
Veri�able and privacy-preserving �ne-grained data
management in vehicular fog computing: A game
theory-based approach
Zahra Seyedi

Amirkabir Univeristy of Technology
Farhad Rahmati

Amirkabir Univeristy of Technology
Mohammad Ali (mali71@aut.ac.ir)

Amirkabir Univeristy of Technology
Ximeng Liu

Fuzhou University

Research Article

Keywords: Vehicular fog computing, encrypted data processing, data retrieval, data management, Nash
equilibrium

Posted Date: July 31st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3165924/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Peer-to-Peer Networking and Applications
on December 20th, 2023. See the published version at https://doi.org/10.1007/s12083-023-01601-x.

https://doi.org/10.21203/rs.3.rs-3165924/v1
mailto:mali71@aut.ac.ir
https://doi.org/10.21203/rs.3.rs-3165924/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12083-023-01601-x

Verifiable and privacy-preserving fine-grained data

management in vehicular fog computing: A game

theory-based approach

Zahra Seyedi1, Farhad Rahmati1, Mohammad Ali1*, Ximeng Liu2,3

1Department of Mathematics and Computer Science, Amirkabir University of Technology,
Tehran, Iran.

2College of Computer and Data Science, Fuzhou University, Fuzhou, 350116, Fujian
Province, China.

3 Key Laboratory of Information Security of Network Systems, Fuzhou, 350116, Fujian
Province, China.

*Corresponding author(s). E-mail(s): mali71@aut.ac.ir;
Contributing authors: zahraseyedi@aut.ac.ir; frahmati@aut.ac.ir; snbnix@gmail.com;

Abstract

Vehicular fog computing (VFC) is an effective technology in providing end-users and vehicles with
ultra-low-latency services by extending fog computing to regular vehicular networks. It enables con-
nected Vehicular Fog Nodes (VFNs) to process real-time data and promptly respond to users’ queries.
However, touching unencrypted data by VFNs raises security challenges definitely, the top of which
is confidentiality, and giving encrypted data to VFNs causes other problems such as encrypted data
processing. Apart from these, how to inspect and encourage VFNs to provide a secure, honest, and
user-satisfactory network is of vital importance to this area. To address these challenges, we design a
novel fine-grained data management (FGDM) approach for VFC-assisted systems. Our FGDM pro-
vides control over both retrieval and access to outsourced data in fine-grained ways. Also, it offers
highly efficient approaches for the accuracy verification of operations performed by VFNs. In design-
ing the system, we consider a three-player game among system entities to capture their interactions.
We formulate the management problems as a Nash Equilibrium (NE) problem and show the existence
of an equilibrium. Our security analysis and empirical results demonstrate that the FGDM is secure
in the standard model and acceptably efficient.

Keywords: Vehicular fog computing, encrypted data processing, data retrieval, data management, Nash
equilibrium.

1 Introduction

With the increasing growth of the Internet of
Things (IoT) and smart cities, a new paradigm

for vehicular networks called the Internet of Vehi-
cles (IoV), has emerged. IoV provides vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I),
and vehicle-to-pedestrian (V2P) communications.
This technology enables drivers and passengers to

1

access real-time information through their vehicles
[1, 2]. The global number of connected vehicles
is expected to double in the coming years, with
192 million currently connected vehicles, and a
predicted reach of 367 million by 2027 (a 91%
increase)1. IoV opens up many opportunities and
offers various services such as weather programs,
transportation and travel information, and other
programs that were previously possible through
smartphones. Using IoV-based systems can help
to improving traffic management and preventing
road hazards (currently, according to the World
Health Organization (WHO)2, 1.35 million people
die in road accidents every year) [3, 4].

The implementation of IoV applications, how-
ever, is faced with several challenges involving
data exchange, storage, and processing. Due to
the significant latency limitations associated with
these emerging applications, it is not feasible
to rely on transmitting data from vehicles to
a remote server for storage or computation. By
moving servers closer to vehicles, fog computing
has been proposed as a promising solution to
overcome such latency limitations. However, since
vehicles are on-the-move users, connecting to fixed
fog servers may result in similar latency issues.
Furthermore, traversing an area with a limited
network infrastructure may disrupt fog comput-
ing support for vehicles. Consequently, some IoV
applications may stop and decrease the perfor-
mance of vehicle systems. As a solution to this
problem, vehicular fog computing(VFC) that uses
vehicles as mobile fog nodes to meet dynamic user
needs can be an alternative to support fog com-
puting for vehicular network-based applications
[5, 6].

In VFC, resource-constrained vehicles can use
the idle resources of parked or moving vehi-
cles to outsource their data and tasks [6]. These
vehicles as fog nodes are called vehicular fog
nodes (VFNs), which provide computing and data
caching services to nearby vehicles [5]. Generally,
to outsource and retrieve data in a VFC sys-
tem, according to Fig. 1, data owners (DOs) that
intend to share data, such as traffic data, out-
source them to VFNs. Data users (DUs) send
requests to nearby VFNs, and VFNs provide them

1https://www.juniperresearch.com/researchstore/operators-
providers/connected-vehicles-research-report

2https://www.who.int/publications/i/item/9789241565684

with these data [5, 6]. Despite all the advantages of
VFC for the IoV, outsourcing unencrypted data to
VFNs and the data retrieval process creates chal-
lenges for entities, some of which we will explain
in the following:

• Challenge 1. Participation of VFNs: One of
the basic requirements for creating a VFC sys-
tem is the presence of VFNs in the network.
Each VFN is a combination of vehicles and
humans functioning as a single unit. Encourag-
ing their owners to participate in the system is
crucial to use the vehicles’ resources. Thus, how
to motivate VFNs to participate in the system
poses a significant problem. Moreover, ensuring
reliable and honest user services from VFNs is
an important challenge that requires inspection
and appropriate motivation.

• Challenge 2. Secure data retrieval process: To
protect sensitive data stored in VFNs, Search-
able encryption schemes are usually utilized to
enable DUs to provide fine-grained access con-
trol over encrypted data and retrieve their data
without revealing sensitive information or risk-
ing unauthorized access. However, VFNs may
vary in some attributes such as accuracy of
search results, computing power, and distance
from the DU, so DUs have to set access policies
to ensure only compliant VFNs perform search
operations. To the best of our knowledge, cur-
rently, there is no specific searchable encryption
technique that takes into account the attributes
of VFNs, presenting a limitation in vehicular fog
computing networks.

• Challenge 3. Selection of the proper VFNs:
Selecting a suitable VFN is crucial for com-
plying with the access control policy of a DU.
However, not all VFNs in proximity might
meet the policy requirements, leading to two
approaches: The DU must either be able to find
the appropriate VFN or forward the request to
all nearby VFNs. The former solution demands
that the DU acquires and maintains knowledge
of all VFN attributes, thereby putting their pri-
vacy at risk. The latter can be time-consuming
and exhausting for the VFNs involved, as they
may receive excessive requests that do not align
with their attributes, forcing them to scrutinize
each request.

• Challenge 4. Search result verification: Once
the VFN has performed a search operation

2

Fig. 1 A VFC-based system.

on behalf of the DU, the DU needs to ver-
ify the accuracy of the results. Several schemes
have been proposed to address verification chal-
lenges; however, new problems will arise if the
results are found to be incorrect. This may lead
to wasted time for the DUs by receiving the
wrong results and make them unsure if future
results will be accurate. In some cases, this
may even prompt the DU to leave the system
altogether.

• Challenge 5. Attribute revocation: Depend-
ing on the search result verification output, the
attributes of the VFN may change. So, when-
ever a VFN’s attributes change, the secret key
corresponding to its previous attributes should
no longer be valid. Therefore, it is important to
update VFN’s attributes whenever necessary.

To alleviate the described challenges, we design
a fine-grained data management (FGDM) scheme
and describe how to implement it in a VFC envi-
ronment. However, we believe that using only
cryptographic approaches is insufficient for cre-
ating motivations and system management. The
unique features of VFC environments, such as
the independence of entities, dynamic and exten-
sive limited knowledge of the environment, rela-
tionships between entities, and lack of control
over entities’ treatment, necessitate new security
methods. Game theoretic approaches provide a
promising solution to consider the benefits and
interests of entities involved in the system and
ensure their loyalty to the system. Utilizing this
approach, we design an incentive mechanism that
captures strategic interactions between the enti-
ties in a three-player game. The players’ strategies
are highly dependent on the actions of other play-
ers. The main contributions are summarized as
follows:

• Strategic game: To tackle Challenges 1 and 4,
we propose a game-based keyword search out-
sourcing process (KWSOP) approach involving
three parties: the CA, a DU, and a VFN. We
demonstrate that this game has a Nash Equi-
librium (NE), which yields an optimal strategy
for each player. In particular, we prove that
the VFN role player should aim to perform the
search operation accurately and has no incen-
tive to deviate from this strategy. By analyzing
the players’ utility functions, we establish that
not only are VFNs likely to participate in the
KWSOP, but they also have a strong motivation
to deliver high-quality services.

• Verifiable attribute-based keyword search
(VABKS): We have designed a new VABKS
cryptosystem with two access control policies
enforcement to address Challenges 2 and 4.
Apart from enforcing the access control policy
of the DOs to utilize outsourced encrypted
data, this cryptosystem also permits DUs
to regulate the outsourced search operations
using their control policies. Moreover, this
system enables them to verify if the VFN has
conducted the search operation honesty.

• Attribute-based VFN selection mechanism: In
order to address Challenge 3 and prevent the
leakage of VFNs’ attributes, we develop an
attribute-based VFN finding mechanism. Our
FGDM scheme utilizes an algorithm that gen-
erates a list of VFNs according to the policies
of the DU. This way, once they receive the list
of VFNs, DUs will not know anything beyond
that these VFNs are in accordance with their
policies.

• Revocable key delegation mechanism: To
address Challenge 5, we design a process for
updating the attributes of VFNs. When the
CA identifies that an attribute of a VFN has
been changed, certain algorithms are initiated

3

to update the VFN’s attributes and generate
any necessary parameters.

• Efficient search result verification: Our FGDM
offers an efficient method for verifying search
results, thereby addressing Challenge 4. Draw-
ing on the scheme proposed by Ali et al. in [7],
our FGDM scheme enables a DU to validate
search results received from a VFN without the
need to download the entire data.

Paper Organization: In Section 2 we review
the related work. Section 3 provides some prelim-
inary information. Then, we describe our problem
formulation in Section 4. Section 5 presents our
FGDM scheme in IoV environment. In Section 6,
we define our KWSOP game and find its NE. In
Section 7, we provide a detailed presentation of
our proposed FGDM. Sections 8 describes security
analysis and Section 9 presents performance anal-
ysis. Concluding remarks can be found in Section
10. Additionally, we include the correctness analy-
sis in the Appendix to ensure easy comprehension
and completeness of this paper.

2 Related Work

This section aims to review two primary areas
of research. Firstly, we will discuss related work
regarding VFC and assess the strengths of our
approach in comparison to other schemes out-
lined in Table 1. Secondly, we will explore related
work on attribute-based cryptographic systems
and examine various existing schemes in this field,
making comparisons with our FGDM scheme in
Table 2.

2.1 Vehicular fog computing

VFC is a derivative of fog computing that uses
vehicles as fog nodes to overcome limitations such
as latency. Existing work in this field has inves-
tigated VFC from different perspectives, such
as architecture, latency optimization, and util-
ity maximization [22, 23]. Most studies of VFC
have focused on its architecture [23], which can be
divided into two general categories: infrastructure-
based VFC and vehicle-based VFC. The former
category considers infrastructure near vehicles
[24], and the latter considers vehicles with idle
resources [9] as fog nodes. In contrast to an
infrastructure-based VFC system, that necessi-
tates extra equipment such as roadside units

(RSUs), a vehicle-based system is simpler to
implement [12]. For instance, in their proposed
architecture, Zhu et al. [25], have used commercial
fleets moving along specific routes as fog nodes.
However, it is noteworthy that, in contrast to the
focus on the architecture of this prominent emerg-
ing concept [23], there are few studies on users’
and vehicles’ utility maximization.

Papers [8, 10, 11, 22, 26] are some of studies
that have investigated the entities’ interests and
maximization of their utilities. To deal with time-
sensitive and computationally intensive tasks of
vehicles, the authors in [22] present a resource allo-
cation algorithm. In [10], the authors designed a
task scheduling method using the ant colony opti-
mization method. Shojafar et al. [11] proposed an
adaptive resource scheduling for fog nodes that
maximize system performance. In the scenario
proposed in [26], vehicles try to take advantage of
their own resources by sharing their idle comput-
ing resources. In this work, the RSU is responsible
for providing task scheduling. In addition, edge
and cloud server providers can also be jointly used
to provide computing services to requesters such
as their nearby vehicles. In [8], users’ requests are
served first in RSUs, and if the quality of service
(QoS) in the RSU is no longer eligible, for exam-
ple, a large number of requests causes a shortage
of RSU resources, these requests are sent to the
cloud center. The authors in [13], to deal with
the limitation of the computing power of mov-
ing vehicles, have proposed to use the computing
resources of parked vehicles in VFC. [27] proposed
the concept of pooling resources in VFC. In this
scheme, by combining the computing resources of
vehicles, computing services are jointly provided
in a community. Also, a strategy based on genetic
algorithm is presented in [27] to solve the utility
maximization problem. Other similar studies on
resource allocation are also presented in [14, 15].
However, all these work try to maximize the ben-
efits of VFNs in some way only through resource
allocation. Underestimating the participants’ ben-
efits in this system, one of our main challenges in
this paper, makes its development problematic in
the real world.

4

Table 1 Functionalities of VFC system comparison.

[8] [9] [10] [11] [12] [13] [14] [15] ours
F1 ✓ ✓ ✓

F2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

F3 ✓ ✓ ✓

F4 ✓ ✓ ✓ ✓ ✓

F5 ✓ ✓

F6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F7 ✓ ✓

F8 ✓

F9 ✓

Notes. F1: Considering attributes of fog nodes, F2:

Quick access to VFNs, F3: Optimizing VFNs’ bene-

fits, F4: Latency Optimization, F5: Finding available

resources nearby, F6: Moving fog nodes, F7: Opti-

mal employment of fog nodes, F8: Update fog nodes

attributes, F9: Finding the equilibrium point of the

system.

Table 2 Functionalities of ABKS schemes comparison.

[16] [17] [18] [19] [20] [7] [21] ours
F1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

F2 ✓ ✓ ✓ ✓ ✓

F3 ✓ ✓ ✓ ✓

F4 ✓ ✓

F5 ✓

F6 ✓

F7 ✓ ✓ ✓

Notes. F1: Verifiable keyword search, F2: Multi key-

word search, F3: Lightweightness, F4: Search results

verification without the main retrieved files, F5: Con-

sidering edge nodes attributes, F6: Updating and

revocing VFNs’ attribute, F7: Simultaneous access and

search control.

2.2 Attribute-based cryptographic

systems

There are two main types of attribute-based
approaches that provide fine-grained access and
keyword search control over encrypted data:
attribute-based encryption (ABE) and attribute-
based keyword search (ABKS) methods.

Attribute-based encryption. A popular
cryptographic tool for enforcing access control
policies is ABE, which was first proposed by
Sahai and Waters in [28]. In an ABE scheme,
the users’ access rights be controlled by con-
sidering access policies in ciphertexts or users’
secret keys. Depending on how access policies
are associated with ciphertexts and secret keys,
these schemes can be divided into two categories:
ciphertext-policy ABE (CP-ABE) and key-policy
ABE (KP-ABE). In CP-ABE, the ciphertext is
associated with the access control policy [29], and
in KP-ABE, the decryption key is associated with
the access control policy [30]. A wide range of ABE
schemes has been proposed to enrich the func-
tionality of this technique, for instance, anonymity
[31], multi-authorization [32], user revocation [33],
policy update [34], and decryption/encryption
outsourcing [35]. One significant problem in ABE
schemes is preserving users’ privacy. To alleviate
this challenge, the authors in [31] propose a model
that preserves users’ anonymity. However, as the
number of users in a system increases, scalabil-
ity issues may arise in communication networks.
To this end, in the proposed approach described
in [32], the central authority can create new

domain authorities as needed for additional com-
putational resources. Besides these functions, if a
user loses an attribute or a data owner’s policies
has changed, many security and privacy prob-
lems will arise. Therefore some ABE schemes with
attribute revocation and policy update functions
were proposed [33, 34].

Attribute-based keyword search. In order
to investigate the notion of ABE in keyword search
schemes, Zheng et al. proposed the attribute-
based keyword search scheme [19]. In this scheme,
keywords are encrypted based on an access con-
trol policy, and authenticated DUs can search
the outsourced encrypted data using generated
tokens according to their attributes and the key-
words they want to search for. This method has
been enhanced with many features that provide
different functionalities. In [36], an efficient user-
revocable ABKS scheme is proposed. Mayo et
al. [37] designed an ABKS scheme in the shared
multi-owner settings that supports hidden access
policy. The ability to search for multiple key-
words is a feature that is required for more
practical encryption schemes, although none of
the mentioned ABKS schemes mentioned provide
this requirement. Several multi-keyword search
approaches [12]-[26], [29] have been presented
to address the mentioned shortcoming. However,
these multi-keyword search schemes, only return
the desired ciphertext if the requested keywords
match all keywords associated with the data. To
improve the data retrieval process, users need
the ability to set a threshold for the quantity
of matching keywords. The scheme presented in

5

[21] enables data users to set a limit for the
quantity of matching keywords in the generation
of search token. Despite all these functionalities,
these schemes are still imperfect, and they have
ignored the untrustworthiness of the server.

Servers are not trusted entities, and we can-
not be sure they will perform the search operation
accurately. Therefore, it is very important to pro-
vide a verification mechanism to check the validity
of the search results. Various solutions have been
proposed, such as those discussed in [36], how-
ever, some come with drawbacks such as Bloom
filters causing a high false positive rate leading
to communication overhead. Alternatively, Miao
et al. [38] offer a more efficient approach that
allows for relatively less complicated verification
operations. However, to the best of our knowl-
edge, it is impossible to verify the validity of
search results without all retrieved data in afore-
mentioned schemes. Therefore, verifiers typically
need to download the retrieved data to perform
the verification process, which leads to wasted
time and unnecessary communication overhead
due to downloading unusable or incorrect data. To
address this issue, one of the main contributions of
[7] is the ability to authenticate the results of the
search operation without requiring full downloads
of the retrieved files.

Despite all these features, none of the existing
research studies has seriously addressed the issue
of system management. For example, in the topic
of computation outsourcing, while our system is
distributed, e.g. fog computing or edge computing,
there are several options, fog servers, for outsourc-
ing the computation. In this case, the existing
schemes have not provided any solution or analysis
to choose the best option for outsourcing, which
is one of our main challenges in this paper.

3 Preliminaries

3.1 Bilinear map

Suppose two cyclic groups G1 and G2 of a prime
order p. A map σ : G1 ×G1 → G2 is be bilinear if
it has these three features:

- Bilinearity: We have σ(αx, αy) = σ(αx, αy) =
σ(α, α)xy for each α ∈ G1 and x, y ∈ Zp;

- Non-degeneracy: There exists an element α ∈
G1 such that σ(αx, αy) ̸= 1;

- Computability: There exists an efficient algo-
rithm that computes σ(α, β) for each α, β ∈
G1.

3.2 Access structure

Let E = {E1, ..., En} be a set of entities. An access
structure on E is a non-empty subset A of 2E . If
for every A ∈ A and E ⊂ E such that A ⊂ E,
we have E ∈ A, then we say that A is monotone.
Every set A ∈ A is known as an authorized set,
while all the other sets in 2P \A are referred to as
unauthorized sets. A set E ⊂ E is said to satisfy
an access structure A if E ∈ A.

In ABE, attributes replace entities. We can
represent any monotone access structure by an
access tree, where each unique attribute is rep-
resented by a leaf node [19]. The Share and
Combine algorithms are two practical algorithms
that we utilized in our scheme to this end, and
were introduced in [39]:

- Share(p, r, T): This algorithm is probabilistic
polynomial-time (PPT) and that requires three
inputs: a prime number p, an access tree T , a
secret value r ∈ Zp. This algorithm generates
a distribution {Di}i∈LT

of r according to the
access tree T , where LT represents the set of
leaf nodes in T .

- Combine(
{

σ(α1, α2)
Di

}

i∈S
, T): Let T be an

access tree, and Att is the set of attributes asso-
ciated with LT . This algorithm, given a bilinear
group parameters (p,G1, G2, σ), takes a set of
values

{

σ(α1, α2)
Di

}

i∈S
and the access tree T ,

where α1, α2 ∈ G1, S ⊆ Att, and for a secret
value r ∈ Zp, {Di}i∈LT

represents the output
of Share(p, r, T). If the set S satisfies T , then
the output of the algorithm is σ(α1, α2)

r. If not,
an error message ⊥ is returned as output. For
further information about the Share andCom-

bine algorithms and the concept of access tree,
please refer to the source [39].

3.3 DBDH assumption

Assume a PPT algorithm G which takes
as input a security parameter n, and pro-
duces a tuple (p,G1, G2, σ) as output, where
p,G1, G2, and σ are the same as Section
3.1. The decisional bilinear Diffie–Hellman
(DBDH) assumption is true for G if, for any
tuple (n, p,G1, G2, σ, α, α

x, αy, αz, σ(α, α)w), the

6

advantage of any PPT distinguisher D in distin-
guishing the case where w equals xyz from the
case where w is a uniform element of Zp is a negli-
gible function in n. Here n is a security parameter,
(p,G1, G2, σ) is an output of G(1n), α ∈ G1 and
x, y, z ∈ Zp are selected uniformly at random, and
w is either a uniform element of Zp or equals to
xyz. In other words, for each PPT distinguisher
D, a negligible function negl exists such that:

|Pr(D(n, p,G1, G2, σ, α, α
x, αy, αz , σ(α, α)xyz) = 1)−

Pr(D(n, p,G1, G2, σ, α, α
x, αy, αz , σ(α, α)w) = 1)|

⩽ negl(n),

where the probabilities are calculated based on
the random selection of x, y, z, w ∈ Zp, as well as
the randomness utilized in D and G.

3.4 Commitment scheme

A commitment scheme is composed of these
three algorithms: KeyGen(1n), Commit(pk,m),
and Open(c, d). KeyGen(1n) is a PPT algo-
rithm that generates the necessary public param-
eters pk and defines the message space M .
Commit(pk,m) is a PPT algorithm that uses
the public parameters pk, a message m from the
message space M to produce a value c that repre-
sents the commitment to m and d as the opening
value. Open(c, d) is a deterministic polynomial-
time algorithm that uses the public parameters pk,
opening value d, and commitment value c to out-
put a boolean value b ∈ {0, 1} indicating whether
c is a valid commitment to m.

Security properties of a commitment scheme
include (1) correctness, i.e. the generated com-
mitment for every message is valid. (2) perfect
or computational hiding which guarantees that
an attacker cannot get information with any or
negligible advantage about m from c. (3) perfect
or computational binding where m is exclusively
linked to c or discovering another message with
the same commitment has a negligible probability
of success.

3.5 Strategic Game and Nash

Equilibrium

A strategic game is a tuple (P, {Si}i∈P , {fi}i∈P)
in which:

- P is a finite set (the set of players);
- For each player i ∈ P , Si is a nonempty set (the
set of actions available to player i);

- For each player i ∈ P , fi is a payoff function on
S =

∏

i∈P Si.

We use the notation si ∈ Si for a strategy
of player i. A collection of players’ strategies is
given by s = {si}i∈P and is referred to as a
strategy profile. A collection of strategies for all
players but the i-th one is denoted by s−i =
(s1, s2, ..., si−1, si+1, ..., sp) ∈ S−i. A (pure) Nash
equilibrium is a strategy profile S∗ from which
no player can unilaterally deviate and improve
its payoff. Formally, the strategy profile S∗ =
(s∗i , s

∗
−i) is a Nash Equilibrium if fi(s

∗
i , s

∗
−i) ⩾

fi(s
∗
i , s−i) for every si ∈ Si and i ∈ P .

4 Problem formulation

To aid our FGDM scheme comprehension and
adherence, in this section, we present its system
model, threat model, and security requirements,
respectively.

4.1 System Model

This work focuses on a VFC-based IoV scenario.
The system involves five entities, as illustrated in
Fig. 2: A Central Authority (CA), a Cloud Server
(CS), a number of Data Owners (DOs), Data
Users (DUs), and Vehicular Fog Nodes (VFNs).
The entities have distinct roles and relationships,
which are detailed below.

• Central Authority: The CA is responsible
of initializing the system parameters and gen-
erating its own master secret key. Besides, it
should generate required keys and update the
attributes of VFNs.

• Data Owners: Each DO defines its policies
for data access control and outsources the
encrypted data under the defined access pol-
icy along with the assigned keywords to its
surrounding VFNs.

• Data Users: Each DU looks for data with spe-
cific keywords. It is responsible for generating
searchable tokens, defining the token access pol-
icy, encrypting tokens under this policy, and
verifying the search result.

• Vehicular Fog Nodes: VFNs are individu-
als that have devices with moderate computing
power and are responsible for caching data or
forwarding them to the CS as edge servers. They

7

retrieve the requested data from its database or
the CS.

• Cloud Server: The CS is a remote server with
a large storage capacity that stores and shares
encrypted data with VFNs through a public
channel.

4.2 Threat Model and Security

Requirements

The CA and DOs, in this work, are considered to
be completely trustworthy. Once the CA initiates
the system and generates the required parame-
ters, it securely provides the corresponding keys
to each entity. The CS and VFNs, either inten-
tionally or accidentally, may fail to accurately
perform the outsourced operations, so they are
unreliable in this respect. Also, by collaborating
with unauthorized DUs, they might attempt to
gain access to unauthorized information regard-
ing the outsourced data and related keywords.
The DUs are malicious and can carry out any
attacks. An authorized DU that can decrypt a
ciphertext would not reveal any details about the
content of the data and linked keywords in any
way. Furthermore, unauthorized DUs may col-
laborate with each other and the CS to obtain
unauthorized access to the outsourced data. We
summarize the security requirements of our design
in the following two cases:

• Indistinguishability : Only authorized DUs or
VFNs whose attributes meet the required access
policies are allowed access to the ciphertext or
tokens. And the encrypted files must not reveal
any information about their data, keywords, or
tokens.

• Unforgeability : In the verification phase, if a
VFN fails to correctly execute the necessary
operations required in the search algorithm,
then the search results returned to DUs must
not be validated.

5 Proposed FGDM in IoV
environment

This section utilizes our FGDM as the funda-
mental component in designing a secure VFC-
based IoV system. The notations employed in this
section and Section 7 are listed in Table 3.

As illustrated in Fig. 2, the proposed system
comprises of nine distinct phases. In Phases 1
and 2 the CA initializes the system parameters
and produces secret-keys for all entities, respec-
tively. During Phase 3, a DO, choosing a specific
access tree and a set of keywords, encrypts its
data using that access tree and outsources the
encrypted data along with the encrypted keywords
to near VFNs. In phase 4, a DU defines a set of
policies, and corresponding to each of these poli-
cies receives a list of VFNs from the CA. In phase
5, a DU considers a set of keywords and creates
a token that matches these keywords. Then, the
DU encrypts the token under a chosen policy and
sends a search request to VFNs corresponding to
this policy. In phase 6, after receiving data queries
from a DU, one of the VFNs receiving the request
accepts it and decrypts the requested token. It
can decrypt the token only if its attributes satisfy
the DU’s access tree. Then it searches the local
storage, interacts with other VFNs, or requests
the CS to find all ciphertexts that meet these cri-
teria: (1) Their access trees align with the DU’s
attributes; (2) They contain R or more match-
ing keywords from the DU’s selected keywords set.
Afterward, it sends the search result to the DU.
Since a DU does not fully trust VFNs, in phase
7, it can verify the accuracy of operations per-
formed in the search process before downloading
the encrypted ciphertexts. If the search result is
not verified, the DU will inform the CA about
that specific VFN. Otherwise, it downloads the
ciphertexts. Then, in phase 8, if its attribute set
matches the access policy in the ciphertext, it
retrieves the data associated with ciphertexts by
performing very efficient operations. In phase 9,
when a VFN’s attribute has changed, its access
right will be updated. To this end, at first, the
CA changes the parameters associated with the
attribute and produces its corresponding update-
key. Then, according to the new parameters, the
CA updates VFN’s secret-keys.

5.1 Definition of proposed FGDM

scheme

This scheme is consists of the following 14 algo-
rithms. The detailed construction of all these
algorithms is presented in Section 7.

8

Fig. 2 System model.

Table 3 Notations.

Notation Description

n System’s security parameter
U Universal attribute set
PK System’s Public parameters
MSK System’s master secret-key
IDvfn Identifier of a vehicular fog node
IDdu Identifier of a DU
Attdu Attribute set of a DU
SKdu Secret-key of a DU
ωj jth keyword assigned to a file
ω̂j jth keyword in a search query
M A message
SKdo A DO’s secret-key
PKdo A DO’s public-key
T An access tree
SCTT A searchable ciphertext
TKdu Search token generated by a DU
CTToken Search token ciphertext produces by a DU
R A threshold value
Πsign A signature scheme
Πcom A commitment scheme
Πenc A symmetric encryption scheme
Πmac A message authentication code scheme

1. Setup(1n,U,U′): The algorithm takes the
security parameter n as input, and generates
the global public parameters PK and the mas-
ter secret-key MSK.

2. DO.KeyGen(MSK,PK, IDdo): It takes as
input the master secret-key MSK, and an
identifier of a data owner IDdo. It outputs
(PKdo, SKdo).

3. VFN.KeyGen(MSK,PK, IDvfn, a): The
master secret-key MSK, the VFN’s identifier
IDvfn, and an attribute a are the inputs of this
algorithm. It outputs a secret-key SKa,vfn.

4. DU.KeyGen(MSK,PK, IDdu, Attdu): It
takes the master secret-key MSK, a data
user’s identifier IDdu, and its attribute set
Attdu as inputs. Then, the algorithm returns a
secret-key SKdu.

5. DO.Enc(PK,PKdo, SKdo, IDdo,M, {ωj}
m
j=1,

T): A DU’s public-key PKdo, secret-key SKdo,
and identifier IDdo, a message M , a keyword
set {ωj}

m
j=1, and an access tree T are the

inputs of this algorithm. It returns a searchable
ciphertext SCTT .

6. VFN.Slc({Tpi
}pi∈Pdu

, {Attvi
}vi∈Vdu

): It takes
a DU’s set of access trees, {Tpi

}pi∈Pdu
, and its

set of near VFNs’ attributes, {Attvi
}vi∈Vdu

, as
inputs. It returns a set of VFNs corresponding
to each policy, {Li}i∈Pdu

.
7. TokenGen(PK, IDdu, SKdu, {ω̂j}

l
j=1): The

DU’s identifier, its secret-key, and a keyword
set {ω̂j}

l
j=1 are the inputs of the algorithm.

Its output is a token TKdu associated with the
keyword set.

8. TokenEnc(PK, TKdu, Tdu): It takes keywords
token TKdu, and an access policy tree Tdu as
inputs. It returns a search token ciphertext
CTToken according to the DU’s access tree.

9. TokenDec(PK,SKa,vfn, CTToken): On input
a VFN’s secret-key SKa,vfn and the ciphertext
of a the DU’s keywords token CTToken, this
algorithm returns the token corresponding to
this ciphertext.

10. Search(PK, TKdu, IDdu, SCTT ,R): It takes a
searchable keywords token TKdu, a DU’s iden-
tifier IDdu, a searchable ciphertext SCTT , and

9

a threshold value R as inputs. The algorithm
outputs a response Re.

11. Verify(PK,Re, IDdo, IDvfn,K): On input
Re, IDdo, and IDvfn, this algorithm verifies
the search result Re’s validity. If it is valid, the
algorithm returns 1. Otherwise, 0 is output
which means the search result is not valid.

12. DU.Dec(PK, K, T K, Cdo, tdo): Given a
ciphertext Cdo, parameters K and T K from
search result Re, and the DU’s token tdo, this
algorithm first checks whether this ciphertext
matches with the DU’s token or not. If not, it
aborts and outputs ⊥. Otherwise, it recovers
the message corresponding to Cdo.

13. VFN.AttUpdate(PK, a0,MSK): This algo-
rithm takes an attribute a0, and the mas-
ter secret-key MSK. It updates the system
parameters associated with the attribute and
produces an update-key UKa0 .

14. VFN.KeyUpdate(PK, a0, UKa0 , SKa0,vfn,
IDvfn): It takes an attribute a0, an update-
key UKa0 , a secret-key of a VFN associated
with the attribute, SKa0,vfn, and its identi-
fier, IDvfn. It outputs an updated secret-key
SK ′

a0,vfn
.

5.2 System overview

In this section, we will explain how to implement
our FGDM scheme on the proposed IoV system
in nine phases:

• System Initialization. At first, the CA
chooses a security parameter n and two
attribute sets U and U′. Next, it executes
Setup(1n,U,U′) algorithm to produce pub-
lic parameters PK and the master secret-key
MSK. The PK is shared with other entities
while keeping MSK private.

• Key Generation. The CA carries out this
phase to create the required keys for each
entity. Upon receiving the MSK, it executes
the algorithm DO.KeyGen(MSK,PK, IDdo)
to generate secret and public keys for each
DO based on its identity. Then, it uses
the DU.KeyGen(MSK,PK, IDdu, Attdu)
algorithm to compute secret keys for
each DU with an identifier IDdu and
attribute set Attdu. Similarly, it employs the

VFN.KeyGen(MSK,PK, IDvfn, a) algo-
rithm to generate a secret key for each VFN
corresponding to its identity and attributes.

• Encryption. Before outsourcing a message
M , a DO first evaluates a set of keywords
{ωj}

m
j=1. Then, using its public-key PKdo,

secret-key SKdo, and identifier IDdo, it runs
DO.Enc(PK, PKdo, SKdo, IDdo,M, {ωj}

m
j=1,

T) algorithm to produce a searchable cipher-
text SCTdo. Subsequently, it sets up an access
tree T specifying which DUs have permission
to access the message. Finally, it sends the
encrypted data to VFNs around it.

• VFN Selection. In this phase, a DU sub-
mits a set of policies to the CA. The CA then
utilizes the VFN.Slc({Pi}

m
i=1, {vfnj}j∈V FNs)

algorithm to generate, for each policy, a list
of VFNs that are accessible to the DU whose
attributes meet the policy requirements. The
CA subsequently shares these lists with the DU.

• Token Generation. A DU, using its secret
key SKdu and identifier IDdu, executes the
TokenGen(PK, IDdu, SKdu, {ω̂j}

l
j=1) algo-

rithm to generate a token that corresponds
to its selected keywords. To ensure that only
authorized VFNs can perform search oper-
ations, the DU encrypts the resulting token
according to its access control policies Tdu using
the TokenEnc(PK, TKdu, Tdu) algorithm.

• Search. To perform the search operation,
a VFN must have access to searchable
tokens. To this end, it first decrypts
the encrypted tokens CTToken using its
secret-key SKa,vfn, and the execution
of TokenDec(PK,SKa,vfn, CTToken)
algorithm. The VFN then runs the
Search(PK, TKdu, IDdu, SCTT ,R) algorithm
with the searchable token TKdu, to find the
DU’s desired files and sends a response Re,
back to the DU.

• Verification. To ensure the validity of the
search result, the DU carries out a verifica-
tion phase. Before downloading the response
Re from the VFN, the DU utilizes the
Verify(PK,Re, IDdo, IDvfn,K) algorithm to
confirm the accuracy of the search operation. If
the verification fails, the DU reports the identity
of the VFN responsible for the search, IDvfn,
to the CA. Otherwise, it proceeds to download
Re.

10

• Decryption. In this phase, the DU runs
the DU.Dec(PK,K, T K, Cdo, tdo) algorithm to
retrieve the original file.

• Updating VFNs. According to the reports
of DUs from search results or in different con-
ditions, the attributes of VFNs may change.
Therefore, upon receiving these reports, the
CA first updates the attributes of VFNs by
running the VFN.AttUpdate(PK,MSK, a0)
algorithm. Then, it runs the
VFN.KeyUpdate(PK, a0, UKa0 , SKa0,vfn,
IDvfn) algorithm to update their secret-keys.

In the next section, we will adopt a game-
theoretic approach to address the issue of how to
incentivize VFNs to participate in the system and
ensure that they do not deviate from their tasks.

6 KWSOP Game

To manage the data retrieval process, espe-
cially the keyword search outsourcing process
(KWSOP), in the previous section, we presented
our FGDM scheme and explained how to imple-
ment it in a VFC environment. However, due to
the reasons we stated in the introduction, this
scheme is not adequate to overcome the mentioned
challenges. To this end, in the following, we will
investigate the KWSOP in the form of a strategic
game:

6.1 Game overview

Three entities with different goals participate in
the KWSOP: a DU, a VFN, and the CA. Each
of these three players has its goal of being in
the VFC system. The DU’s primary objective is
to outsource the keyword search operation to a
VFN according to its policies and get the desired
result. The VFN, on the other hand, intends to
earn the highest wage in exchange for executing
the operation. Meanwhile, the CA strives to main-
tain its clientele and not lose VFNs’ participation
in the network while paying the lowest wage pos-
sible. These players employ different strategies to
achieve their goals. The DU can decide which
VFNs to delegate the search operation to, accord-
ing to its policies. Once the request is accepted by
one of the VFNs, that VFN can decide whether to
cancel the request or not. And if it does not cancel
the request, whether to carry out the task accu-
rately or not. Besides, the CA will have different

strategies based on the reports received from the
DU. If the DU reports any violation linked to the
VFN, the CA should decide whether to update the
attributes of the VFN or not. Or it should decide
whether to pay the VFN in full or not. Therefore,
we formulate the KWSOP as a sequential game:
Definition 1 (KWSOP Game). The sequential
KWSOP game is the following triplet G, in which
the DU is the first, the VFN is the second, and the
CA is the last player (Fig. 3):

G = (P, {Si}i∈{du, vfn, CA}, {fi}i∈{du, vfn, CA}),

where

• P = {vfn ∈ {V FNs}, du ∈ {DUs}, CA},
• Svfn = {A : Accurate execution, nA :

not Accurate execution, C : Cancel },
• Sdu = {Pi | ∀ i ∈ {1, ...,m}, Pi is an access

policy },
• SCA = {WP : Wage Payment,

AU : Attributes Update,
WP+AU : Wage Payment+Attributes Update }.

Fig. 3 Game tree.

For each VFN and each operation O, if the
VFN accurately operates O, we denote its reward
as RO and its penalty in case of making a mistake
as PO. Its penalty in case of canceling the request
is also shown with PC . Then, the utility function
of the VFN will be as follows:

• fvfn =

RO A

−PO nA

−PC C.

For each user DU and each operation O, the payoff
of the DU will be 0 or UO if it requests from the VFN,
depending on the result of VFN’s operation, and will
be U ′

O if it does not request. Then, the utility function
of DU will be as follows:

• fdu(Pi) = cdi(UO) where, c ∈ {0, 1}.

11

If the CA chooses the WP strategy, it will lose
the loyalty of DUs since the presence of VFNs with
incorrect attributes in the system will cause DUs
dissatisfaction. Therefore, the only benefit of this
strategy is to keep the VFN in the system, which we
represent with Uvfn. In the same way, by choosing
the AU strategy, the only benefit will be to keep DUs,
Udu. Then, the utility function of the CA will be as
follows:

• fCA =

Uvfn WP

Udu AU

Uvfn + Udu WP +AU.

We now introduce the concept of Nash equilibrium,

Definition 2. A strategy profile s∗ = (s∗du, s
∗
vfn, s

∗
CA)

is a Nash equilibrium of the KWSOP game if at the

equilibrium s∗, no player can further upgrade its utility

by unilaterally changing its strategy, i.e.,

fn(s
∗
n, s

∗
−n) ≤ fn(sn, s

∗
−n), ∀sn ∈ Sn, n ∈ P.

The Nash equilibrium has a self-stability prop-
erty such that the users at the equilibrium point can
achieve a mutually satisfactory solution, and no user
has the incentive to deviate. Since the VFNs are owned
by different individuals, and they may act in their own
interests, this property is very important to KWSOP
management. The existence of Nash equilibrium shows
us there is a strategy profile that all three players
tend to occur. Furthermore, according to the NE, we
find out whether VFNs generally have the desire to
participate in the system or not.

6.2 Game property

We then study the existence of the Nash equilibrium
of the KWSOP game. To proceed, we first introduce
an important concept of the best response:
Definition 3. Given the strategies s−n of the other

players, player n’s strategy s∗n ∈ Sn is a best response

if

fn(s
∗
n, s−n) ≤ fn(sn, s−n), ∀sn ∈ Sn.

According to Definitions 2 and 3, we see that at the
Nash equilibrium all the users play the best response
strategies towards each other. Based on the concept of
best response and the table of players’ utilities, Fig.4
, we have the following observation for the KWSOP
game. For the DU’s best response, without loss of gen-
erality, we can order its set of access policies so that
U(P1) ≥ U(P2) ≥ ... ≥ U(Pm) . Then, the DU’s best
response will be P1, the VFN’s best response will be A,
and the CA’s best response will be WP +AU . There-
fore, according to Fig. 5, the Nash equilibrium of the
game is equal to: (P1, A,WP +AU).

7 FGDM Construction

Our main goal in designing FGDM is to enable DUs
to outsource keyword search operations to authorized
VFNs, along with an efficient search results verifica-
tion mechanism that can be implemented for devices
with limited resources of an IoV system. In the fol-
lowing, we present the construction of our FGDM in
detail.

1. Setup(1n,U,U′) → (PK,MSK): This algo-
rithm takes as input a security parameter
n and two attribute sets U and U′. First, it
executes G(1n) to generate a bilinear group
parameters (p,G1, G2, σ). Then it randomly
picks α0, α1, α2,Γ ∈ G1. Now, it randomly
picks sa ∈ Zp and s′b ∈ Zp, for each a ∈ U

and b ∈ U′. Also for each a ∈ U and b ∈ U′,

it sets pka = αsa
0 and pk′b = α

s′b
0 as the public

parameter associated with the a-th attribute
in U and b-th attribute in U′. Moreover, it
selects an ID-based signature scheme Πsign =
(Setupsign, KeyGensign, Sign, Vrfysign),
a commitment scheme Πcom =
(Commit,Open), a symmetric encryp-
tion scheme Πenc = (Enc,Dec), a
message authentication code (MAC)
Πmac = (Mac,Vrfymac), and a hash func-
tion H : G2 → {0, 1}m, where m is a natural
number. By running Setupsign(1

n), it gener-
ates (PKsign, MSKsign), where PKsign and
MSKsign are public parameters and master
secret-key associated with Πsign. Afterward, it
selects two random values s, t ∈ Zp and com-
putes β0 = αs

0 , β1 = αt
0, β2 = Γβs

1, β3 = αs
1,

β4 = βt
0, Σ1 = σ(β0, α1), and Σ2 = σ(β−1

0 , β1).
Finally it outputs MSK = (s, t, Γ, {sa}a∈U,
{s′b}b∈U′ , MSKsign, β3, β4) and PK = (n, p,
G1, G2, σ, α0, α1, α2, β0, β1, β2, Σ1, Σ2,
{pka}a∈U, {pk

′
b}b∈U′ , H, PKsign,Πsign,Πcom,

Πenc,Πmac).
2. DO.KeyGen(MSK, PK, IDdo) → (PKdo,

SKdo): This algorithm first calls KeyGensign

(MSKsign, PKsign, IDdo) to generate a secret-
key SKdo, where IDdo is the identifier of
data user. Then, it randomly selects skdo ∈

Zp and calculates pk
(1)
do = α−skdo

2 , pk
(2)
do =

Σ−skdo

2 , pk
(3)
do = α−skdo

0 , and pkdo,a =
(pkaα

−1
2)−skdo , for each a ∈ U. Finally,

it outputs (PKdo, SKdo), where PKdo =

(pk
(1)
do , pk

(2)
do , pk

(3)
do , {pkdo,a}a∈U, skdo).

12

Fig. 4 Game table.

Fig. 5 NE diagram.

3. VFN.KeyGen(MSK,PK, IDvfn, a) →
SKa,vfn: Initially, this algorithm verifies if
a ∈ U′. If not, the algorithm returns ⊥. Other-
wise, it produces a secret-key associated with
(a, IDvfn) as follows:

SKa,vfn = Γβ3ID
s′a
vfn.

4. DU.KeyGen(MSK,PK, IDdu, Attdu) →
SKdu: Given a DU’s identifier, IDdu ∈ G1 and
an attribute set, Attdu, for each a ∈ Attdu,
this algorithm calculates skdu,a = β3ΓID

sa
du. It

returns a secret-key SKdu = {skdu,a}a∈Attdu .
5. DO.Enc(PK,PKdo, SKdo, IDdo,M, {ωj}

m
j=1,

T) → SCTT : This algorithm takes PKdo =

(pk
(1)
do , pk

(2)
do , pk

(3)
do , {pkdo,a}a∈U), an access

tree T and selects a random value r ∈ Zp

and computes r′ = r + skdo. Then,

computes C1 = αr′

2 pk
(1)
do = αr

2 and

C2 = Σr′

2 pk
(2)
do = Σr

2. Afterward, by running
Share(p, r′, T), it provides a distribution
{Di}i∈LT

of r′, and for each i ∈ LT , it

calculates Cvi
= αdi

0 pk
(3)
do = αDi−skdo

0 and
C ′

vi
= (pkiα

−1
2)Dipkdo,i = (pkiα

−1
2)Di−skdo .

Then, it computes k = H(Σ−r
1) and runs

Commit(k) to generate a commitment pair
(cdo, ddo), where cdo is the commitment
value and ddo is the opening value. Also, it
encrypts ddo to C ′

do by running the symmetric
encryption algorithm Enc(k, ddo). Afterward,
it encrypts the message M to Cdo by run-
ning Enc(k,M). Also, it generates a tag tdo

for Cdo by running Mac(k, Cdo). Then, it
runs Sign(PKsign, IDdo, SKdo, (C

′
do||cdo))

and generates a signature σdo. Also, it
selects rj ∈ Zp uniformly at random and

calculates W ′
j = Σ

−rj
1 , for each j ∈ Ndo,

where Ndo is a DO’s dictionary cardinality.
Finally, for each j = 1, ...,m, it calculates
Wj = ωj − r + rj . It outputs a ciphertext:
SCTT = (T , Cdo, C ′

do, C1, C2, cdo, tdo, σdo,
{Wj}

m
j=1, {W

′
j}

m
j=1, {Cvi

}i∈LT
, {C ′

i}i∈LT
).

6. VFN.Slc({Tpi
}pi∈Pdu

, {Attvi
}vi∈Vdu

) →
{Li}i∈Pdu

: It takes a DU’s set of access
trees, {Tpi

}pi∈Pdu
, and its set of near VFNs’

attributes, {Attvi}vi∈Vdu
where Pdu and Vdu

are a DU’s set of access policies and set of
near VFNs. For each pi ∈ Pdu, it consid-
ers an initially emty set, Lpi

, then, for each
vj ∈ Vdu, checks whether Attvj

satisfies Tpi
or

not. If so, it replaces Lpi
∪ Attvj

with Lpi
and

{Attvi
}vi∈Vdu

\ Attvj
. Finally, this algorithm

returns {Li}i∈Pdu
.

7. TokenGen(PK, IDdu, SKdu, {ω̂j}
l
j=1) →

TKdu: Given the DU’s identifier IDdu ∈ G1,
secret-key SKdu = {skdu,a}a∈Attdu , and a
keyword set {ω̂j}

l
j=1, it selects K,K′ ∈ Zp

uniformly at random and computes λ1 = αK
0 ,

λ2 = βK
1 , λ3 = IDK

du, λ4 = αK′

0 , and
λ5 = KK′. Also, for each j = 1, ..., l, it sets
Ŵj = H(Σω̂j+K), and for each a ∈ Attdu, it

computes λdu,a = skdu,aα
K′

2 . Finally, it outputs
(TKdu,K), where TKdu = ({λi}

5
i=1, Tdu =

{λdu,a}a∈Attdu , {Ŵj}
l
j=1).

8. TokenEnc(PK, TKdu, Tdu) → CTToken: This
algorithm selects x ∈ Zq uniformly at random
and runs Share(x, q, Tdu) → {qva

(0)}va∈LTdu
.

Then it computes,

V = TKduΣ
x
0 = ({λiΣ

x
0}

5
i=1, TduΣ

x
0

= {λdu,aΣ
x
0}a∈Attdu , {ŴjΣ

x
0}

l
j=1).

13

Finally, the algorithm outputs:

CTToken = (T, V, V ′ = Σx
1 , C = αx

2 , {Ca =

α
qva (0)
0 , C ′

a = (pk′aα
−1
2)qva (0)}va∈LTdu

).

9. TokenDec(PK,SKa,vfn, CTToken) → TKdu:
At first, for each a ∈ S, such that S is
the attribute satisfying the access tree of a
ciphertext, it calculates

Bva,vfn =
σ(Ca, SKa,vfn)

σ(Ca,Γβ4).σ(C ′
a, IDvfn)

= Σ
qva
1 .Σ

qva
2 .σ(α2, IDvfn)

qva . (1)

Then, this algorithm runsCombine(q, TToken,
{Bd

va,vfn
}tj=1) algorithm and obtains BR,vfn =

Σk
1 .Σ

k
2 .σ(α2, IDvfn))

k. Considering,

BR,vfn = Σk
1 .Σ

k
1 .σ(α2, IDvfn))

k

= Σk
1 .Σ

k
2 .σ(α

k
2 , IDvfn))

= Σk
1 .V

′.σ(C, IDvfn)), (2)

the algorithm computes:

TKdu =
V

BR,vfn

V ′.σ(C,IDvfn)

. (3)

10. Search(PK, TKdu, IDdu, SCTT ,R) →
Re/ ⊥: Given a token TKdu = ({λi}

5
i=1, Tdu =

{λdu,a}a∈Attdu , {Ŵj}
l
j=1) associated with an

attribute set Attdu, a searchable ciphertext
SCTT = (T , Cdo, C

′
do, C1, C2, cdo, tdo, σdo,

{Wj}
m
j=1, {W ′

j}
m
j=1, {Cva}a∈LT

, {C ′
a}a∈LT

),
and a threshold value R, if an attribute
set S ⊆ Attdu satisfying T does not exist,
it aborts. Otherwise, for any a ∈ S, this
algorithm calculates:

La =
σ(Cvaλ1, λdu,a)

σ(Cvaλ1, β2).σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu).σ(α0, α2)λ5

= (Σ1.Σ2.σ(α2, IDdu))
Da−SKdo+K

.σ(α
K

′

0 , α2)
Da−SKdo .

(4)

Afterward it executesCombine({ La } a ∈ S ,
T) to compute L = (Σ1.Σ2.σ(α2, IDdu))

r+K.σ(
αK′

0 , α2)
r, and then it compute T K =

LC−1
2 .σ(β0, λ2).σ(C1, IDduλ4)

−1.σ(α2, λ3)
−1 =

Σr+K
1 . Finally, the algorithm returns a

response Re = (C ′
do, cdo, σdo, T K) as output

if |{H(T K.Σ
Wj

1 .W ′
j)}

m
j=1 ∩ {Ŵj}j = 1l| ≥ R.

Otherwise, it returns an error message ⊥.
11. Verify(PK,Re, IDdo, IDvfn,K) → (ver ∈

{0, 1}): For Re = (C ′
do, cdo, σdo, T K), it runs

Vrfysign(PKsign, IDdo, (C
′
do||cdo), σdo) to ver-

ify the signature σdo. If the signature is not
valid, an error message ⊥ is output. Other-
wise, it computes k′ = H(T K−1.ΣK

1) and d′do =
Dec(k′, C ′

do) and verifies the commitment cdo,
by running Open(cdo, d

′
do). If the commitment

is confirmed, the algorithm returns (1, IDvfn)
meaning the search result is reliable. Otherwise,
(0, IDvfn) is output which means the search
result is not valid.

12. DU.Dec(PK,K, T K, Cdo, tdo) → M/ ⊥:
At first, this algorithm computes
k = H(T K−1ΣK

1). Then, it executes
Vrfymac(k, Cdo, tdo) to check whether the
ciphertext Cdo matches with tag tdo or not.
If not, an error message ⊥ is returned as
output. Otherwise, by running the symmetric
decryption algorithm, it recovers the message
M = Dec(k, Cdo).

13. VFN.AttUpdate(PK, a0,MSK) → UKa0
:

This algorithm selects ŝ′a0
∈ Zq uniformly at

random and sets UKa0
= ŝ′a0

s′−1
a0

.
14. VFN.KeyUpdate(PK, a0, UKa0

, SKa0,vfn,
IDvfn) → SK ′

a,vfn : Given an update-key
UKa0

and a VFN with identifier IDvfn, this
algorithm updates a secret-key SKa0,vfn of the

VFN as follows: SK ′
a,vfn = SKa,vfnID

UKa0

vfn .

8 Security analysis

This section demonstrates that our FGDM scheme
meets the security prerequisites noted in Section 4.2.
Firstly, we precisely outline indistinguishability secu-
rity. Then, we verify that our scheme is secure in the
standard model as per the definition. Finally, we show
that our FGDM also attains unforgeability.

8.1 Indistinguishability

Suppose the following experiment for adversarial
indistinguishability, where A and C represent a PPT
adversary and a PPT challenger, respectively:

14

• Target : The adversary A selects an access tree
T ∗ which it wants to be challenged upon, and
provide it to C.

• Setup: First, the challenger C chooses attribute
sets U and U

′ along with a security parame-
ter n. Then, to create the public parameters
PK and the master secret-key MSK, it runs
Setup(1n,U,U′). C gives PK to A, and keeps
MSK confidential. Moreover, the challenger C
considers ID1 , ..., IDq(n) for a natural polyno-
mial q, as the identifiers of DUs in a hypo-
thetical system and returns these parameters to
A.

• Phase 1: The adversary A can query the follow-
ing oracles for polynomially many times. The
challenger C keeps an initially empty list Lu for
each u ∈ {1, ..., q(n)} and considers an initially
empty list LKW .

– ODU.KeyGen(IDu, Att): If T ∗ is satisfied by
Lu ∪ Att, then the challenger aborts. Other-
wise, to produce a secret-key SKu, it executes
DU.KeyGen(MSK,PK, IDu, Att). Then,
it replaces Lu ∪Att with Lu.

– OTokenGen(IDu, {ω̂j}
l
j=1, Att): The chal-

lenger C runs DU.KeyGen(MSK, PK,
IDu, Att) to create a secret-key SKu. After-
ward, C creates (TKu,K) using the algorithm
TokenGen(PK, IDu, SKu, {ω̂j}

l
j=1). C

returns TKu to A, then replaces LKW with
LKW ∪ {ω̂j}

l
j=1.

• Challenge: After the end of Phase 1,

A selects two pairs (M0, {ω
(0)
j }mj=1) and

(M1, {ω
(1)
j }mj=1), where m is an arbitrary

natural number, and |M0| = |M1|. C veri-

fies if ({ω
(0)
j }mj=1 ∪ {ω

(1)
j }mj=1) ∩ LKW ̸= ∅.

If so, it aborts. If not, after randomly
selecting a coin b ∈ {0, 1}, it executes
DO.KeyGen(PK, PKdo, SKdo, IDdo, Mb,

{ω
(b)
j }mj=1, T

∗) to create a ciphertext SCTT ∗ . C
gives SCTT ∗ and PKdo to A.

• Phase 2: This phase is comparable to
Phase 1, with the exception that adver-
sary A is unable to make a query on
OTokenGen(IDdu, {ω̂j}

l
j=1, Att) if {ω̂j}

l
j=1 ∩

({ω
(0)
j }mj=1 ∪ {ω

(1)
j }mj=1) ̸= ∅.

• Guess: A returns a guess b′ ∈ {0, 1} of b.

The winner of the indistinguishability game is
A if and only if b′ = b. Let us consider a function

AdvA,Π(n) = |Pr(b = b′) − 1/2| named advantage
function, where Π is our FGDM scheme, n is a secu-
rity parameter, and A is a PPT adversary in the
described indistinguishability experiment.

Definition 4. Our FGDM scheme is indistinguish-

ably secure if the advantage function AdvA,Π(n) is a

negligible function in n for any PPT adversary A.

Theorem 1. Assuming that the DBDH assumption is

true for G, in the standard model, our FGDM scheme

is indistinguishably secure.

Proof. Assume that A is a PPT adversary
in the indistinguishability experiment. Let D
be a PPT distinguisher that receives a tuple
(n, p,G1, G2, σ, α, α

x, αy, αz , σ(α, α)w) and wants to
determine the value of w, where n is a security param-
eter, (p,G1, G2, σ) is an output of G(1λ), α ∈ G1 is a
random generator, x, y, z ∈ Zp are selected uniformly
at random, and w is either equal to xyz or is selected
uniformly at random from Zp. We create D such
that it emulates the challenger C in the described
adversarial indistinguishability experiment. Later on,
D will verify if A has achieved success or not. If suc-
cessful, D will assume that w = xyz. If unsuccessful,
it concludes that w is chosen uniformly at random
from Zp. To elaborate, D executes A as a subroutine
in the following manner:

• Target : The adversary A determines an access
tree T ∗.

• Setup: First, the distinguisher D chooses
universal attribute sets U and U

′, and for
a natural polynomial q, it picks q(n) iden-
tifiers ID1 , ..., IDq(n). Then, it selects two
random values s, t ∈ Zp and β2 ∈ G1

and sets α0 = α, α1 = αx, α2 = αt,
β0 = αy , β1 = αxα−s, Σ1 = σ(β0, α1), and
Σ2 = σ(β−1

0 , β1). Now, it randomly picks
sa ∈ Zp and s′b ∈ Zp, for each a ∈ U and
b ∈ U

′. Also for each a ∈ U and b ∈ U
′, it

sets pka = αsa and pk′b = αs′b . Moreover, it
selects an ID-based signature scheme Πsign =
(Setupsign, KeyGensign, Sign, Vrfysign),
a commitment scheme Πcom =
(Commit,Open), a symmetric encryption
scheme Πenc = (Enc,Dec), a message authen-
tication code (MAC) Πmac = (Mac,Vrfymac),
and a hash functionH : G2 → {0, 1}m, wherem
is a natural number. By running Setupsign(1

n),
it generates (PKsign, MSKsign), where PKsign

andMSKsign are public parameters and master
secret-key associated with Πsign. Then, D gives

15

{IDi}
q(n)
i=1 and PK = (n, p, G1, G2, σ, α0, α1,

α2, β0, β1, β2, Σ1,Σ2, {pka}a∈U, {pk
′
b}b ∈ U′ , H,

PKsign,Πsign,Πcom,Πenc,Πmac) to A. Note
that, if we assume that sk = y and β2 = Γβy

1 =
Γβsk

1 , for an unknown value Γ ∈ G1, then it can
be observed that PK has been appropriately
chosen.

• Phase 1: The adversary A queries the follow-
ing oracles, and for every u ∈ {1, ..., q(n)}, D
creates a list Lu and responds the queries as
follows:

– ODU.KeyGen(IDu, Att): D first checks
whether Lu∪Att satisfies the access tree T ∗ or
not. If so, it aborts. If not, for every a ∈ Att,
D computes sku,a = αs

1ΓIDu = β3ΓIDu

and gives {sku,a}a∈Att to A. Otherwise,
to produce a secret-key SKu, it executes
DU.KeyGen(MSK,PK, IDu, Att). Also,
D replaces Lu ∪Att with Lu.

– OTokenGen(IDu, {ω̂j}
l
j=1, Att): The dis-

tinguisher D, at first, calls the oracle
ODU.KeyGen(IDu, Att) to produce a
secret-key SKu. Afterward, it executes the
TokenGen(PK, IDu, SKu, {ω̂j}

l
j=1) algo-

rithm and gives a token TKu to A. Also, it
replaces LKW with LKW ∪ {ω̂j}

l
j=1.

• Challenge: For a natural number m, A

returns two pairs (M0, {ω
(0)
j }mj=1) and

(M1, {ω
(1)
j }mj=1) where m is an arbitrary nat-

ural number, and |M0| = |M1|. D checks if

({ω
(0)
j }mj=1 ∪ {ω

(1)
j }mj=1) ∩ LKW ̸= ∅. If so, it

aborts. If not, it selects a coin b ∈ {0, 1} ran-

domly, and encrypts (Mb, {ω
(b)
j }mj=1) as follows:

At first, D chooses a random value r′ ∈ Zp

and assumes that r′ = z + skdo for an
unknown value skdo ∈ Zp. Then, it calculates

pk
(1)
do = α−r′

2 αtz = α−z−skdo

1 αz
2 = α−skdo

2 ,

pk
(2)
do = σ(α, α)−wσ(αy, αx−s)r

′

σ(αy, αz)s,

pk
(3)
do = α−r′αz = α−skdo−zαz = α−skdo

0 ,

and pkdo,a = (pkaα
−1
2)−r′(αz)sa−t =

(pkaα
−1
2)−skdo , for each a ∈ U. After,

it computes C1 = αr′

2 pk
(1)
do = αr

2 and

C2 = Σr′

2 pk
(2)
do = Σr

2. Then, by running
Share(p, r′, T), D provides a distribution
{Di}i∈LT

of r′, and for each i ∈ LT , it cal-

culates Cvi
= αdi

0 pk
(3)
do = αDi−skdo

0 and C ′
vi

=

(pkiα
−1
2)Dipkdo,i = (pkiα

−1
2)Di−skdo . Also, it

runs Sign(PKsign, IDdo, SKdo, (C
′
do||cdo)) and

generates a signature σdo. Afterward, D com-
putes k = H(σ(α, α)−w) and runs Commit(k),
Enc(k, ddo), Enc(k,M), and Mac(k, Cdo) to
produce (cdo, ddo), C

′
do, Cdo, and tdo. Then, for

every j = 1, ...,m, it chooses a value Wj ∈ Zp

uniformly at random, and considers that, for
an unknown value rj ∈ Zp, Wj = ωj − z + rj .

It sets W ′
j = Σ

Wj

1 Σ
−ωj

1 σ(α, α)w. Finally, the
distinguisher D returns a searchable ciphertext
SCT ∗

T and PKdo to A where,

SCTT = (T , Cdo, C
′
do, C1, C2, cdo, tdo, σdo,

{Wj}
m
j=1, {W

′
j}

m
j=1, {Cvi}i∈LT

, {C ′
i}i∈LT

).

• Phase 2: A submits more queries to the oracles,
and D answers them the same as in Phase 1.

• Guess: A returns a guess b′ ∈ {0, 1} of b.

When D receives b′ from A, it verifies
whether b = b′ or not. If so, D returns 1 mean-
ing w = xyz. If not, it outputs 0, which means
w is a uniform element of Zp. We see that if
w = xyz, then k = H(σ(α, α)−xyz) = H(Σ−z

1),

W ′
j = Σ

Wj

1 Σ
−ωj

1 σ(α, α)xyz = Σ
ωj−z+rj
1 Σ

−ωj

1 Σz
1,

and pk
(2)
do

= σ(α, α)−xyzσ(αy, αx−s)r
′

σ(αy, αz)s =

σ(αy, αx−s)skdo = σ(β0, α
−1
1)−skdo = Σ−skdo

2 .
Therefore, the given responses to the adversary D
are valid when w = xyz. Consequently, we have
Pr(A(n, p,G1, G2, σ, α, α

x, αy, αz , σ(α, α)xyz) =
1) ≥ AdvA,Π(n) + 1/2. On the other hand,
when w is a random value, we see that
Pr(A(n, p,G1, G2, σ, α, α

x, αy, αz , σ(α, α)w) = 1) =
1/2. Therefore, Pr(A(n, p,G1, G2, σ, α, α

x, αy, αz , σ(
α, α)xyz) = 1)−Pr(A(n, p,G1, G2, σ, α, α

x, αy, αz , σ(
α, α)w) = 1) ≥ AdvA,Π(n). Moreover, according to
the DBDH assumption, the left hand side of the
above inequality, and thus AdvA,Π(n), is a negligible
function in n. It proves the theorem.

8.2 Unforgeability

In this section, we show that our search results
verification approach achieves unforgeability. That
means, for a token TKdu and a threshold R, a
response Re issued by the CS passes the verification
test only if for a searchable ciphertext SCTT =
(T , Cdo, C

′
do, C1, C2, cdo, tdo, σdo, {Wj}

m
j=1, {W

′
j}

m
j=1,

{Cvi}j ∈LT
, {C′

i}i ∈ LT
) and T K = Search(PK,

TKdu, IDdu, SCTT ,R) ̸=⊥, Re is equal to

16

(C′
do, cdo, σdo, T K).

Theorem 2. If the digital signature and the com-

mitment schemes utilized in our FGDM scheme are

secure, then the verification process achieves unforge-

ability.

Proof. Let the VFN receives a search token TKdu

and a threshold value R form a DU and outputs
a tuple Re = (C′

do, cdo, σdo,
¯T K) such that ¯T K

has not been generated by running the algorithm
Search(PK, TKdu, IDdu, SCTT ,R), for a searchable
ciphertext SCTT . Let us assume, by contradiction,
that we have Verify(PK,Re, IDdo, IDvfn,K) = 1,
where K is the private-key associated with TKdu.
Since Verify(PK,Re, IDdo, IDvfn,K) = 1, the sig-
nature σdo is valid. Therefore, according to the
assumption that says the utilized digital signature
scheme is secure, one concludes that C′

do, cdo, and σdo
are components of an outsourced searchable cipher-

text SCTT . Suppose that k̂ = H(¯T K
−1

ΣK
1), and

k is the privet-key associated with SCTT . Since the
VFN does not perform the search algorithm cor-
rectly, we can assume that k ̸= k̂, and thus ddo =
Dec(k, C′

do) ̸= Dec(k̂, C′
do) = d̂do. On the other

hand, as Verify(PK,Re, IDdo, IDvfn,K) = 1, we

have Open(cdo, d̂do) = Open(cdo, ddo) = 1. Thus, if
the DU cooperates with the VFN and has the ddo,
then it can compromise the binding security of the
commitment scheme in the real-time [40]. This goes
against the assumption that the commitment scheme
is secure.

9 Performance analysis

To evaluate the performance of our FGDM scheme in
terms of execution time, communication overhead, and
storage cost, we compare its efficiency with schemes
[38, 41, 42]. We have found the results of these com-
parisons through real implementation of aforemen-
tioned schemes and calculating their asymptomatic
complexity. As for the actual performance analysis,
we have implemented the aforementioned schemes
using the actual Traffic Violations dataset provided
by Data.gov. This dataset, which is updated daily,
contains about 800MB of traffic violation informa-
tion from all electronic traffic violations issued in the
Montgomery County of Maryland. We performed the
implementation using the python Pairing-Based Cryp-
tography (pyPBC) [43] and hashlib [44] libraries on
an Ubuntu 20.04 laptop equipped with an Intel Core
i5 Processor 2.4 GHz and 4 GB RAM In addition,
we have used type A pairings for these implementa-
tions. Type A pairings are constructed on the curve
y2 = x3 + x over the finite field Fq [45], for a prime

number q such that q = 3 mod 4. As we men-
tioned before, the G algorithm, described in Section
3.3, takes a security parameter n and outputs a tuple
(p,G1, G2, σ). In Type A pairings, G1 and G2 are
p-order subgroups of Fq and Fq2 , respectively [45].
In this section, we consider that the length of p and
q are 160-bit and 512-bit, respectively. Also, in this
implementation, we use 256-bit SHA-3 algorithm as
the hash function, the ID-based signature scheme
presented in [46], AES (Advanced Encryption Stan-
dard) symmetric encryption, a commitment scheme
Πcom = (Commit,Open), and a MAC scheme
Πmac = (Mac,Vrfymac), where Πcom and Πmac are
described below. Moreover, it is easy to check that
Πcom is a secure commitment scheme in the random
oracle model, and Theorem 4.6 and Exercise 5.11 of
[47], shows that Πmac is secure in the random oracle
model.

- Commit(M,H): This algorithm takes the
SHA-3 hash function H and a message M as
inputs. Then, for a random element k of Zp, it
computes a commitment value c = H(k || M)
and an opening value d = (k,M).

- Open(M,H, c, d): On input a message M , the
SHA-3 hash function H, and commitment and
opening values, c and d = (k,M), if c =
H(k || M), the algorithm outputs 1. Otherwise,
it outputs 0.

- Mac(M,H, k): Given a message M , the SHA-3
hash function H, and a symmetric-key k, this
algorithm returns a tag t = H(k || M).

- Vrfymac(M, t, k): For a message M , a tag t, and
a symmetric-key k, it outputs 1, if t = H(k ||
M), and 0 otherwise.

9.1 Execution time

In Table 4 we have shown our asymptotic analysis.
This table presents different computational overhead
incurred using the FGDM approach and the schemes
proposed in [38, 41, 42]. In this table, we consid-
ered the time consumption of pairing operation, Tp,
exponential operation in G1, Te1 , exponential oper-
ation in G2, Te2 , random selection of an element
from Zp, TrandZ

, a symmetric encryption and decryp-
tion, Tenc and Tdec, signature verification, Tvrfy, and
commitment verification time, Topen.

Fig. 6 presents our experimental results. In this
implementation, we assumed that the number of data
files to be encrypted ranged between 100 and 600,
the number of search results to be decrypted ranged
between 10 and 60 and the number of attributes
ranged from 25 to 150. Parts (a), (b), and (c) of Fig.
6 compares the actual performance of key generation

17

algorithms in our FGDM and the schemes presented
in [38, 41, 42] (i.e. SV-KSDS, VFKSM, LFGS). As for
the computational costs of key generation, the VFNs
and DUs in FGDM system have much less compu-
tational burden than those in [38, 41, 42] schemes.
This is because the theoretical costs of VFNKeyGen

and DUKeyGen algorithms in aforementioned three
schemes are (|Att| + 5)Te1 + Te2 + 2TrandZ

, 4Te1 +
Te2 + 2TrandZ

, (2|Att|+ 3)Te1 + 2Te2 + 2|Att|TrandZ
,

respectively. Part (d) of Fig. 6 compares the exe-
cution time of search token generation algorithm in
mentioned schemes. As for the computational costs
of token generation, DUs in our system have a much
lower computational overhead than the [41] and [42]
schemes. Indeed, from table 4, the number of expo-
nential operations in these schemes grows with 2|Att|,
while in our FGDM it grows with |Att|, where |Att|
is the number of DU’s attributes. However, as we see
in this bar chart, in our FGDM, the token generation
time overhead is relatively more than the [38] scheme.
It appears that minimizing the token generation time
overhead in FGDM is a feasible and compelling prob-
lem. Parts (e)-(j) of Fig. 6 illustrate the encryption
time of our FGDM and other three schemes for various
number of attributes. Again, we see that our FGDM
is significantly more efficient than the [41] and [42]
schemes, specifically when the number of attributes
increases. Parts (h) and (i) compare our FGDM with
other schemes in terms of search operation and decryp-
tion execution time, respectively. It can be observed
that FGDM significantly decreases the amount of time
required for search operations.

9.2 Storage cost and communication

overhead

In comparison to the existing methods, our FGDM
decreases communication overhead and storage
expenses. This fact can be derived from the asymp-
totic analysis given in Table 5 and Fig. 7. Parts (a) ,
(b), and (c) of Fig. 7 present our experimental results
in measuring keys length. In Part (c), we see that VFN
Key length in our FGDM is incredibly lower than the
length of a VFN key in other three schemes, specifi-
cally [42]. From Table 5, we notice that size of VFN key
in schemes increases with the number of attributes,
that of FGDM is just influenced by a variable of length
lG1

. Also, part (d) of the figure and Table 5 show
the ciphertext length produced in the encryption pro-
cess. We see that our FGDM effectively reduces the
ciphertext length compare with [42] scheme.

10 Conclusion

In this paper, we designed a novel fine-grained data
management (FGDM) approach for VFC-assisted IoV
systems. We have shown that our FGDM provides
control over both retrieval and access to outsourced
data in fine-grained ways. We also demonstrated that
it offers highly efficient approaches for the accuracy
verification of operations performed by VFNs. In
designing this system, we considered a three-player
game between system entities to capture their inter-
actions. We formulate the management problems as
a Nash equilibrium problem and show the existence
of an equilibrium. Using the NE, and players’ utility
functions, we proved that system entities, especially
VFNs, not only have the tendency to take part in
the system, but they also are loyal to the system
and provide accurate services. We also demonstrated
the deployment of our FGDM in a VFC-based IoV
environment. Our FGDM was proven to achieve indis-
tinguishability and unforgeability in the standard
model. Moreover, an evaluation of its functionality
and performance revealed that our FGDM is both
highly effective and practical in actual applications.
Furthermore, we demonstrated how incorporating a
keyword threshold can enhance the adaptability of
multi-keyword search protocols by enabling accurate
query input from users.

11 Declarations

Ethics Approval Not applicable.
Conflict of Interest The authors declare that they
have no conflict of interest.
Data Availability All data generated or analyzed
during this study are included in this published arti-
cle.
Author Contribution Seyedi and Ali conceived,
designed the scheme, proved the security, analyzed
the data, performed the experiments, and wrote the
paper Liu. and Rahmati reviewed and edited the
manuscript.
Funding Not applicable.
Consent to publish Not applicable.

Appendix A Correctness
proof

Definition 5. Given a security parameter n, two

universal attribute sets U and U, an attribute set

Attdu, an access tree T , two keyword sets {ωj}
m
j=1 and

{ω̂j}
m
j=1, a threshold value R, and identifiers IDdo

and IDdu, our FGDM is said to be correct if for

18

Table 4 Comparison of computation overhead.

SV-KSDS[41] VFKSM[38] LFGS[42] FGDM

DOKey.Gen − TrandZ
+ Te1 (|Att|+ 1)Te1 + 2Te2 + (|Att|+ 3)TrandZ

(|Att|+ 3)Te1 + TrandZ

VFNKey.Gen (|Att|+ 5)Te1 + Te2 + 2TrandZ
4Te1 + Te2 + 2TrandZ

(2|Att|+ 3)Te1 + 2Te2 + 2|Att|TrandZ
2Te1

DUKey.Gen (|Att|+ 6)Te1 + 2Te2 + 2TrandZ
(|Att|+ 5)Te1 + Te2 + 2TrandZ

(|Att|+ 1)Te1 + 2Te2 + (|Att|+ 3)TrandZ
(|Att|+ 1)Te1

Enc
(4|LT |+ 7)Te1 + (2|LT |+ 4)Te2

+NTp + 2TrandZ

(|LT |+ 2)Te1 + Te2 + TrandZ
+NTenc (|LT |+ 5)Te1 + (|LT |+ 2)TrandZ

+NTenc (2|LT |+ 2)Te1 + TrandZ
+NTenc

Token.Gen (|Att|+ 2)(Te1 + Te2) + TrandZ
3Te1 + 3Te2 + 2TrandZ

(2|Att|+ 1)Te1 + TrandZ
(|Att|+ 5)Te1 + 2TrandZ

Search |Att|Te2 + (2|Att|+ 1)TP (2|Att|+ 1)Te1 + 2Te2 + 3TP 2Te1 + 2Te2 + (3|Att|+ 1)TP Te2 + (2|Att|+ 1)TP

Vrfy
⊙

(2Nf + 1)Te1 + 2TP

⊙

Tvrfy + Topen + Te1

Dec 4Te1 + 6Te2 + 6TP 2Te2 + TP + Tdec 2Te1 + 3Te2 + 3TP + Tdec TvrfyMAC
+ Tdec

Notes. |Att|: Number of attributes, Nf : Number of retrieved files in the scheme [38], Tvrfy: A signature verification time, Topen: A commitment

verification time; ⊙: No operations.

(a). DOKeyGen. (b). DUKeyGen. (c). VFNKeyGen. (d). TokenGen.

(e). Encryption (|Att| = 25). (f). Encryption (|Att| = 50). (g). Encryption (|Att| = 75) (h). Encryption (|Att| = 100)

(e). Encryption (|Att| = 125). (f). Encryption (|Att| = 150). (g). Search. (h). Decryption.

Fig. 6 Execution time.

Table 5 Comparison of storage cost.

SV-KSDS[41] VFKSM[38] LFGS[42] FGDM

DOKeyGen − lG1 + lZp
(|LT |+ 1)lG1 + 2lG2 + lZp

(|LT |+ 2)lG1 + lG2 + lZp

VFNKeyGen (|LT |+ 3)lG1
(|LT |+ 3)lG1

+ lZp
(2|LT |+ 3)lG1

+ lG2
lG1

DUKeyGen (|LT |+ 3)lG1
2lG1

+ lZp
(2|LT |+ 3)lG1

+ lG2
|LT |lG1

Enc (m(2|LT |+ 1) + 5)lG1
+ 2lG2

(|LT |+m+ 3)lG1
+ 2lG2

+ lenc (2|LT |+ 5)lG1
+ 2lG2

+ |LT |lZp
+ lenc

(2|LT |+ 1)lG1
+ (m+ 1)lG2

+mlZp
+ lc+

lm + ls + lenc

Notes. lenc: Length of a ciphertext generated by the symmetric encryption algorithm, |LT |: The number of leaf nodes in an access tree T , lG1 :

Bit-length T , lG1 : Bit-length of elements in G1, lG1 : Bit-length of elements in G2; lZp
: Bit-length of elements in Zp; m: The number of keywords;

lc: Length of a commitment; lm: Length of a tag generated by the MAC algorithm; ls: Length of a signature.

each file F we have DU.Dec(PK,K, T K, Cdo, tdo) =
F if and only if Attdu satisfies T and |{ωj}

m
j=1 ∩

{ω̂j}
m
j=1| ≥ R.

Theorem 3. The proposed FGDM scheme is correct.

Proof. Assume the presented parameters in Definition
5. First we have to show that Token Decryption is
correct.

Bva,vfn =
σ(Ca, SKa,vfn)

σ(Ca,Γβ4).σ(C′
a, IDvfn)

19

(a). DOKey size. (b). DUKey size. (c). VFNKey size. (d). Ciphertext size.

Fig. 7 Storage costs.

=
σ(α

qva
0 ,Γβ3ID

s′a
vfn

)

σ(Ca,Γβ4).σ(C′
a, IDvfn)

=
σ(α

qva
0 , β3)σ(α

qva
0 ,Γβ−t

0 βt
0ID

s′a
vfn

)

σ(Ca,Γβ4).σ(C′
a, IDvfn)

=
σ(α

qva
0 , β3)σ(Ca,Γβ4)σ(α

qva
0 , β

−t
0)σ(α

qva
0 , ID

s′a
vfn

)

σ(Ca,Γβ4).σ(C′
a, IDvfn)

=
σ(α

qva
0 , β3)σ(α

qva
0 , β

−t
0)σ(α

qva
0 , ID

s′a
vfn

)

σ(C′
a, IDvfn)

=
σ(α

qva
0 , β3)σ(α

qva
0 , β

−t
0)σ((α2α

−1
2 α

s′a
0)qva , IDvfn)

σ(C′
a, IDvfn)

=
σ(α

qva
0 , β3)σ(α

qva
0 , β

−t
0)σ(C′

a, IDvfn)σ(α
qva
2 , IDvfn)

σ(C′
a, IDvfn)

= σ(β0, α1)
qva .σ(β

−1
0 , β1)

qva .σ(α2, IDvfn)
qva

= Σ
qva
1 .Σ

qva
2 .σ(α2, IDvfn)

qva .

This proves Equation 1. Moreover,

TKdu =
V

BR,fn

V ′.σ(C,IDvfn)

=
TKduΣ

k
1

Σk
1V ′σ(C,IDvfn)

V ′σ(C,IDvfn)

= TKdu.

This proves Equation 3.

Now, let F be an arbitrary file. In the following, we
show that DU.Dec(PK,K, T K, Cdo, tdo) = F if and
only if Attdu satisfies T and |{ωj}

m
j=1∩{ω̂j}

m
j=1| ≥ R.

We first show that Equation 4 holds:

La =
σ(Cvaλ1, λdu,a)

σ(Cvaλ1, β2).σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu).σ(α0, α2)λ5

=
σ(α

Da−skdo+K

0 , αs
1ΓID

sa
du

αK
′

2)

σ(Cvaλ1, β2).σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu).σ(α0, α2)λ5

=
σ(α

Da−skdo+K

0 , αs
1Γβs

1β
−s
1 ID

sa
du

αK
′

2)

σ(Cvaλ1, β2).σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu).σ(α0, α2)λ5

=
σ(α

Da−skdo+K

0 , αs
1β2ID

sa
du

αK
′

2)

σ(α
Da−skdo+K

0 , β2).σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu).σ(α0, α2)λ5

=
σ(α

Da−skdo+K

0 , αs
1β

−s
1 ID

sa
du

)σ(α
Da−skdo+K

0 , αK
′

2)

σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu).σ(α0, α2)KK′

=
σ(α

Da−skdo+K

0 , αs
1β

−s
1 ID

sa
du

)σ(α
Da−skdo
0 , αK

′

2)

σ(pkaα
−1
2 , λ3).σ(C′

va
, IDdu)

=
(σ(α0, αs

1β
−s
1)σ(pkaα

−1
2 α2, IDdu))Da−skdo+Kσ(α

Da−skdo
0 , αK

′

2)

σ(pkaα
−1
2 , IDK

du
).σ((pkaα

−1
2)Da−skdo,IDdu)

= (σ(β0, α1)σ(β
−1
0 , β1)σ(α2, IDdu))

Da−skdo+K
σ(α

Da−skdo
0 , α

K
′

2)

= (Σ1.Σ2.σ(α2, IDdu))
Da−skdo+K

.σ(α
K

′

0 , α2)
Da−skdo .

Now, according to the definition of the Combine

algorithm [39], the output of Combine({La}a∈S , T)
is equal to

L = (Σ1.Σ2.σ(α2, IDdu))
r′−skdo+K

.σ(λ4, α2)
r′−skdo

= (Σ1.Σ2.σ(α2, IDdu))
r+K

.σ(α
K

′

0 , α2)
r
.

if and only if Attdu satisfies T . Moreover,

T K = LC
−1
2 .σ(β0, λ2).σ(C1, IDduλ4)

−1
.σ(α2, λ3)

−1

=
Σr+K

1 Σr+K

2 .σ(α2, IDdu)
r+K.σ(αK

′

0 , α2)
r.C

−1
2 σ(β0, λ2)

σ(C1, IDduλ4).σ(α2, λ3)

=
Σr+K

1 Σr+K

2 .σ(α2, IDdu)
r+K.σ(αK

′

0 , α2)
r.C

−1
2 σ(β0, λ2)

σ(αr
2, IDduα

K′

0).σ(α2, ID
K
du

)

=
Σr+K

1 Σr+K

2 .σ(α2, IDdu)
r+K.σ(αK

′

0 , α2)
r.C

−1
2 σ(β0, λ2)

σ(αr
2, IDdu).σ(αr

2, α
K′

0).σ(α2, ID
K
du

)

=
Σr+K

1 Σr+K

2 .σ(α2, IDdu)
r+K.σ(αK

′

0 , α2)
r.C

−1
2 σ(β0, λ2)

σ(α2, IDdu)r+K.σ(αr
2, α

K′

0)

= Σ
r+K

1 Σ
r+K

2 C
−1
2 σ(β0, λ2) = Σ

r+K

1 Σ
r+K

2 Σ
−r
2 σ(β0, β

K

1)

= Σ
r+K

1 Σ
K

2 .σ(β
−1
0 , β1)

−K
= Σ

r+K

1 .

Now, we see that T K.Σ
Wj

1 .W ′
j =

Σr+K
1 .Σ

ωj−r+rj
1 .Σ

−rj
1 = Σ

K+ωj

1 On the other hand,
for each ω, ω̂ ∈ Zp, we know that ω = ω̂ if and only

if ΣK+ω
1 = ΣK+ω̂

1 . Then, |{ωj}
m
j=1 ∩ {ω̂j}

l
j=1| =

|{H(T K.Σ
Wj

1 .W ′
j)}

m
j=1 ∩ {Ŵj}

l
j=1|. There-

fore, |{ωj}
m
j=1 ∩ {ω̂j}

l
j=1| ≥ R if and only if

|{H(T K.Σ
Wj

1 .W ′
j)}

m
j=1 ∩ {Ŵj}

l
j=1| ≥ R.

So, we proved that Search(PK, TKdu, IDdu, SCTT ,
R) produces a valid response Re = (C′

do, cdo, σdo, T K)
if and only if Attdu satisfies T , and |{ωj}

m
j=1 ∩

{ω̂j}
l
j=1| ≥ R. It proves the theorem as in this case

F = DU.Dec(PK,K, T K, Cdo, tdo).

References

[1] J. Contreras-Castillo, S. Zeadally, J. A.
Guerrero-Ibañez, Internet of vehicles: archi-
tecture, protocols, and security, IEEE inter-
net of things Journal 5 (5) (2017) 3701–3709.

20

[2] M. S. Rathore, M. Poongodi, P. Saurabh,
U. K. Lilhore, S. Bourouis, W. Alhakami,
J. Osamor, M. Hamdi, A novel trust-based
security and privacy model for internet of
vehicles using encryption and steganography,
Computers and Electrical Engineering 102
(2022) 108205.

[3] A. Hbaieb, S. Ayed, L. Chaari, A survey of
trust management in the internet of vehicles,
Computer Networks 203 (2022) 108558.

[4] J. Wang, K. Zhu, E. Hossain, Green internet
of vehicles (iov) in the 6g era: Toward sus-
tainable vehicular communications and net-
working, IEEE Transactions on Green Com-
munications and Networking 6 (1) (2021)
391–423.

[5] W. Mao, O. U. Akgul, A. Mehrabi, B. Cho,
Y. Xiao, A. Ylä-Jääski, Data-driven capacity
planning for vehicular fog computing, IEEE
Internet of Things Journal 9 (15) (2022)
13179–13194.

[6] A. M. A. Hamdi, F. K. Hussain, O. K. Hus-
sain, Task offloading in vehicular fog comput-
ing: State-of-the-art and open issues, Future
Generation Computer Systems (2022).

[7] M. Ali, M.-R. Sadeghi, X. Liu, Y. Miao, A. V.
Vasilakos, Verifiable online/offline multi-
keyword search for cloud-assisted industrial
internet of things, Journal of Information
Security and Applications 65 (2022) 103101.

[8] C. Tang, X. Wei, C. Zhu, Y. Wang, W. Jia,
Mobile vehicles as fog nodes for latency opti-
mization in smart cities, IEEE Transactions
on Vehicular Technology 69 (9) (2020) 9364–
9375.

[9] Z. Ning, J. Huang, X. Wang, Vehicular fog
computing: Enabling real-time traffic man-
agement for smart cities, IEEE Wireless
Communications 26 (1) (2019) 87–93.

[10] J. Feng, Z. Liu, C. Wu, Y. Ji, Ave:
Autonomous vehicular edge computing
framework with aco-based scheduling, IEEE
Transactions on Vehicular Technology
66 (12) (2017) 10660–10675.

[11] M. Shojafar, N. Cordeschi, E. Baccarelli,
Energy-efficient adaptive resource manage-
ment for real-time vehicular cloud services,
IEEE Transactions on Cloud computing 7 (1)
(2016) 196–209.

[12] X. Peng, K. Ota, M. Dong, Multiattribute-
based double auction toward resource alloca-
tion in vehicular fog computing, IEEE Inter-
net of Things Journal 7 (4) (2020) 3094–3103.

[13] S.-s. Lee, S. Lee, Resource allocation for
vehicular fog computing using reinforcement
learning combined with heuristic informa-
tion, IEEE Internet of Things Journal 7 (10)
(2020) 10450–10464.

[14] Q. Wu, H. Liu, R. Wang, P. Fan, Q. Fan,
Z. Li, Delay-sensitive task offloading in the
802.11 p-based vehicular fog computing sys-
tems, IEEE Internet of Things Journal 7 (1)
(2019) 773–785.

[15] X. Peng, K. Ota, M. Dong, Multiattribute-
based double auction toward resource alloca-
tion in vehicular fog computing, IEEE Inter-
net of Things Journal 7 (4) (2020) 3094–3103.

[16] Q. Chai, G. Gong, Verifiable symmetric
searchable encryption for semi-honest-but-
curious cloud servers, in: 2012 IEEE interna-
tional conference on communications (ICC),
IEEE, 2012, pp. 917–922.

[17] S. Benabbas, R. Gennaro, Y. Vahlis, Veri-
fiable delegation of computation over large
datasets, in: Advances in Cryptology–
CRYPTO 2011: 31st Annual Cryptology
Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings 31,
Springer, 2011, pp. 111–131.

[18] D. Fiore, R. Gennaro, Publicly verifiable del-
egation of large polynomials and matrix com-
putations, with applications, in: Proceedings
of the 2012 ACM conference on Computer
and communications security, 2012, pp. 501–
512.

[19] Q. Zheng, S. Xu, G. Ateniese, Vabks: Ver-
ifiable attribute-based keyword search over

21

outsourced encrypted data, in: IEEE INFO-
COM 2014-IEEE conference on computer
communications, IEEE, 2014, pp. 522–530.

[20] Y. Lu, J. Li, Lightweight public key authen-
ticated encryption with keyword search
against adaptively-chosen-targets adversaries
for mobile devices, IEEE Transactions on
Mobile Computing 21 (12) (2021) 4397–4409.

[21] Y. Miao, R. H. Deng, K.-K. R. Choo,
X. Liu, J. Ning, H. Li, Optimized verifi-
able fine-grained keyword search in dynamic
multi-owner settings, IEEE Transactions on
Dependable and Secure Computing 18 (4)
(2019) 1804–1820.

[22] C. Tang, C. Zhu, X. Wei, H. Wu, Q. Li, J. J.
Rodrigues, Intelligent resource allocation for
utility optimization in rsu-empowered vehic-
ular network, IEEE Access 8 (2020) 94453–
94462.

[23] Y. Xiao, C. Zhu, Vehicular fog computing:
Vision and challenges, in: 2017 IEEE Inter-
national Conference on Pervasive Computing
and Communications Workshops (PerCom
Workshops), IEEE, 2017, pp. 6–9.

[24] J. Ni, A. Zhang, X. Lin, X. S. Shen, Security,
privacy, and fairness in fog-based vehicular
crowdsensing, IEEE Communications Maga-
zine 55 (6) (2017) 146–152.

[25] C. Zhu, G. Pastor, Y. Xiao, A. Yla-
jaaski, Vehicular fog computing for video
crowdsourcing: Applications, feasibility, and
challenges, IEEE Communications Magazine
56 (10) (2018) 58–63.

[26] C. Tang, C. Zhu, X. Wei, W. Chen, J. J.
Rodrigues, Rsu-empowered resource pooling
for task scheduling in vehicular fog comput-
ing, in: 2020 International Wireless Commu-
nications and Mobile Computing (IWCMC),
IEEE, 2020, pp. 1758–1763.

[27] C. Tang, S. Xia, Q. Li, W. Chen, W. Fang,
Resource pooling in vehicular fog computing,
Journal of Cloud Computing 10 (2021) 1–14.

[28] A. Sahai, B. Waters, Fuzzy identity-based
encryption, in: Advances in Cryptology–
EUROCRYPT 2005: 24th Annual Interna-
tional Conference on the Theory and Appli-
cations of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005. Proceedings 24,
Springer, 2005, pp. 457–473.

[29] J. Bethencourt, A. Sahai, B. Waters,
Ciphertext-policy attribute-based encryp-
tion, in: 2007 IEEE symposium on security
and privacy (SP’07), IEEE, 2007, pp. 321–
334.

[30] V. Goyal, O. Pandey, A. Sahai, B. Waters,
Attribute-based encryption for fine-grained
access control of encrypted data, in: Proceed-
ings of the 13th ACM conference on Com-
puter and communications security, 2006, pp.
89–98.

[31] H. Nasiraee, M. Ashouri-Talouki, Anonymous
decentralized attribute-based access control
for cloud-assisted iot, Future Generation
Computer Systems 110 (2020) 45–56.

[32] M. Ali, J. Mohajeri, M.-R. Sadeghi, X. Liu, A
fully distributed hierarchical attribute-based
encryption scheme, Theoretical Computer
Science 815 (2020) 25–46.

[33] L.-Y. Yeh, P.-Y. Chiang, Y.-L. Tsai, J.-
L. Huang, Cloud-based fine-grained health
information access control framework for
lightweightiot devices with dynamic auditing
andattribute revocation, IEEE transactions
on cloud computing 6 (2) (2015) 532–544.

[34] J. Li, S. Wang, Y. Li, H. Wang, H. Wang,
H. Wang, J. Chen, Z. You, An efficient
attribute-based encryption scheme with pol-
icy update and file update in cloud comput-
ing, IEEE Transactions on Industrial Infor-
matics 15 (12) (2019) 6500–6509.

[35] S. Lin, R. Zhang, H. Ma, M. Wang, Revisit-
ing attribute-based encryption with verifiable
outsourced decryption, IEEE Transactions on
Information Forensics and Security 10 (10)
(2015) 2119–2130.

22

[36] W. Sun, S. Yu, W. Lou, Y. T. Hou, H. Li, Pro-
tecting your right: Verifiable attribute-based
keyword search with fine-grained owner-
enforced search authorization in the cloud,
IEEE Transactions on Parallel and Dis-
tributed Systems 27 (4) (2014) 1187–1198.

[37] Y. Miao, X. Liu, K.-K. R. Choo, R. H.
Deng, J. Li, H. Li, J. Ma, Privacy-preserving
attribute-based keyword search in shared
multi-owner setting, IEEE Transactions on
Dependable and Secure Computing 18 (3)
(2021) 1080–1094.

[38] Y. Miao, R. H. Deng, K.-K. R. Choo,
X. Liu, J. Ning, H. Li, Optimized verifi-
able fine-grained keyword search in dynamic
multi-owner settings, IEEE Transactions on
Dependable and Secure Computing 18 (4)
(2021) 1804–1820.

[39] M. Ali, J. Mohajeri, M.-R. Sadeghi, X. Liu,
Attribute-based fine-grained access control
for outscored private set intersection com-
putation, Information Sciences 536 (2020)
222–243.

[40] J. B. Damgaard, Ivanand Nielsen, Perfect
hiding and perfect binding universally com-
posable commitment schemes with constant
expansion factor, Springer Berlin Heidelberg,
2002.

[41] K. Gu, W. Zhang, X. Li, W. Jia, Self-
verifiable attribute-based keyword search
scheme for distributed data storage in fog
computing with fast decryption, IEEE Trans-
actions on Network and Service Management
19 (1) (2022) 271–288.

[42] Y. Miao, J. Ma, X. Liu, J. Weng, H. Li,
H. Li, Lightweight fine-grained search over
encrypted data in fog computing, IEEE
Transactions on Services Computing 12 (5)
(2019) 772–785.

[43] The python pairing based
cryptography library, online:
https://github.com/debatem1/pypbc
(accessed on 10 december 2019).

[44] Secure hashes and message digests library,
online: https://docs.python.org/3/library-
hashlib.html# module-hashlib (accessed on
10 december 2019).

[45] B. Lynn, Pbc library manual 0.5. 11 (2006).

[46] K.-A. Shim, An id-based aggregate signature
scheme with constant pairing computations,
Journal of Systems and Software 83 (10)
(2010) 1873–1880.

[47] J. Katz, Y. Lindell, Introduction to modern
cryptography, CRC press, 2014.

23

	Introduction
	Related Work
	Vehicular fog computing
	Attribute-based cryptographic systems

	Preliminaries
	Bilinear map
	Access structure
	DBDH assumption
	Commitment scheme
	Strategic Game and Nash Equilibrium

	Problem formulation
	System Model
	Threat Model and Security Requirements

	Proposed FGDM in IoV environment
	Definition of proposed FGDM scheme
	System overview

	KWSOP Game
	Game overview
	Game property

	FGDM Construction
	Security analysis
	Indistinguishability
	Unforgeability

	Performance analysis
	Execution time
	Storage cost and communication overhead

	Conclusion
	Declarations
	Correctness proof

