Hipparcos, Yale 
Bright Star, and Gliese catalogs. In this database, the star’s 

right ascensions and declinations are recorded for the epoch 
(year) 2000.0. Unfortunately, none of these catalogs gives 
the name of the constellation containing each star. To over-
come this problem, we downloaded from [39] a C program 
which determines the name of the constellation containing 
any star given the celestial coordinates of that star and the 
epoch when these celestial coordinates were recorded.

We arbitrarily selected the four following constellations 
to perform comparisons: Andromeda, Swan, Dragon and 
Virgin. We remarked that in each selected constellation, 
there were some stars whose distance to the Earth was 
missing or dubious. These stars have been removed from 
the experimental database before the comparisons were 
performed. Table 6 presents the resulting number of stars in 
the selected constellations.

For this experience, we fixed R = 500 light-years. 
Therefore, each slice has a width of 100 light-years when 
p = 5 and 50 light-years when p = 10 . The �-Euclid-
ean and �-Mahattan distance between each pair of con-
stellations was computed and the results are respectively 

Table 6   Number of stars in the 4 selected constellations recorded for 
the epoch 2000.0

Andro. Swan Dragon Virgin

Stars 1964 2736 2585 2723

Table 7   �-Euclidean distance between the 4 selected constellations when R = 500 light-years

(a)- When p = 5

Andro. Swan Dragon Virgin

Andro. 0 7.01 114 225
Swan 7.01 0 107 218
Dragon 114 107 0 111
Virgin 225 218 111 0

(b)- When p = 10

Andro. 0 14 60 127
Swan 14 0 46 113
Dragon 60 46 0 67
Virgin 127 113 67 0

Table 8   �-Manhattan distance between the 4 selected constellations when R = 500 light-years

(a)- When p = 5

Andro. Swan Dragon Virgin

Andro. 100 60.46 43.28 36.46
Swan 60.46 100 43.55 36.69
Dragon 43.28 43.55 100 52.34
Virgin 36.46 36.69 52.34 100

(b)- When p = 10

Andro. 0 14.27 60.66 127.27
Swan 14.27 0 46.73 113.35
Dragon 60.66 46.73 0 67.49
Virgin 127.27 113.35 67.49 0



	 Evolutionary Intelligence

1 3

presented in Tables 7 and 8. These tables reveal that when 
p = 5 , the constellations in the pairs (Andromeda,Swan) 
and (Andromeda,Virgin) are both eligible as the near-
est. But this situation changes when p = 10 where only 
(Andromeda,Swan) exhibits the smallest distance for both, 
the �-Euclidean and the �-Manhattan distances. Conse-
quently, the value p = 10 is experimentally more accurate 
for comparing these constellations. The durations (in sec-
onds) required for computing the descriptor vectors of the 4 
selected star constellations are available in Table 9.

5.3 � Example of comparison of two data collections

5.3.1 � French departments compared as datasets

In the current experience, we compare two French depart-
ments which are initially considered as datasets composed 
of ’venues’, each venue being characterized by its GPS coor-
dinates. The two following French departments have been 

selected: ’Essonne’ and ’Val d’Oise’ respectively identified 
in France by the numbers 91 and 95. We have downloaded 
a file containing the GPS coordinates of 1114 venues for 
Essonne and 1040 venues for Val d’Oise. Equation  15 
permitted us to obtain the results presented in Table 10. 
Table 11 contains the durations (in seconds) required for 
computing the descriptor vectors of these two departments 
in this context.

5.3.2 � French departments compared as data collections

We have now decided to perform a finer comparison of 
the two former French departments. Indeed, the venues of 
these departments are themselves football fields, municipal 
libraries, pharmacies and spectacle venues. Hence, each 
department is now considered as a data collection composed 
of elements described by their GPS coordinates and which 
belong to the following subtypes: ’football’, ’library’, 
’pharmacy’ and ’spectacle’. The sizes of the downloaded 
subsets composing these two departments are presented 
in Table 12 and Eq. 15 permitted us to obtain the results 
presented in Table 13. Table 14 shows the durations (in 
seconds) required for computing the descriptor vectors of 
these two departments when they are considered as data 
collections. The distances in Table 13 are more reliable 
than those in Table 10 because when selected departments 
are considered as data collections, a finer analysis of their 
contents is realized because the four subtypes of ’venues’ 
are taken into account during the analysis.

5.4 � Theoretical time cost

The theoretical time cost required by the proposed approach 
for computing the descriptor vector �⃗X associated with a 
metric space X can be derived from each of its main steps 
presented in Fig. 1 as follows: 

Table 9   Durations (in seconds) required for computing the descriptor 
vectors of the 4 selected constellations

Andro. Swan Dragon Virgin

p = 5 115.9 225.4 275.2 282.1
p = 10 405.3 586.3 551.8 585.6

Table 10   Comparison between ’Essonne’ (91) and ’Val d’Oise’ (95) 
using GPS data of 2014. Each department is considered as a dataset 
of ’venues’

�-Euclidean �-Manhattan

p = 5 15 16.45
p = 10 2.01 3.11

Table 11   Durations (in seconds) 
required for computing the 
descriptor vectors of ’Essonne’ 
(91) and ’Val d’Oise’ (95) when 
they are considered as datasets

Essonne Val d’Oise

p = 5 97.5 106.4
p = 10 83.0 70.0

Table 12   Sizes of the subsets of departments Essonne and Val d’Oise 
in France in 2014 when each department is considered as a data col-
lection composed of 4 subsets

Essonne Val d’Oise

Football 519 467
Libraries 99 95
Pharmacies 377 368
Spectacle 119 110

Table 13   Comparison between ’Essonne’ (91) and ’Val d’Oise’ (95) 
using GPS data of 2014. Each department is considered as a data col-
lection composed of 4 subsets

�-Euclidean �-Manhattan

p = 5 8.90 21.08
p = 10 16.10 28.23

Table 14   Durations (in seconds) 
required for computing the 
descriptor vectors of ’Essonne’ 
(91) and ’Val d’Oise’ (95) when 
they are considered as data 
collections

Essonne Val d’Oise

p = 5 469.0 449.7
p = 10 629.1 435.7



Evolutionary Intelligence	

1 3

1.	 The construction of the set HX  of characteristic 
histograms consists in the gradual counting of the 
instances found in the neighborhoods of all the elements 
of X. Consequently, this step roughly takes the same time 
required for the non-gradual counting of the contents of 
these same neighborhoods realized in [9]. According 
to [9], this step runs in (�.|X|2 + |X|.n) 21, where n is 
the number of subtypes in X and � is the number of 
arithmetic operations needed for the computation 
of the distance dist between two instances of X. We 
experimentally observed that this operation took at most 
3 seconds for each experimental metric space.

2.	 Let N be the number of states of the model. The HMM 
training requires � .(

∑�X�

k=1
p).N2 = � .�X�.p.N2 according 

to Section 3 because |X| characteristic histograms, each 
having p bins, are taken as inputs for this training. This 
was experimentally the most time consuming step.

3.	 The most time consuming operation realized during the 
meta-data extraction is the computation of the stationary 
distribution of the HMM which runs in (r.N3) according 
to Section 3. This step experimentally needed a couple 
of seconds or few minutes depending on the considered 
metric space.

Consequently, the theoretical time cost 𝜌( �⃗X) required by the 
proposed approach for computing the descriptor vector �⃗X 
associated with a metric space X is approximated by Eq. 16.

6 � Discussion

In this section, we discuss about some relevant related 
research problems that can be explored in future works. 

1.	 The proposed approach is highly customizable according 
to the four following generic parameters: the radius R the 
neighborhood, the number p of slices used for dividing 
this neighborhood, the maximum number of iterations 
� of the Baum-Welch algorithm and the distance d 
between two vectors required in Eq. 15. Future work 
can analyze the impact of the variation of these generic 
parameters on the final result. The possibility of using 
two different radii, one for each metric space, during the 
analysis of the neighborhood of the instances can also 
be analyzed.

2.	 As it can be observed in the proposed methodology 
(Fig. 1), a descriptor vector �⃗X is initially generated for 
each dataset or data collection X before performing the 

(16)𝜌( �⃗X) = 𝜃
[
𝛼.|X|2 + |X|.n + 𝛾 .|X|.p.N2 + r.N3

]

comparison. Consequently, the proposed method can 
be efficiently used in artificial intelligence tasks such 
as classification [40] and clustering [41]. Indeed, these 
two tasks both require descriptor vectors as inputs. One 
can for example suppose that all the French prefectures 
which are considered in Sect. 5.2.1 as datasets composed 
of communes are organized into the five following 
classes according to their rate of criminality: extreme, 
high, normal, low, tiny. This rate of criminality can first 
be attached to the descriptor vector associated with each 
prefecture, before to perform classification or clustering 
in a dedicated soft as WEKA [42].

3.	 Multidimensional Scaling (MDS) is a mathematical 
method which allows easier analysis of data by per-
forming some sort of dimensionality reduction to map 
high-dimensional data into a lower-dimensional space in 
such a way that the distances between low-dimensional 
objects resemble the original similarity information in 
the high-dimensional space [43] 22. MDS is not particu-
larly required for the data actually experimented in the 
current paper because each geolocation on the Earth is 
characterized by only 2 features (the latitude and the 
longitude) and each star in the celestial sphere is only 
characterized by 3 features (the right ascension, the dec-
lination and the distance to the Earth). But if the input 
data are high-dimensional objects, we recommend the 
use of MDS to the 2D/3D space for example for visual-
izing the elements of each dataset as points scattered in 
the 2D/3D space.

7 � Conclusions

The goal of this paper was to provide a solution for one of 
the major limitations of existing techniques for comparing 
two metric spaces which do not actually take into account 
the the way how elements are scattered inside the metric 
space. To achieve this goal, a gradual analysis of the 
neighborhood of each instance for each metric space is 
performed. This analysis is a refinement of the neighbor-
hood’s analysis performed in [9] where the dispersion of 
the instances inside the neighborhood was not taken into 
account. More formally, given a metric space X and two 
user-defined numbers R and p, the neighborhood ℵx of 
each instance x∈X  is divided into p slices of identical 
width R

p
 . The number of elements found in each slice are 

then used for generating the characteristic histogram hx 
associated with x. When this operation is repeated for all 
the instances in a metric space X, its corresponding set HX 
of characteristic histograms is obtained. The content of HX 

21  See Section 4.3.4 of [9]. 22  See Sect. 3 of [43].
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is then taken as input for training the HMM �X which 
learns the shapes and the bin variations of the histograms 
in HX using the technique proposed in [8]. Analogically 
to [36], meta-data related to the overall behavior of �X 
regarding each symbol are then saved as the components 
of the descriptor vector �⃗X associated with X. Given two 
metric spaces X and Y, the comparison between these 
metric spaces is performed through the comparison of 
their associated descriptor vectors �⃗X  and �⃗Y  using any 
existing distance/similarity between two vectors.

Experiments conducted on metric spaces containing 
geolocations and stars in the celestial sphere showed how 
to use the proposed approach in practice. The proposed 
approach inherits the accuracy and the efficiency of [8, 9, 
36] on which it relies. But, an important drawback of the 
proposed technique is that its efficiency and its accuracy 
can be severely affected when it is applied on metric spaces 
whose population is very low. Indeed, when the population 
of a metric space is very low, the characteristic histograms 
derived from the neighborhood’s analysis of its instances 
will be exclusively composed of very low bin values includ-
ing a high number of zeros. As a consequence, the resulting 
HMM training will not be consistent because the HMM is 
trained for learning the visual shapes of the characteristic 
histograms which are not meaningful in this context.

The limitations of the proposed approach listed below can 
be handled in future work as follows: 

1.	 In this paper, one characteristic histogram is constructed 
for each element of a metric space. This element-
by-element construction of histograms may lead to 
overfitting during the model training. Indeed, the 
histograms associated with noises and outliers are 
also individually learned by the models. Additionally, 
in actual conditions, the training time of the HMMs 
increases exponentially when the size of the metric 
space is elevated. A possible issue for attenuating this 
limitation is to initially realize a clustering of the metric 
spaces using for example the K-means algorithm [4], 
before to associate one histogram to each of the K 
centroids generated by the K-means. Future works 
should analyze the performances of this solution.

2.	 Consider two data collections A and B. In this paper, we 
granted the same importance to every subtype during the 
computation of �d(A,B) . This is a limitation because it is 
basically possible for a user to grant different degrees of 
importance to these subtypes. As an example, a patient 
is very interested by the geolocations of hospitals and 
pharmacies, unlike a tourist who is more interested by 
the geolocations of hotels and airports. Thus, the value 

(a) Actual analysis of the neighborhood (b) New analysis of the neighborhood (c) Actual histogram hx

(d) New histogram hx

Fig. 6   The new proposed approach for analyzing the neighborhood of an instance x ∈ X . Here, the neighborhood of x initially divided into 
p = 5 slices, is additionally partitioned into q = 4 sectors, each sector being an arc of 

(
360◦

q

)

= 90◦



Evolutionary Intelligence	

1 3

of �d(A,B) can depend on the degree of importance 
granted by the user to the various subtypes. It would 
therefore be very interesting in future work to propose a 
weighted version of the computation of �d(A,B) which 
takes into account the importance (weight) granted by 
the user to each subtype.

3.	 Consider a metric space X and an instance x ∈ X whose 
neighborhood is divided into p slices of identical width. 
In the current paper, all the neighbors of x located in the 
jth slice of its neighborhood are counted for deriving 
the value of the jth bin of its characteristic histogram hx . 
This is a limitation because this operation does not take 
into account the dispersion of the neighbors of x inside 
the jth slice. However, if the dispersion of the neigh-
bors of x inside every slice are considered during the 
construction of hx , the resulting HMM more accurately 
learns X.

	      As an example, consider the metric space X pre-
sented in Fig. 6a and consider the instance x identified 
in that figure. When the principle proposed in the cur-
r e n t  p a p e r  i s  a p p l i e d ,  t h e  h i s t o g r a m 
hx = [4, 7, 11, 13, 17] presented in Fig. 6c is obtained. 
In order to take into account the dispersion of the neigh-
bors of x in every slice, we have partitioned the 
neighborhood of x into q = 4 angular sectors, each sec-
tor being an arc of 

(
360◦

q

)

= 90◦ as presented in Fig. 6b. 
This figure reveals the following previously unknown 
information about the neighborhood of x:

(a)	 The arc [0◦ − 90◦] is ’rarely’ populated.
(b)	 The arc [90◦ − 180◦] is ’densely’ populated.
(c)	 The arc [180◦ − 270◦] is ’not’ populated.
(d)	 The arc [270◦ − 360◦] is ’sparsely’ populated.

This limitation can be handled in future works by 
additionally partitioning into q regular sectors the 
neighborhood of x which was initially divided into p slices, 
then to construct a partial characteristic histogram for each 
sector of each slice. The final characteristic histogram hx 
will be the concatenation of these q partial characteristic 
histograms. For the instance x identified in Fig.  6b, 
when we browse the sectors in the counterclockwise 
star ting from sector [180◦ − 270◦] ,  the following 
20-bins characteristic histogram presented in Fig. 6d is 
obtained:h

x
= [0, 0, 0, 0, 0, 1, 2, 2, 3, 4, 1, 0, 2, 0, 2, 2, 5, 7, 10, 11].
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