Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

A GNN-based Proactive Caching Strategy in NDN
Networks

Jiacheng Hou (&%= jhou013@uottawa.ca)
University of Ottawa

Haoye Lu
University of Waterloo

Amiya Nayak
University of Ottawa

Research Article

Keywords: named data networking, deep learning, predict rating, caching decision, content placement,
proactive caching

Posted Date: June 8th, 2022
DOI: https://doi.org/10.21203/rs.3.rs-1713271/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1713271/v1
mailto:jhou013@uottawa.ca
https://doi.org/10.21203/rs.3.rs-1713271/v1
https://creativecommons.org/licenses/by/4.0/

A GNN-based Proactive Caching Strategy in
NDN Networks

Jiacheng Hou!'", Haoye Lu? and Amiya Nayak!

1School of Electrical Engineering and Computer Science,
University of Ottawa, Canada.
2David R. Cheriton School of Computer Science, University of
Waterloo, Canada.

*Corresponding author(s). E-mail(s): jhou013@uottawa.ca,;
Contributing authors: haoye.lu@uwaterloo.ca; nayak@Quottawa.ca;

Abstract

As people spend more time watching and sharing videos online, it
is critical to provide users with a satisfactory quality of experience
(QoE). Leveraging the in-network caching and named-based routing fea-
tures in Named Data Networks (NDNs), our paper aims to improve
user experience through caching. We propose a graph neural network-
gain maximization (GNN-GM) cache placement algorithm. First, we
use a GNN model to predict users’ ratings of unviewed videos. Sec-
ond, we consider the total predicted rating of a video as the gain of
the cached video. Third, we propose a cache placement algorithm to
maximize the caching gain and actively cache videos. Cache replace-
ment is implemented based on the cache gain ranking of videos, with
higher cache gain videos replacing lower cache gain videos. We com-
pare GNN-GM with two state-of-the-art caching strategies, namely the
NMF-based caching strategy and GNN-CPP. GNN-GM is also com-
pared with two traditional caching strategies, LCE and LRU, LCE and
FIFO. We evaluate the five caching strategies using real-world datasets
in a tree network topology, a real-world network topology GEANT,
and various random topologies. The experimental results show that
our caching policy significantly improves cache hit ratio, latency and
server load. Notably, GNN-GM achieves a 25% higher cache hit rate,
5% lower latency and 7% lower server load than GNN-CPP in GEANT.

Keywords: named data networking, deep learning, predict rating, caching
decision, content placement, proactive caching

2 A GNN-based Proactive Caching Strategy in NDN Networks

1 Introduction

With name-based routing and in-network caching, NDN [1] offers many advan-
tages. Unlike TP packets which require host addresses to forward packets to
specific locations, NDN packets are associated with a unique content name
identifier, and all nodes have caching ability in NDN. Users send an Interest
packet, and any node receiving the interest packet and having the content can
reply with a Data packet.

Suppose a network has a video provider far away from the user. In this case,
the IP network requires the user to get the video from that content provider,
which causes a significant delay. However, NDN’s name-based routing and in-
network caching capabilities enable the NDN node to cache the video requested
by the user. Then, if the user-requested video is cached at a node near the
user, the video can be sent back to the user as soon as the node receives the
user’s request. It can undoubtedly improve the user experience and reduce the
traffic load of the whole network.

However, due to the limitation of node cache size, the best we can do is
to cache only popular content. Recently, several papers [2-5] have addressed
this challenge by applying deep learning-based models to predict the number
of future content requests and actively cache these popular contents on nodes.
They all aim to make caching decisions based on the expected number of con-
tent requests without considering user preferences. However, user preference is
an essential factor in caching because it reflects user request patterns and can
be used to predict what content users will be interested in in the future.

The authors of the paper [6] predicted users’ future demand through user
preferences. They adopted the Non-Negative Matrix Factorization (NMF) [7]
technique in the recommender system to predict user ratings to videos. Fol-
lowing that, they proactively cached popular videos and achieved promising
results. However, the problem with the NMF technique is that it is transduc-
tive, and thus it cannot generalize to unseen users or videos during the training
stage. To address the NMF’s problem, they also considered the previous pop-
ularity of videos to help make caching decisions. However, the popularity of
videos in the past does not strongly correlate with their popularity in the
future. Usually, users who have watched videos in the past are likely not to
watch them again in the future. To address these problems, we utilize an induc-
tive matrix completion (IGMC) [8] technique, which is based on Graph Neural
Network (GNN), to predict user ratings to videos that have not been watched.
Furthermore, we consider the total predicted ratings of a video as the gain of
caching the video. Following this, videos are cached according to their ranking
of gains in descending order.

The contributions of this paper are as follows:

® We utilize an inductive GNN-based model to predict user ratings of movies
that have not been watched and use the total predicted movies’ ratings as

A GNN-based Proactive Caching Strategy in NDN Networks 3

the gains in the caching framework. We are the first to apply a GNN model
to the caching problem to the best of our knowledge.

® We propose a gain-based caching placement algorithm utilizing gains of
caching the movies to make caching decisions.

® We deploy our proposed scheme and state-of-the-art caching algorithms on
Mini-NDN. We evaluate various caching algorithms using the real-world
dataset and different network topologies. Our proposed caching strategy
achieves a 25% higher cache hit ratio, 5% lower latency and 7% lower server
load than the state-of-the-art algorithm in a real-world network topology
GEANT.

A preliminary version of this work [9] was presented at the 2022 IEEE
ICC Workshop on Research Advancements in Future Networking Technologies
(RAFNET). The rest of this paper is organized as follows. Section IT overviews
related work. Section IIT presents our proposed caching strategy. Section IV
presents the experimental results. Section V concludes the paper.

2 Related work

In NDN, caching can generally be divided into two main categories: reactive
caching and proactive caching. In reactive caching, content is cached only as
it passes through the node. Unlike reactive caching, proactive caching actively
caches content at the node. If a node caches the requested content in advance,
it can immediately satisfy the interest without forwarding it to the server,
even if the content has never been requested before. This section reviews var-
ious reactive and proactive caching strategies. In addition, papers that make
caching decisions based on user preferences are presented.

2.1 Reactive Caching

A traditional cache placement algorithm: leave copy everywhere (LCE)[1] aims
to cache packets as soon as they pass through the node. However, a significant
disadvantage is that it reduces cache diversity. Another method, Leave copy
down (LCD) [10] is to cache the content in the immediate neighbourhood of
the original producer. However, since the cached content is only one hop away
from the producer, it is still non-optimal. On the other hand, cache replacement
is essential to evict the undesired content and make room for more popular
content. The traditional methods of cache replacement are least recently used
(LRU), least frequently used (LFU), and first-in-first-out (FIFO), [11, 12]. LRU
works by discarding the least recently accessed content, while LFU discards
the least frequently used content first. The caching method FIFO is a less
efficient caching strategy compared to LFU and LRU. It discards the oldest
content when there is no cache space available, regardless of the popularity of
the content. In our paper, we compare the performance of our scheme with
LCE and LRU, LCE and FIFO schemes.

4 A GNN-based Proactive Caching Strategy in NDN Networks

Recently, paper [13] proposed a cache placement and replacement strategy
named CnS in 5G-enabled Information-Centric Networking (ICN) networks.
The authors performed cache placement as two steps: (i) calculating the con-
tent popularity (ii) based on the popularity, determining whether the content
needs to be cached. If so, the content will be cached locally or pushed down
towards the edge nodes. Once the nodes’ cache store is full, the cache replace-
ment policy will be executed based on content popularities. Paper [14] proposed
a Push Down popular, Push Up less-popular (PDPU) cache placement strat-
egy in ICN. It aims to push popular content to the edge nodes while pushing
less popular content to the core network. The authors also developed a one-
hop cache notification to notify neighbouring nodes of their cached contents.
Besides, the cache replacement was done through the content popularity. How-
ever, the two papers do not apply a powerful tool - deep learning - to predict
the popularity of content. Moreover, they utilize the reactive caching strat-
egy that is less powerful than proactive because interest packets can only be
satisfied if the content was requested before.

The authors in paper [15] proposed a deep Q-learning caching algorithm in
the ICN-based intelligent Internet of Vehicles (IoV) scenario. They focused on
providing integrated computing and caching services at the edge server. The
deep Q-learning-based algorithm was used to predict the popularity of service
requests of vehicles, and joint computing and caching decision were made on
edge nodes. Paper [16] utilized multi-level federated Reinforcement Learning
(named CoCaRL) to cache contents in vehicular networks. The reinforcement
learning (RL) is used to optimize cooperative caching, and the federated learn-
ing is used to reduce the communication and computation latency as well as
cost. Paper [17] proposed a deep reinforcement learning (DRL) caching strat-
egy to realize the QoE-driven roadside units (RSUs) caching update strategy
in IoV. The QoE-driven RSUs caching model was established based on their
innovative user interest model.

2.2 Proactive Caching

Recently, paper [18] proposed a proactive caching strategy based on the pop-
ularity and chunks of large content objects. They considered the caching
problem as an optimization problem. They aimed to minimize the number of
forwarding nodes and the number of content replications from consumers to
cache nodes while obeying the cache capacity constraint. Paper [19] described
their proactive caching strategy as an Ant Colony Process. They demonstrated
that their approach could put contents close to the user and reduce access
latency. Paper [20] proposed a mobility-aware proactive caching algorithm in
ICN-IoV networks. They modelled the mobility of vehicles and their connec-
tion with RSUs using a Markov Model. These papers did not apply a deep
learning strategy to predict the popularity of content.

The authors in [2] proposed a DeepMEC strategy that applies deep learn-
ing to predict future requests count (popularity) of contents and proactively

A GNN-based Proactive Caching Strategy in NDN Networks 5

cache contents with high popularity scores. They utilized various types of
deep learning models, Recurrent Neural Networks (RNN), Convolutional Neu-
ral Networks (CNN), and Convolutional Recurrent Neural Networks (CRNN),
to predict future content requests and then compare their performance. The
authors in [5] proposed a technique, named IntellCache, to increase the caching
efficiency by predicting future content popularity using deep learning mod-
els, multilayer perceptron (MLP), Long short-term memory (LSTM), and
a combination of LSTM and CNN. The authors of [21] proposed a proac-
tive sequence-aware content caching strategy (PSAC), which is based on a
convolutional neural network and an attention mechanism to make caching
decisions.

2.3 User Preferences-based Content Caching

Some papers make caching decisions by predicting user preferences. The
authors of [22] proposed a proactive caching method in the 5G-ICN scenario.
They applied NMF [7] to predict user ratings of movies that have not been
watched. Furthermore, they considered content’s historical popularity and
achieved better performance than traditional reactive caching strategies. Fol-
lowing this, they combined the caching approach with autonomous vehicle
(AV) user mobility predictions in highway scenario [6]. Paper [23] proposed a
cooperative caching scheme that jointly considers caching locations, content
popularities, and predicted future content ratings to make caching decisions in
ICN-based vehicle networks. They also use the NMF technique to predict con-
tent ratings in the future. Paper [24] applied the collaborative filtering-based
caching strategy to optimize edge caching in ICN-Internet of Things (IoT)
architecture. They divided the cache space of each edge node into two halves,
where the first half is to cache contents based on the content’s local popularity,
and another half is to cache contents based on the highest possible content to
be requested in the future. They utilized collaborative filtering, which calcu-
lated cosine similarity between any pair of contents and predicted the content
requested probability in each edge node in the future.

Machine learning techniques Matrix Factorization (MF)[25], Singular Value
Decomposition (SVD)[25], and NMF are used to predict users’ preferences,
i.e., to predict users’ ratings of videos they have not watched. These techniques
characterize items and users by vectors, and the factorization between the
user and item vectors is the corresponding rating. However, a big problem of
matrix factorization is the cold start problem. We cannot make predictions for
items and users that are neven been seen in the training stage because their
embeddings are not available. It means that the MF approach is transductive.

Recently, GNNs have been used for user-item rating prediction. Recent
research [26] applied inductive node-level graph convolutional neural
(GCN)[27] framework to make item recommendations to users. The authors of
[8] proposed an IGMC model to predict the ratings between users and items
with encouraging performance. They viewed the users and items rating matrix

6 A GNN-based Proactive Caching Strategy in NDN Networks

as a bipartite graph with two types of nodes, user-type and item-type. Edges
only exist between users and items with ratings as labels. In this case, the rat-
ing prediction problem is converted to an edge label prediction problem. The
IGMC can tackle the cold start problem encountered in the MF approach, and
our paper uses this model to predict users’ ratings of movies.

3 Proposed Methodology

A. System Model

We consider a NDN network consisting of F forwarders and C' user
communities, denoted by F = {f1, fa, ..., fr} and C = {c1, ¢, ...,cc}, respec-
tively. Each user community is placed at a different forwarder. There are
U users and M movies in our model, denoted by U = {uy,us,...,uy} and
M = {mqy,ma,...,mpr}, respectively. All users are divided into C' user com-
munities, and each u; € ¢; but u; € C\¢;, where ¢; € C. Users give a rating to
movies they have watched, denoted as ry; , where u; € U and m; € M. For
movies they have not watched, the ratings are empty. We consider each rating
as a request in NDN. We assume that user communities send interest pack-
ets follows a Uniform Distribution with A; requests per second or a Poisson
Distribution with A\s requests per minute.

In our model, all forwarders have the caching ability with a uniform cache
size N, which is defined as number of movies. We apply a binary variable
{bm,. 1.}, for m; € M and f; € F, to indicate forwarder f;’s caching status. We
define b,,, r, = 1 if and only if movie m; is cached at forwarder f;. For each
forwarder f; € F, ZTmE M Omi,gi < N. Our proposed caching strategy aims to
predict ratings u; to movie m;, and make optimized caching decisions within
limited caching space.

B. IGMC Ratings Prediction Model

Unlike traditional matrix factorization techniques [7, 25], IGMC [8] trains
a GNN model. We take an approach similar to IGMC to make rating predic-
tions. Given that a matrix contains ratings from users to movies, we build an
undirected bipartite graph G = (U, M, E), where U denotes sets of users, M
denotes sets of movies, and E denotes set of edges. Edges exist between a user
u; and a movie m; instead of two users or movies. Each edge has a label T

The first component is enclosing subgraph extraction. From a (u;, m;) pair,
a breadth-first search (BFS) strategy is applied to extract u;’s and m;’s h-hop
enclosing subgraph. We select a 1-hop subgraph, and each subgraph includes:
(i) the target user u;, (ii) the target movie my;, (iii) all users that have watched
the movie m;, (iv) all movies that the user w; has watched, (v) known edges
and corresponding labels between users and movies. The subgraph is fed into
a GNN model and mapped to the target rating rp; .

The second part of the rating prediction is node labelling. In order to
distinguish two kinds of nodes in a graph, user-type and movie-type nodes,

A GNN-based Proactive Caching Strategy in NDN Networks 7

as well as to identify the target user and target movie, we give label 0 to the
target user and label 1 to the target movie first. Other nodes’ labels are given
according to the hop count included in the subgraph. For example, a user-type
node is included at the n'® hop, and then it will be given a label 2n while a
movie-type node will be given a label 2n + 1 if it is included at the same hop.
One crucial point is that node labels depend on the current subgraph rather
than the complete bipartite graph. Therefore, we can predict ratings even for
a subgraph from an entirely different bipartite graph.

The third part trains a GNN model to predict ratings from the (u;,m;)’s
1-hop subgraph. We utilize a graph-level GNN strategy and aim to map the
subgraph to the target rating 7 . The IGMC paper applies a relational graph
convolutional operator (R-GCN) [28] to implement the message passing layers
in GNN. R-GCN is an extension of [27], and the main difference is that the
former one is to handle heterogeneous graphs where there are different edge
types in a graph, while the latter one not. In our dataset, the ratings range
from 1 to 5, each with an edge type. Therefore, R-GCN is adopted to handle
the five edge types. It works as follows: 1) for a central node, aggregates its
1-hop neighbouring nodes features; 2) Update the central node’s feature based
on the neighbouring nodes’ features and edge types. The procedure is as below:

1
ot = tanh | Wizl + Z Z N ()W,lxé (1)
rERFEN (1) " L

where ! is the node i’s feature at layer [, and W} is a learnable weight matrix
that applies to the node’s self-loop connection. R represents the set of all edge
types, and N,.(i) is the set of 1-hop neighbourhood nodes of node i. For each
edge type r, there is a different learnable weight matrix W!. Therefore, the
model can learn different relation patterns between users and movies in the
graph. After that, the model concatenates node i’s feature vectors from L mes-
sage passing layers as the final representation. The following step is to apply a
pooling layer to consider the concatenation of the final representations of the
target user and movie feature vectors as the graph representation. Finally, the
MLP is applied on the graph representation to get a predicted rating 75

m;*

The model only leverages subgraph patterns and ignores user or movie
features, which are difficult to achieve due to information privacy and label
cost. Besides, it is inductive as it learns GNN parameters rather than user or
movie embeddings. Therefore, the model generalizes well to unseen users or
movies during the training stage. Furthermore, the model can transfer to new
tasks since different datasets may share similar subgraph rating structures.

After predicting users’ ratings of unwatched movies, we apply our gain-
based caching decisions across the network. The proposed caching decision
algorithm is described in the next section.

8 A GNN-based Proactive Caching Strategy in NDN Networks

C. Caching Decision

This section introduces the caching decisions for each forwarder in the
network. In our paper, we consider each movie’s total predicted ratings as the
gain of caching the movie:

total Raty):

Ci — 2
Im: = MazRate 2)

where m; € M,¢c; € C, total Rat is the sum of movie m;’s predicted ratings
in the user community c¢;, and MazRat® is the maximum total predicted
ratings of the movie set M in ¢;. We normalize the gains of each movie by the
maximum gain of a movie in the same user community. The total ratings for
each movie reflect the movie’s popularity across all users. We aim to maximize
the total gain G of caching movies in the network, which is mathematically
formulated as follows:

G= Z Z gﬁr;ibmufi

m; EM CiGSfi

s.t. Z b, f; <N, f;eF 3)
m; EM

bmi,fi € {0’ 1}’mi € M).fi eF

where Sy, is the set of user communities whose requests pass through the
forwarder f;. Besides, the number of cached movies in each forwarder f; does
not exceed the maximum cache size N.

Given a network topology and gf\m our task is to make caching decisions for
each forwarder in order to optimize Equation 3. It is worth mentioning that our
network topology is static, and the routing policy is the shortest path routing.
We firstly apply Dijkstra’s algorithm to find the shortest path from each f to
the server and optimize the content caching along the shortest path tree. In
the shortest path tree, the server node is considered the root. Let V' denotes a
node (i.e., a server or a forwarder). Each V is associated with attributes { id,
gain_t, gain_arr, u_set, cache_size, n, child_arr, par, local_arr, global_arr },
where id: a unique id; gain_t: a hash table with (item, gain) pair; gain_arr:
a two dimensional array stores [item, gain| pair in its gain_t; u_set: a set
storing user communities’ id whose requests pass through the current node;
cache_size: an integer scalar indicates the cache size, cache_size = 0 for the
server and cache_size = N for forwarders; n : an integer scalar indicates the
node should cache the item with nt" highest gain, n = 0 by default; child_arr:
an array stores a node’s direct children; par: the node’s direct parent, each
node has at most one parent node due to the extraction of the shortest path
tree; local_arr: an array that stores cached items by the node; global_arr: an
array stores the node and its ancestors’ cached items.

A GNN-based Proactive Caching Strategy in NDN Networks 9

Algorithm 1 Gain-based caching algorithm

Input: all user communities set C
Output: caching decision for all f € F

: for cin C do

c.u_set.add(c.id)

root = NODE-INITIALIZATION(c)
end for
: CACHING-DECISION(r00t)

AN~ e

Algorithm 1 illustrates our proposed gain-based caching strategy where all
user communities are provided as input. Each user community has a unique id
and is placed at a different forwarder in the network topology. For each user
community, we update its user community set (u_set) with its own id and then
call the ”Node-Initialization” function with a parameter c.

Algorithm 2 Node-Initialization
Input: ¢, a user community

1. if c.par not None then

2 for key in c.gain_t do

3 if key in c.par.gain_t then

4: c.par.gain_tlkey| < c.par.gain_tlkey] + c.gain_t[key]
5: else

6 c.par.gain_tlkey] < c.gain_t[key]
7 end if

8 end for

9 c.par.u_set < c.par.u_set U c.u_set

10: if c.par.u_set '= c.u_set then

11: c.par.n 0

12: else

13: cparm —cn+1

14: end if

15: NODE-INITIALIZATION (c.par)

16: else

17: return c

18: end if

Algorithm 2 represents the process of node initialization, where a user
community c¢ is provided as input. In this function, we traverse the shortest
path tree from c to the server. If ¢ has a parent node, we update its parent
node’s gain_t by merging the parent node’s and child node’s gain_t using plus
operator. Besides, we update the parent node’s u_set by unioning the child
node’s u_set. If the parent node receives the exact user community requests
as its child node, we assign its child node’s n plus 1 to the parent node’s n

10 A GNN-based Proactive Caching Strategy in NDN Networks

(e.g., assume n = 0, then the child node caches the item with the highest gain,
but the parent node caches the item with the second-highest gain). The idea
is to put the popular item near the user community and optimize the caching
diversity. Otherwise, we assign 0 to the parent node’s n, indicating the parent
node caches the item with the highest gain in the parent node’s gain_t. The
process is repeated until the server node is reached.

Algorithm 3 Caching-Decision

Input: s, a server node

1: if s.par is None then

2 for child in s.child_arr do

3 CACHING-DECISION(child)
4 end for

5: else

6 for m in s.par.global_arr do
7 del s.gain_t[m]

8

9

end for
for m in s.gain_t do
10: gain_arr.append([m, gain_tim]])
11: end for
12: gain_arr < sort(gain_arr, (al,a2) — (a2[1] — al[l]))
13: for i < 1...s.cache_size do
14: item_index < s.n * s.cache_size
15: item <— gain_arr[item_index][0]
16: s.local _arr.append(item)
17: s.global _arr.append(item)
18: del s.gain_t[item)]
19: del gain_arr[item_index)
20: end for
21: for child in s.child_arr do
22: CACHING-DECISION(child)
23: end for
24: end if

After updating nodes’ information, the Algorithm 3 is executed, where the
server node is the input. We traverse the shortest path tree from the server
to the forwarder to make caching decisions. Firstly, each forwarder’s gain_t
is updated by removing items cached by its ancestors. The idea is to make
downstream forwarders not cache items cached by upstream forwarders. The
following is to append (item, gain) pairs in gain_t to the gain_arr and sort
gain_arr by gains in descending order. Next, the loop (i.e., cache_size) indi-
cates the cache space of the current forwarder. For each iteration, the forwarder
caches the item with the gain in the (n * cache_size)™ index in gain_arr. The
cached item is inserted into the forwarder’s local_arr and global_arr. Besides,

A GNN-based Proactive Caching Strategy in NDN Networks 11

the item is removed from gain_t and gain_arr. The process is repeated until
reaching the user community.

Once the caching decisions for each forwarder are made, we proactively load
items in the forwarder’s local_arr to its cache store. The proactive caching pro-
cess makes sure that, before users send Interest packets, contents are already
available in the forwarder’s cache store to satisfy user requests. Regarding the
cache replacement policy, when the forwarder’s cache store is full, the content
with the lowest cache yield will be evicted first.

4 Experimental results

To evaluate our caching algorithm, we use Mini-NDN|[29] to perform all exper-
iments. Mini-NDN is an emulation tool, and it runs real instances of NDN
packages. We deploy our GNN-GM and the NMF-based proactive caching
strategy proposed in paper [6] on Mini-NDN. The authors of [6] also took
user mobility into account when making caching decisions due to the highway
simulation environment, which is different from our paper. Therefore, we do
not consider user mobility. Except for the user mobility, [6] employs the same
caching scheme as [22], which is the method we compare in our paper. We uti-
lize their caching decision module to calculate the gain of caching movies in
each forwarder. After that, we apply our proposed gain-based caching place-
ment algorithm to make caching decisions for each forwarder. Besides, we also
compare our proposed caching algorithm with GNN-CPP [30], which employs
the GNN model to make item caching probability predictions. It is worth
noting that GNN-CPP makes predictions only based on the item’s requested
numbers in the past. For GNN-GM, NMF-based caching strategy, and GNN-
CPP, we preload items that need to be cached into the forwarder’s cache store
before users send requests. In addition, GNN-GM and NMF-based caching
strategies employ cache replacement policies based on content caching gains,
and GNN-CPP employs caching replacement policies based on predicted con-
tent popularities. Furthermore, we compare two traditional reactive caching
strategies, LCE4+LRU and LCE+FIFO.

4.1 Experimentation Setup

This section presents network topologies, traffic generation, dataset collection
and metrics we used to evaluate caching algorithms GNN-GM, NMF-based
caching strategy, CNN-CPP, LCE+LRU and LCE+FIFO.

4.1.1 Network Topology

Similar to papers [32, 33], we employ a real-world network topology GEANT
[31], which has 45 nodes associated with 71 edges. The server is placed at
the "UK” node, and all other nodes are forwarders. In addition, we explore
a tree network topology with 50 nodes. We also explore random topologies

12 A GNN-based Proactive Caching Strategy in NDN Networks

Table 1: Experimentation Parameters

Parameters Default Value Values

GEANT, Tree or

Network topology GEANT [31] Arbitrary Topology
Number of nodes 45 10-60
Number of producers 1
Number of forwarders 44 9-59
Number of user 9
communities
Number of users 943
Number of distinct movies 1682
Requests rate Uniform Distribution Uniform Distribution
with 1 req/sec with 1 req/sec or

Poisson Distribution
with 50 req/min

with various numbers of nodes {10, 20, 30, 40, 50, 60}. There are one content
producer and two user communities for all topologies, and each user community
randomly accesses a forwarder. In particular, the root node is the content
producer, and user communities can only access leaf nodes in the tree topology.
It is worth noting that all forwarders have uniform caching capability.

4.1.2 Traffic Generation

We employ NDN Traffic Generator[34] to generate Interest and Data packets.
We assume each user community sends interest packets in a Uniform Distri-
bution with one request per second or a Poisson Distribution with 50 requests
per minute. Table 1 shows key parameters and values used in our paper.

4.1.3 Dataset Collection

We use the public benchmark dataset MovieLens 100K [35], which includes
943 users and 1682 movies. We sort the dataset by timestamp and use 80% of
it as the training dataset and 20% as the testing dataset to compare the per-
formances of various caching strategies. Similar to papers [6, 22], we consider
the user rating for a movie as the user request for that movie. We randomly
divide 943 users into two user communities.

4.1.4 Evaluation Metrics

The following three metrics are adopted to evaluate various caching algorithms:

A GNN-based Proactive Caching Strategy in NDN Networks 13

e CHR (Cache hit ratio): It defines the percentage of requests that can be
satisfied by the cached data packets. The CHR is calculated as follows:

cache_hits_num
CHR = . . (4)
cache_hits_num -+ cache_misses_num
where cache_hits_num is the number of cache hits and cache_misses_num is

the number of cache misses.

e ALT (Average Latency Time): It defines the average delay between the time
the consumer sends an Interest packet and the time it receives a Data packet.

e Server Load: It defines the number of Interest packets served by the server.

4.2 Results

This section describes the experimental results for GNN-GM, NMF-based
caching strategy, GNN-CPP, LCE+LRU, and LCE+FIFO. We utilize 4 R-
GCN layers in the GNN-based rating prediction model. Both GNN and NMF
are trained and tested using the same dataset, and they are trained with the
Adam optimizer and stochastic gradient descent (SGD) optimizer, respectively.
The loss function is the mean square error. The GNN-CPP model requires
time-series data. Therefore, we divide the training dataset into four time peri-
ods, with 20,000 requests within one time period. The testing dataset has 20000
requests, and thus it can be considered a single period. We use the content
requests number in the previous two time periods to predict content caching
probability in the next period. The GNN-CPP model includes 3 GNN layers
and is trained using the Adam optimizer, and the loss function is binary cross-
entropy. All experiments are run multiple times, and the results have been
averaged.

4.2.1 Effect of Node Cache Sizes in Tree Topology

Figure la shows the cache hit ratio of the five caching algorithms with various
forwarders’ caching abilities in a 50 nodes tree network topology. The cache size
of a forwarder is {2, 10, 20, 30, 40, 50, 60, 70}. We can observe that the cache
hit ratio increases with the increase of forwarders caching size for all caching
strategies. GNN-GM achieves the best performance among the five caching
strategies. On average, the GNN-GM caching algorithm has a 20% higher
cache hit ratio than the NMF-based one. Benefit from accurate user rating
predictions and applying total predicted ratings to make caching decisions,
GNN-GM caching algorithm has a significant performance improvement (40%
higher) over the NMF-based caching algorithm when each forwarder can cache
two movies. The GNN-CPP algorithm performs worse than the other two
proactive caching strategies because it only considers previous content requests
when making predictions. However, in reality, users will not be likely to watch
movies they have watched before. Besides, GNN-GM caching algorithm can

14 A GNN-based Proactive Caching Strategy in NDN Networks

14
—e— GNN-GM
—8— NMF-based
127 _e— GNN-cPP
—e— LCE+LRU
10{ —@— LCE+FIFO
g
o 89
g
£
2 6
<
S
®
O 4]
2
0
T T v v T T T T
0 10 20 30 40 50 60 70
Forwarders cache size (number of movies)
(a) Cache hit ratio
650
600 -
% 550
E
£ 5001
£
>
3
§ 4501
5
¢ 400 4
c
5}
2 350 4 —— GNN-GM
—8— NMF-based
—8— GNN-CPP
3001 —e— LCE+LRU
—e— LCE+FIFO
250 - T T T T ™ ™ ™
10 20 30 40 50 60 70
Forwarders cache size (number of movies)
(b) Average latency time
14 4
124
T 101
=)
°
2
2 8
)
n
2
3
3 61
=
31
o
41 —e— GNN-GM
—8— NMF-based
—&— GNN-CPP
5| —e— LCE+LRU
—&— LCE+FIFO
[10 20 30 40 50 60 70

Forwarders cache size (number of movies)

(c) Server Load

Fig. 1: GNN-GM, NMF-based, GNN-CPP, LCE + LRU, and LCE + FIFO
caching algorithms’ performances with different forwarders’ cache sizes in a 50
nodes tree network topology.

A GNN-based Proactive Caching Strategy in NDN Networks 15

perform nearly 200% better on average than the other two traditional reactive
caching algorithms, LCE+LRU and LCE+4FIFO.

Figure 1b shows the average latency time of the five caching algorithms.
At best, the GNN-GM caching algorithm achieves around 11% and 35% lower
latency than the NMF-based caching algorithm and GNN-CPP, respectively.
In addition, GNN-GM consistently achieves the lowest latency regardless of
the cache size. LCE4+LRU and LCE+4FIFO have the worst performance, with
a notable margin compared with the other three proactive caching strategies.
In the best case, GNN-GM caching algorithm can achieve 50% lower latency
than LCE+LRU and LCE+FIFO.

Figure 1c shows that the server load decreases as the forwarders’ cache
sizes increase. Overall, GNN-GM caching algorithm can achieve a 20% lower
server load than the NMF-based caching algorithm. The proactive caching
algorithm GNN-CPP has a heavier server load than GNN-GM and NMF-based
caching algorithms. Besides, LCE4+LRU and LCE+4FIFO have the heaviest
server load among the five caching algorithms. On average, GNN-GM caching
algorithm can perform almost 60% lower server load than the LCE+LRU and
LCE+FIFO.

The results indicate that our GNN-GM caching algorithm has an out-
standing performance in a tree network topology. GNN-GM can catch user
preferences and put movies that most users will likely watch near the user in
advance. In addition, our GNN-GM caching strategy improves cache diversity
by ensuring that different movies are cached on the path.

4.2.2 Effect of Node Cache Sizes in GEANT

Figure 2a shows the cache hit ratio of the five caching algorithms with various
forwarders’ caching abilities in GEANT. Similar to the Section 4.2.1, the cache
size of a forwarder varies from 2 to 70 movies. GNN-GM performs best among
the five caching methods in the GEANT network topology. The cache hit ratio
of GNN-GM is, on average, about 25% higher than that of the NMF-based
caching algorithm. When each forwarder can only cache two movies, the GNN-
GM can achieve a 40% higher cache hit ratio than the NMF-based caching
algorithm. In addition, GNN-CPP performs worse than the GNN-GM and
NMF-based caching algorithms because it only considers user content requests
number in previous time steps. LCE4+LRU and LCE+FTFO still have the worst
performance because they are reactive caching strategies that do not capture
users’ future preferences.

Figure 2b shows the average latency time of the five caching algorithms.
At best, GNN-GM achieves around 8% and 25% lower latency than the
NMF-based caching algorithm and GNN-CPP, respectively. GNN-GM consis-
tently achieves the lowest latency regardless of the cache size. The other two
traditional reactive caching algorithms have the worst performance, with a

16 A GNN-based Proactive Caching Strategy in NDN Networks

20 —e— GNN-GM
s —8— NMF-based
187 —a— GNN-CPP
164 —&— LCE+LRU
—8— LCE+FIFO
~ 14+
8
S 12
e
= 104
=
2 8
]
8
64
44
2
0
0 10 20 30 40 50 60 70
Forwarders cache size (number of movies)
(a) Cache hit ratio
90

)
£
o
E
=
>
9
2
<
5
o
<)
e
7
; —8— GNN-GM
—8— NMF-based
—8— GNN-CPP
—8— LCE+LRU
—e— LCE+FIFO
40
0 10 20 30 40 50 60 70
Forwarders cache size (number of movies)
(b) Average latency time
20
184
2 16
2
o
o
2
o 14 4
a
%)
i
]
E
&U; 124
—8— GNN-GM
—8— NMF-based
107 o~ Gnn-cPP
—8— LCE+LRU
8 —o— LCE+FIFO
0 10 20 30 40 50 60 70

Forwarders cache size (number of movies)

(c) Server Load

Fig. 2: GNN-GM, NMF-based, GNN-CPP, LCE + LRU, and LCE + FIFO
caching algorithms’ performances with different forwarders’ cache sizes in
GEANT.

A GNN-based Proactive Caching Strategy in NDN Networks 17

notable margin with the other three proactive caching strategies. In the best
case, GNN-GM can achieve around 30% lower latency than LCE+LRU and
LCE+FIFO.

Figure 2c shows the server load of the five caching algorithms. The server
load of all caching algorithms decreases as the forwarders’ cache sizes increase.
Overall, GNN-GM can achieve a 7% lower and a 22% lower server load
than the NMF-based caching algorithm and GNN-CPP, respectively. Because
LCE+LRU and LCE+4+FIFO have the lowest cache hit ratio, more number of
Interest packets are forwarded to the server. It results in the server load of
LCE+LRU and LCE+FIFO being much higher than the other three proactive
caching strategies. On average, GNN-GM can perform 30% lower server load
than the two traditional caching algorithms.

In short, our GNN-GM can catch user preferences, resulting in a higher
cache hit ratio. Besides, the lower latency demonstrates that interest packets
can be satisfied along the forwarding path before reaching the server. GNN-
GM can also put more popular content nearer to the user in order to improve
user experiences. Our GNN-GM can definitely decrease the traffic workload
and provide better QoS.

4.2.3 Effect of User Requests Distribution in GEANT

Table 2 shows the cache hit ratio, average latency and server load for GNN-
GM, NMF-based, GNN-CPP, LCE4+LRU and LCE+FIFO in GEANT when
the user requests follow a Poisson distribution with a request rate of 50 requests
per minute. All forwarders have a uniform cache size of 30. The table shows
that GNN-GM achieves the best performance, with significant improvements
compared to other caching algorithms. In particular, GNN-GM achieves a 27%
cache hit rate, 6.3% latency, and 9.2% server load compared to the NMF-
based caching algorithm. GNN-GM achieves a tremendous advantage in all
three performance metrics compared to GNN-CPP. In addition, the other two
reactive caching algorithms, LCE4+LFU and LCE+4FIFO, perform the worst
and possess a large gap with the other three proactive caching algorithms.

Table 2: Cache hit ratio, average latency time and server load for GNN-GM,
NMF-based, GNN-CPP, LCE 4 LRU, and LCE + FIFO when user requests
follow a Poisson Distribution in GEANT.

Algorithms Cache(;ol ; ratio Avera(grisl)atency Server load (103)
GNN-GM 10.875 60.851 6.174
NMF-based 8.554 64.986 6.803
GNN-CPP 4.544 70.55 8.11
LCE+LFU 0.76 79.093 9.357
LCE+FIFO 0.734 79.166 9.365

18 A GNN-based Proactive Caching Strategy in NDN Networks
4.2.4 Effect of Network Sizes for Arbitrary Topologies

Figure 3 shows the cache hit ratio, average latency time and server load for
five caching algorithms with a different number of nodes {10, 20, 30, 40, 50,
60}. In each network topology, all forwarders have a uniform cache size of
30. From Figure 3a, we can notice that the cache hit ratio decreases as the
number of nodes increases. The reason is that the user community is far away
from the content provider in a large network topology. In this case, an Interest
packet has to be forwarded through more nodes to reach the content provider.
It results in a much larger denominator than the numerator in Equation 4. We
can easily find that GNN-GM always performs best regardless of the number
of nodes. In the best case, GNN-GM can achieve about 36% higher cache
hit ratio than the NMF-based caching strategy. From the figure, we can see
that GNN-CPP performs worse when the network size is large. GNN-CPP is
sensitive to the model structure, i.e. the number of GNN layers used to train the
model. Since all experiments utilize only 3 GNN layers, each node in the GNN
can only know information about its 3-hop nodes at most. It is not sufficient
in larger network topologies. On average, the cache hit rate of GNN-GM is
200% higher than that of the GNN-CPP algorithm. In addition, LCE+LRU
and LCE4+FIFO have similar performances and are the worst among the five
caching strategies.

Figure 3b shows the average latency time for the five caching algorithms.
We can see that GNN-GM has the lowest latency for all network sizes. It
demonstrates that our GNN-GM caching algorithm can catch user preferences
and put contents that most users will be interested in near the user. More
number of Interest packets can be satisfied along the path, and thus users can
receive the videos without much time waiting. At best, GNN-GM performs
a 5.8% lower and a 17% lower latency than the NMF-based caching algo-
rithm and GNN-CPP, respectively. The figure also shows that LCE4+LRU and
LCE+FIFO have almost exactly the same average latency time and perform
significantly worse than the other three deep learning-based proactive caching
strategies.

Figure 3¢ shows the number of requests served in the server node for the
five caching algorithms. If more number of Interest packets are satisfied along
the path, then less number of them will be served by the server node. It
makes sense that GNN-GM’s server serves the lowest number of user requests.
Following that is the NMF-based caching algorithm, GNN-CPP, LCE+LRU
and LCE+FIFO. It is worth noting that GNN-GM alleviates a significant
amount of server load than the other four caching strategies. The other two
traditional caching algorithms, LCE+LRU and LCE+4FIFO, almost overlap in
the figure and have the highest server load.

We can conclude that our GNN-GM caching strategy has the best per-
formance for a different number of nodes in arbitrary network topologies.
GNN-GM can capture user preferences and increase the diversity of caches.

A GNN-based Proactive Caching Strategy in NDN Networks 19

—8— GNN-GM—@— NMF-based—@— GNN-CPP—@— LCE+LRU—@— LCE+FIFO

12.8
10.8
= 881
9
= .\._\"\o——-'\.
S 63
=
©
2
8 a8
2.81
0.84 .\'/0\.\.__.
10 20 30 40 50 60
Number of Nodes
(a) Cache hit ratio
—&— GNN-GM—@— NMF-based—8— GNN-CPP—@— LCE+LRU—8— LCE+FIFO
400

350 1

Average Latency Time (ms)
= N N w
17] 1% S
S S S S

100 A

50 y T T y T
10 20 30 40 50 6

Number of Nodes

5}

(b) Average latency time

—8— GNN-GM—@— NMF-based—@— GNN-CPP—@— LCE+LRU—@— LCE+FIFO

184

16

/

144

Requests Served (10%)

104

10 20 30 40 50 6
Number of Nodes

o

(c) Server Load

Fig. 3: GNN-GM, NMF-based, GNN-CPP, LCE + LRU, and LCE + FIFO
caching algorithms’ performances with a different number of nodes in ran-
dom topologies. The performances of LCE+LRU and LCE4FIFO overlap each
other.

20 A GNN-based Proactive Caching Strategy in NDN Networks

In addition, it can cache popular videos near users. The GNN-GM caching
strategy can significantly ease the traffic load and enhance user experiences.

5 Conclusion

In this paper, we propose GNN-GM, a GNN-based active cache placement
policy. The cache placement strategy is implemented based on the rank-
ing of cached movies in terms of gains, and movies with high cache gain
replace movies with low cache gain. We can predict user ratings more accu-
rately than NMF by using a GNN-based model to predict ratings. We can
also cache popular movies and place movies near users by considering the
total ratings of predicted movies as gain and applying our gain-based caching
decision. We compared our caching strategy with two state-of-the-art, NMF-
based caching algorithms, GNN-CPP, and two traditional reactive caching
algorithms, LCE4+LRU and LCE+FIFO. We deployed these five caching
algorithms on Mini-NDN and evaluated them using real-world datasets. We
evaluated the five caching algorithms’ performances among a tree network
topology with various cache sizes, a real-word network topology GEANT with
various cache sizes, a GEANT with user requests following a Poisson Distri-
bution, and random network topologies with a different number of nodes. The
evaluation results show that our GNN-GM can consistently achieve the high-
est cache hit ratio, lowest latency and lowest server load. More notably, our
proposed caching algorithm has a 25% higher cache hit ratio, 5% lower latency
and 7% lower server load on average than the NMF-based caching algorithm in
GEANT. In addition, our proposed caching algorithm performs much better
than GNN-CPP, which utilizes only previous user movie requests for predic-
tion. In particular, the average latency and server load of GNN-GMM are
about 13% and 25% lower than GNN-CPP, respectively, in GEANT. In addi-
tion, GNN-GMM provides more significant improvements than the other two
traditional caching strategies, namely LCE4+LRU and LCE4FIFO.

Deep reinforcement learning is a technique that is widely used in caching
decisions. We plan to use GNN with reinforcement learning to optimize cache
hit rate and content access latency in future work.

Declarations

Ethical Approval and Consent to participate

The authors consent to participate.

Human and Animal Ethics

The authors declare they follow human and animal ethics.

A GNN-based Proactive Caching Strategy in NDN Networks 21

Consent for publication

The authors agree to publication.

Availability of supporting data
Not applicable.

Competing interests

The authors declare no competing interests.

Funding
Not applicable.

Authors’ contributions

All authors designed this work.

Acknowledgements

This work was supported by a grant from Natural Sciences and Engineering
Research Council of Canada (NSERC).

Authors’ information

School of Electrical Engineering and Computer Science, University of Ottawa,
Canada

Jiacheng Hou, Amiya Nayak

David R. Cheriton School of Computer Science, University of Waterloo,
Canada

Haoye Lu

References

[1] Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J.D., Smetters,
D.K., Zhang, B., Tsudik, G., Massey, D., Papadopoulos, C., et al.: Named
data networking (ndn) project. Relatério Técnico NDN-0001, Xerox Palo
Alto Research Center-PARC 157, 158 (2010)

[2] Thar, K., Tran, N.H., Oo, T.Z., Hong, C.S.: Deepmec: Mobile edge caching
using deep learning. IEEE Access 6, 78260-78275 (2018)

[3] Song, H.-G., Chae, S.H., Shin, W.-Y., Jeon, S.-W.: Predictive caching via
learning temporal distribution of content requests. IEEE Communications
Letters 23(12), 23352339 (2019)

22

[4

A GNN-based Proactive Caching Strategy in NDN Networks

Rahman, S., Alam, M.G.R., Rahman, M.M.: Deep learning-based predic-
tive caching in the edge of a network. In: 2020 International Conference
on Information Networking (ICOIN), pp. 797-801 (2020). IEEE

Niloy, N.T., Islam, M.S.: Intellcache: An intelligent web caching scheme
for multimedia contents. In: 2020 Joint 9th International Conference on
Informatics, Electronics & Vision (ICIEV) and 2020 4th International
Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1-6
(2020). IEEE

Zhang, Z., Lung, C.-H., St-Hilaire, M., Lambadaris, I.: Smart proactive
caching: Empower the video delivery for autonomous vehicles in icn-based
networks. IEEE Transactions on Vehicular Technology 69(7), 7955-7965
(2020)

Luo, X., Zhou, M., Xia, Y., Zhu, Q.: An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender
systems. IEEE Transactions on Industrial Informatics 10(2), 1273-1284
(2014)

Zhang, M., Chen, Y.: Inductive matrix completion based on graph neural
networks. arXiv preprint arXiv:1904.12058 (2019)

Hou, J., Lu, H., Nayak, A.: 'gnn-gm: A proactive caching scheme for
named data networking. In: IEEE ICC Workshop on Research Advance-
ments in Future Networking Technologies (RAFNET) (2022)

Laoutaris, N., Che, H., Stavrakakis, I.: The lcd interconnection of Iru
caches and its analysis. Performance Evaluation 63(7), 609-634 (2006)

Li, Z., Simon, G., Gravey, A.: Caching policies for in-network caching. In:
2012 21st International Conference on Computer Communications and
Networks (ICCCN), pp. 1-7 (2012). IEEE

Shailendra, S., Sengottuvelan, S., Rath, H.K., Panigrahi, B., Simha, A.:
Performance evaluation of caching policies in ndn-an icn architecture.
In: 2016 IEEE Region 10 Conference (TENCON), pp. 1117-1121 (2016).
IEEE

Serhane, O., Yahyaoui, K., Nour, B., Moungla, H.: Cns: A cache and split
scheme for bg-enabled icn networks. In: ICC 2020-2020 IEEE International
Conference on Communications (ICC), pp. 1-6 (2020). IEEE

Nour, B., Khelifi, H., Moungla, H., Hussain, R., Guizani, N.: A distributed
cache placement scheme for large-scale information-centric networking.

IEEE Network 34(6), 126-132 (2020)

[15]

[16]

[17]

[18]

23]

A GNN-based Proactive Caching Strategy in NDN Networks 23

Li, J., Tang, J., Li, J., Zou, F.: Deep reinforcement learning for intelligent
computing and content edge service in icn-based iov. In: 2021 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
pp. 1-7 (2021). IEEE

Zhao, L., Ran, Y., Wang, H., Wang, J., Luo, J.: Towards cooperative
caching for vehicular networks with multi-level federated reinforcement
learning. In: ICC 2021-IEEE International Conference on Communica-
tions, pp. 1-6 (2021). IEEE

Song, C., Xu, W., Wu, T., Yu, S., Zeng, P., Zhang, N.: Qoe-driven edge
caching in vehicle networks based on deep reinforcement learning. IEEE
Transactions on Vehicular Technology 70(6), 5286-5295 (2021)

Majeed, M.F., Dailey, M.N., Khan, R., Tunpan, A.: Pre-caching: A proac-
tive scheme for caching video traffic in named data mesh networks. Journal
of Network and Computer Applications 87, 116-130 (2017)

Dash, S., Kumar Dash, S., Sahu, B.J.: Proactive content caching for
streaming over information-centric network. In: Intelligent and Cloud
Computing, pp. 165-172 (2021)

Musa, S.S., Zennaro, M., Libsie, M., Pietrosemoli, E.: Mobility-aware
proactive edge caching optimization scheme in information-centric iov
networks. Sensors 22(4), 1387 (2022)

Zhang, Y., Li, Y., Wang, R., Lu, J., Ma, X., Qiu, M.: Psac: Proactive
sequence-aware content caching via deep learning at the network edge.
IEEE Transactions on Network Science and Engineering 7(4), 2145-2154
(2020)

Zhang, Z., Lung, C.-H., St-Hilaire, M., Lambadaris, I.: Smart caching:
Empower the video delivery for 5g-icn networks. In: ICC 2019-2019 IEEE
International Conference on Communications (ICC), pp. 1-7 (2019).
IEEE

Gupta, D., Rani, S., Ahmed, S.H., Garg, S., Piran, M.J., Alrashoud,
M.: Icn-based enhanced cooperative caching for multimedia streaming
in resource constrained vehicular environment. IEEE Transactions on
Intelligent Transportation Systems 22(7), 4588-4600 (2021)

Gupta, D., Rani, S., Ahmed, S.H., Verma, S., Ijaz, M.F., Shafi, J.:
Edge caching based on collaborative filtering for heterogeneous icn-iot
applications. Sensors 21(16), 5491 (2021)

Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for
recommender systems. Computer 42(8), 30-37 (2009)

24

[26]

A GNN-based Proactive Caching Strategy in NDN Networks

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec,
J.: Graph convolutional neural networks for web-scale recommender sys-
tems. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 974-983 (2018)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907 (2016)

Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I.,
Welling, M.: Modeling relational data with graph convolutional networks.
In: European Semantic Web Conference, pp. 593-607 (2018). Springer

named-data/mini-ndn. https://github.com/named-data/mini-ndn

Hou, J., Xiu, H., Lu, H., Nayak, A.: A gnn-based approach to optimize
cache hit ratio in ndn networks. In: IEEE GLOBECOM (2021)

GEANT topology map. https://www.geant.org/Networks/
Pan-European_network/Pages/ GEANT _topology _map.aspx

Naeem, M.A., Nguyen, T.N., Ali, R., Cengiz, K., Meng, Y., Khurshaid,
T.: Hybrid cache management in iot-based named data networking. IEEE
Internet of Things Journal (2021)

Man, D., Wang, Y., Wang, H., Guo, J., Lv, J., Xuan, S., Yang,
W.: Information-centric networking cache placement method based on
cache node status and location. Wireless Communications and Mobile
Computing 2021 (2021)

named-data/ndn-traffic-generator. https://github.com/named-data/
ndn-traffic-generator

Harper, F.M., Konstan, J.A.: The movielens datasets: History and con-
text. Acm transactions on interactive intelligent systems (tiis) 5(4), 1-19
(2015)

https://github.com/named-data/mini-ndn
https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx
https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx
https://github.com/named-data/ndn-traffic-generator
https://github.com/named-data/ndn-traffic-generator

	Introduction
	Related work
	Reactive Caching
	Proactive Caching
	User Preferences-based Content Caching

	Proposed Methodology
	Experimental results
	Experimentation Setup
	Network Topology
	Traffic Generation
	Dataset Collection
	Evaluation Metrics

	Results
	Effect of Node Cache Sizes in Tree Topology
	Effect of Node Cache Sizes in GEANT
	Effect of User Requests Distribution in GEANT
	Effect of Network Sizes for Arbitrary Topologies

	Conclusion

