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Abstract

We introduce mutually unbiased complex Hadamard (MUCH ) matrices and show that
the number ofMUCH matrices of order 2n, n odd, is at most 2 and the bound is attained
for n = 1,5,9. Furthermore, we prove that certain pairs of mutually unbiased complex
Hadamard matrices of orderm can be used to construct pairs of unbiased real Hadamard
matrices of order 2m. As a consequence we generate a new pair of unbiased real Hadamard
matrices of order 36.
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1 Preliminaries

A complex Hadamard matrix is a matrixH of ordern with entries in{−1,1, i,−i} and orthog-
onal rows in the usual complex inner product onCn. If the entries of the matrix consist of only
±1, we call the matrix a real Hadamard matrix or a Hadamard matrix for short. Our main refer-
ences for complex and real Hadamard matrices are [7, 8]. Two complex Hadamard matricesH
andK of order 2n are calledunbiased if HK∗ = L, whereK∗ denotes the Hermitian transpose
of K and all the entries of the matrixL are of the absolute value

√
2n. In this case, it follows

that 2n = a2+ b2, wherea, b are nonnegative integers. While there has been a lot of interest
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in the class of mutually unbiased unimodular complex Hadamard matrices, where the entries of
the matrices consist of unimodular complex numbers, see [2,3, 9] for details, it is only recently
that some interest has been shown in the existence and applications of mutually unbiased real
Hadamard matrices, see [5]. Our aim in this paper is to concentrate on matrices of order 2n,
n odd, with entries in{−1,1, i,−i}. We will find an upper bound for the number of mutually
unbiased complex Hadamard matrices of order 2n, n odd, denoted|MUCH (2n)|, in the next
section. We also report on the outcome of a computer search for maximal classes ofMUCH
matrices of orders 10 and 18. Section 3 is devoted to the studyof unbiased real Hadamard ma-
trices. We will briefly discuss mutually unbiased bases in the last section. In the presentation of
matrices we usej to denote−i and− to denote−1.

2 Unbiased complex Hadamard matrices

Dealing with complex matrices, i.e. matrices with entries in {−1,1, i,−i}, is quite different
from working with the unimodular complex matrices as the powerful character theory is no
longer applicable. We begin this section with a well known, but important property of complex
Hadamard matrices.

Lemma 1. Let H = [hi j] be a complex Hadamard matrix of order n for which the absolute value
of the row sums are all identical and equal to r . Then r =

√
n.

Proof. Forebeing the all ones vector, we have(He)∗(He) = e∗H∗He= e∗nIe= ne∗e= n2. So,
∑n

i=1 |ri|2 = n2, whereri = ∑n
j=1 hi j, 1≤ i ≤ n. It follows thatr =

√
n.

A complex Hadamard matrix of ordern for which the absolute value of the row sums are
all equal to

√
n is calledrow regular. It follows from Lemma 1 that for a row regular complex

Hadamard matrixH = [hk j] of order 2n, n odd, if ∑2n
j=1hk j = a+ ib, for somek, 1≤ k ≤ 2n,

thena2+b2 = 2n and so both|a| and|b| are odd integers.

Lemma 2. There is no pair of unbiased row regular complex Hadamard matrices of order 2n,
n odd.

Proof. Suppose on the contrary that there is a pair of row regular complex Hadamard matrices
H andK of order 2n such thatHK∗ = L, where the entries ofL are of absolute value

√
2n. Let

J be the matrix of all one entries of order 2n. Then the matrix

1
1+ i

(H + J)
1

1+ i
(K∗+ J)

is a complex integer matrix (i.e. all entries of the matrix consist of Gaussian integers). To
see this note that the entries of both matrices1

1+i(H + J) and 1
1+i(K

∗+ J) belong to the set
{0,1,−i,1− i}. Observing that

1
1+ i

(H + J)
1

1+ i
(K∗+ J) =

−i
2
(HK∗+HJ + JK∗+2nJ)
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and that all the entries of the matricesHK∗, HJ andJK∗ consist of numbers of the formx+ iy,
where both|x| and|y| are odd integers, we get a contradiction.

Note that in the above proof we only use the fact that all the entries of the matricesHK∗,
HJ andJK∗ consist of numbers of the formx+ iy, where both|x| and|y| are odd integers. So
if there are two complex Hadamard matricesH, K of order 2n, n odd, for which the row sums
of H andK are all of the formx+ iy, where both|x| and|y| are odd integers, then none of the
entries ofHK∗ are of this form. Consequently, suchH,K can not be unbiased, for the entries of
HK∗ = [Hi j], |Li j|2 = 2n, which must be a sum of two odd squares.

Theorem 3. For any odd integer n, |MUCH (2n)| ≤ 2.

Proof. Suppose on the contrary that there are more than twoMUCH matrices of order 2n. By
multiplying the columns of all matrices by appropriate numbers we can make the first row of
one of the matrices to be all equal to one. The new matrices form a set ofMUCH matrices
which contain at least two row regular Hadamard matrices of order 2n, contradicting Lemma 1
and thus the result follows.

Example 4. Let

H =

(

1 1
1 −

)

, K =

(

1 i
i 1

)

.

Then

HK∗ =
(

1− i 1− i
i+1 −i−1

)

.

This shows the inequality in the Theorem 3 is sharp for n = 1.

We have conducted a computer search and found many maximal sets of MUCH matrices
of orders 10 and 18. One representative from each of these pairs of matrices is listed below in
Tables 1 and 2.

Table 1: A pairH, K of unbiased complex Hadamard matrices of order 10

































1 1 1 1 1 1 1 1 1 1
1 1−−− i j 1−1
1−1−− j− i 1 1
1−−1− j 1 1 i −
1−−−1 i 1−1 j
1 j i i j− i j j i
1 i −1 1 j−−−1
1 1 j 1− i −−1−
1−1 j 1 i −1−−
1 1 1− i j 1−−−

































,

































j−−1 1 1 1 j i 1
j 1 1 1 i − j 1 i j
1 j i j 1−1 i 1 i
1 i j 1 j j−1 1 i
i 1− i j i 1 1 1 j
i 1 i j 1 1−1−1
1 i 1 1 1 i i − j j
− j 1 1−1 i i 1 1
1 1 j− i 1 j−1 1
−1 1 i 1 j 1 j j i

































3



Table 2: A pairH, K of unbiased complex Hadamard matrices of order 18

































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1− j j i j i j j j j i i i j i i i
1 j− j i i i i j i j i j j i i j j
1 j j− i i j i i j i i j i j j j i
1 i i i − j i i j j i i i j j j j j
1 j i i j− i i i j j j j j j i i i
1 i i j i i − j j j i j j j i j i i
1 j i i i i j− j i j j i i j j i j
1 j j i j i j j− j i i i j i i i j
1 j i j j j j i j− i j i i i i j i
1 j j i i j i j i i − j i j i j j i
1 i i i i j j j i j j− j i i i j j
1 i j j i j j i i i i j− j j i i j
1 i j i j j j i j i j i j− i j i i
1 j i j j j i j i i i i j i − j i j
1 i i j j i j j i i j i i j j− j i
1 i j j j i i i i j j j i i i j− j
1 i j i j i i j j i i j j i j i j−

































































,

































































1 i i j j j j i i j−1 j 1 1 j 1−
1 i i j i j i j− i i 1 1−1 i j 1
1 i i i i i 1 1 j− j i j 1 j 1− i
1 j i i i 1 j i i 1 1 1 i j− i j−
1 j i − j j 1 j j 1 1− i j 1 j i i
1 i j−− i j j 1 i j j 1 j i 1 1 j
1 i j 1 1 i i − i j i − i j j 1 1 i
j−1 i j 1 i i 1 i i i j j 1 i i j
i 1 1 j i 1 i i j j j j 1 j j− i j
1 j 1 j j i −1 j 1− i i i j 1 j j
i − j i 1 j j i j i i j 1 1 j j j 1
1 j 1 1− i i i − i 1 j j i i j 1 i
j 1 j j i − j i j 1 i i 1 1 i i i i
1 j−1−1 j j 1 j i j j i j i i 1
1 1 j i j j i − j j j 1−1 i i j 1
1 1 j i i j−1 i −1 i i i 1 j i j
i j 1 1 i −1 j 1 j i i j j i j j j
j i i i 1 i 1 1 j j i j i i i −1 j

































































We believe that the upper bound in Theorem 3 is sharp for everyodd integern for which 2n
is the order of a row regular complex Hadamard matrix. The following conjecture includes this
and a conjecture regarding the existence of row regular complex Hadamard matrices.

Conjecture 5. |MUCH (2n)|= 2 for all odd integers n, where 2n is a sum of two squares.

The existence of row regular Hadamard matrix is a necessary condition to have twoMUCH ’s
(see the proof of Theorem 3). For matrices of size 2n, n odd, the existence of a row regular
Hadamard matrix is, in turn, conditioned by existence of integersa,b such that 2n = a2+ b2

(see lemma 1).

3 Unbiased real Hadamard matrices

Two Hadamard matricesH, K of ordern are called unbiased, ifHKt = L, where the absolute
values of all entries ofL are equal to

√
n. It follows thatL=

√
nA, whereA is a Hadamard matrix

of order n. It is only recently that interest has been shown in unbiasedHadamard matrices
[1, 9] and some new applications have emerged [5]. Pairs of unbiased Hadamard matrices
exist only in square orders, asL = HKt , with moduli of entries ofL equal to

√
n, is a matrix of

integers. It is known and easy to prove (as shown below) that the maximum number of mutually
unbiased Hadamard matrices of order 4n2, n odd, does not exceed 2. Although Lemma 13
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provides an upper bound for the number of what we call weakly unbiased Hadamard matrices
(see Definition. 7), unbiased Hadamard matrices of order 4n, n an odd square, belong to this
class (see Remark. 8). So Lemma 13 also applies to them. Untilvery recently no example
for which the upper bound 2 is attained was known besides the trivial example of Hadamard
matrices of order 4. The first non-trivial example of unbiased Hadamard matrices of order 36
is shown in [4]. The approach in [4] was to use a database of known Hadamard matrices of
order 36 to search for matrices with unbiased mates. Interestingly, only a very small fraction of
the over 3 million known matrices of order 36 which were tested had unbiased mates. In this
section we show that some sets ofMUCH matrices of order 2n can be used to generate sets
of mutually unbiased Hadamard matrices of order 4n. Having found pairs ofMUCH of order
18, we have many pairs of mutually unbiased Hadamard matrices of order 36. We begin with a
known [1] and simple lemma. Our motivation for including theproof here will follow.

Lemma 6. There is no pair of unbiased row regular Hadamard matrices of order 4n2, n odd.

Proof. Repeating the line of proof of Lemma 2, we have

1
2
(H + J)

1
2
(Kt + J) =

1
4
(HKt +HJ + JKt +4n2J).

Noting thatHKt = 2nL, whereL is a Hadamard matrix, we get a contradiction to the fact that
the left side of the above identity is an integer matrix.

A quick glance at the above proof reveals thatHJ + JKt +4n2J ≡ 0 (mod 4), if and only
if HJ + JKt ≡ 0 (mod 4). Assuming thatHJ + JKt ≡ 0 (mod 4), we get a contradiction if
we assume one (or equivalently all) of the entries ofHKt is equal to 2(mod 4). This is our
motivation for the following definition.

Definition 7. Two Hadamard matrices H, K of order n are said to be weakly unbiased, if
|{|ai j| : 1≤ i ≤ n,1≤ j ≤ n}| ≤ 2, and HKt = [ai j]≡ 2J (mod 4).

Remark 8. Note that for the unbiased Hadamard matrices H, K of order n, |{|ai j| : 1 ≤ i ≤
n,1≤ j ≤ n}|= 1, where HKt = [ai j]. So weakly unbiased Hadamard matrices are the natural
extension of unbiased Hadamard matrices of order 4n, n an odd square.

The following lemma is immediate, using equality from the proof of Lemma 6.

Lemma 9. Let H, K be Hadamard matrices of order 4n such that HJ+JKt ≡ 0 (mod 4). Then
no entry of HKt is equal to 2 (mod 4).

Definition 10. Two Hadamard matrices H, K of the same order are called to be modularly
homogeneous if HJ + JKt ≡ 0 (mod 4).

Lemma 11. There is no pair H, K of modularly homogeneous Hadamard matrices of order 4n
for which HKt ≡ 2J (mod 4).

Proof. This follows from Lemma 9.

5



Remark 12. The assumption that H and K are modularly homogeneous in Lemma 11 is es-
sential. The Hadamard matrices of order 12 in Table 3 are weakly unbiased, that is HKt ≡ 2J
(mod 4), but not modularly homogeneous. It is noteworthy that the number of entries with
value 2 or 6 in HKt is not balanced as there are more 2 entries than 6 entries.

Table 3: A pairH, K of weakly unbiased Hadamard matrices of order 12









































1 1 1−1 1−1 1−1 1
1 1 1 1−1 1−1 1−1
1 1 1 1 1−1 1−1 1−
1−−1 1 1−1 1 1−−
−1−1 1 1 1−1−1−
−−1 1 1 1 1 1−−−1
1−−1−−1 1 1−1 1
−1−−1−1 1 1 1−1
−−1−−1 1 1 1 1 1−
1−−−1 1 1−−1 1 1
−1−1−1−1−1 1 1
−−1 1 1−−−1 1 1 1









































,









































−1 1−1 1 1−−1 1 1
1−1 1−1−1−1 1 1
1 1−1 1−−−1 1 1 1
1−−−1 1 1 1 1−1 1
−1−1−1 1 1 1 1−1
−−1 1 1−1 1 1 1 1−
−1 1−−−−1 1−1 1
1−1−−−1−1 1−1
1 1−−−−1 1−1 1−
−−−1−−1−−−1 1
−−−−1−−1−1−1
−−−−−1−−1 1 1−









































Lemma 13. Let w(n) be the number of mutually weakly unbiased Hadamard matrices of order
4n, n odd, then w(n)≤ 2.

Proof. Suppose on the contrary that there are more than two mutuallyweakly unbiased Hadamard
matrices of order 4n. By negating the appropriate columns of all matrices, we mayassume
that one of the matrices has one normalized row. Select two other matrices, sayH, K. Then
HJ + JKt ≡ 0 (mod 4) andHKt ≡ 2J (mod 4), contradicting Lemma 9.

We are now ready for the main result of this section and our reason for studying unbiased
complex Hadamard matrices. We need to introduce a notation first. For the integersa,b let
G(a,b) = {a± ib,−a± ib, ia±b,−ia±b}.

Theorem 14. Let H, K be a pair of unbiased complex Hadamard matrices of order 2n, n odd,
for which the entries of HK∗ are all in G(a,b), where 2n = a2+ b2, a,b odd integers. Then
there is a pair of weakly unbiased Hadamard matrices of order 4n.

Proof. Let H = A+ iB, K =C+ iD, whereA,B andC,D are(0,±1)-matrices of order 2n such
thatA±B andC±D are±1-matrices. Consider the matrices

H ′ =

(

1 1
1 −

)

⊗A+

(

− 1
1 1

)

⊗B

6



and

K′ =
(

1 1
1 −

)

⊗C+

(

− 1
1 1

)

⊗D.

It is only a routine calculation to see thatH ′
,K′ are Hadamard matrices of order 4n. Let HK∗ =

E + iF, whereE,F are(±a,±b)-matrices of order 2n. We have

H ′K′t =

(

2(ACt +BDt) −2(BCt −ADt)
2(BCt −ADt) 2(ACt +BDt)

)

=

(

2E −2F
2F 2E

)

.

Using the fact that the entries ofHK∗ are inG(a,b) and noting thatE,F are(±a,±b)-matrices,
where|a| ,|b| are odd integers, it follows thatH ′

,K′ are weakly unbiased.

Remark 15. The spread of a’s and b’s in H ′K′t is uniform; there are as many a’s in H ′K′t as
b’s. We think the assumption that all the entries of HK∗ belong to G(a,b) is not necessary, but
we cannot prove it.

Theorem 16. Let H, K be a pair of unbiased complex Hadamard matrices of order 2n, where
n = a2, a odd (and so 2n = a2+ a2) for which the entries of HK∗ are in G(a,a). Then H ′

,K′

constructed above form a pair of unbiased Hadamard matrices of order 4n = 4a2.

Proof. Note that in this case the matricesE andF in the proof of Theorem 14 are both±a-
matrices.

Corollary 17. There is a pair of unbiased Hadamard matrices of order 36.

Proof. We apply Theorem 16 to the pair of unbiased complex Hadamard matrices of order 18
of Table 2. The resulting pair of matrices is given in Tables 4and 5. The fact that all entries of
HK∗ are inG(a,a) is automatic in this case, as 18 is sum of two squares in only one way.

Corollary 18. There is a pair of weakly unbiased Hadamard matrices of order 20.

Proof. We apply Theorem 14 to the pair of unbiased complex Hadamard matrices of order 10
of Table 1. The resulting pair of matrices is given in Table 6.All entries ofHK∗ are inG(a,b),
where{a,b}= {1,3}.

Consider the even integer 2n, n = a2 for some odd integera, and assume that 2n = a2+a2 is
the only way that 2n can be written as sum of two squares. LetH,K be two unbiased complex
Hadamard matricesH,K of order 2n. It is easy to see thatHK∗ = (a+ ia)L, whereL is a
complex Hadamard matrix of order 2n. A pair of unbiased complex Hadamard matricesH,K
of order 2n, 2n = a2+ b2, is calledspecial if HK∗ = (a+ ib)L for some complex Hadamard
matrix L. The unbiased complex Hadamard matrices of orders 2 and 18 above are special. We
did an exhaustive computer search and found none of order 10.

7



Table 4: A pair of unbiased Hadamard matrices of order 36: first matrix

H =









































































































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−
1 1−−−1−1 1−−1 1−1−1−−1−1 1−1−1−−1 1−−1−1
1−−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1
1 1−1−−−1−1 1−−1 1−1−1−−1−1 1−1−1−−1 1−−1
1−1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−−−−−1 1−−1 1
1 1−1−1−−−1−1 1−−1 1−1−1−−1−1 1−1−1−−1 1−
1−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−−−−−1 1−−
1 1 1−−1−1−−−1−1 1−−1 1−1−1−−1−1 1−1−1−−1
1−−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−−−−−1 1
1 1−1 1−−1−1−−−1−1 1−−1 1−1−1−−1−1 1−1−1−
1−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−−−−−
1 1 1−−1 1−−1−1−−−1−1 1−−1 1−1−1−−1−1 1−1−
1−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−−−
1 1 1−1−−1 1−−1−1−−−1−1 1−−1 1−1−1−−1−1 1−
1−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1−−
1 1 1−1−1−−1 1−−1−1−−−1−1 1−−1 1−1−1−−1−1
1−−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1 1 1
1 1−1 1−1−1−−1 1−−1−1−−−1−1 1−−1 1−1−1−−1
1−1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−1 1
1 1−1−1 1−1−1−−1 1−−1−1−−−1−1 1−−1 1−1−1−
1−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−−−
1 1 1−−1−1 1−1−1−−1 1−−1−1−−−1−1 1−−1 1−1−
1−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−−−
1 1 1−1−−1−1 1−1−1−−1 1−−1−1−−−1−1 1−−1 1−
1−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1−−
1 1 1−1−1−−1−1 1−1−1−−1 1−−1−1−−−1−1 1−−1
1−−−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−1 1
1 1−1 1−1−1−−1−1 1−1−1−−1 1−−1−1−−−1−1 1−
1−1 1−−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1−−
1 1 1−−1 1−1−1−−1−1 1−1−1−−1 1−−1−1−−−1−1
1−−−1 1−−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1 1 1
1 1−1 1−−1 1−1−1−−1−1 1−1−1−−1 1−−1−1−−−1
1−1 1−−1 1−−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1 1 1
1 1−1−1 1−−1 1−1−1−−1−1 1−1−1−−1 1−−1−1−−
1−1 1 1 1−−1 1−−−−−−1 1 1 1−−−−−−1 1−−1 1 1 1−1








































































































































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Table 5: A pair of unbiased Hadamard matrices of order 36: second matrix

K =









































































































































1 1 1−1−−1 1−−1 1−1−−−1−−1 1 1 1 1 1 1 1 1−1 1−−−
1−−−−−1 1−−1 1−−−−−1−−1 1 1−1−1−1−1 1−−−1
1 1 1−−1 1−−1 1−−1 1−1 1−−−1 1 1−1−1 1 1−1−−1 1
1−−−1 1−−1 1−−1 1−−1−−1 1 1 1−1 1 1 1 1−1 1−1 1−
1 1 1−−1−1 1−1−1 1 1 1−1−−1−1−1−−−−1 1 1 1 1 1−
1−−−1 1 1 1−−−−1−1−1 1−1−−−−−−−1 1 1 1−1−−−
1 1 1−−1 1−1−−−1−−1 1 1 1 1 1 1 1 1−1 1−−−1−1−−1
1−−−1 1−−−−−1−−1 1 1−1−1−1−1 1−−−1−−−−1 1
1 1 1−1−1 1−1−1−1−1 1 1 1−1−−−−1 1 1−1 1 1−1−−
1−−−−−1−1 1 1 1 1 1 1 1 1−−−−−−1 1 1 1−1 1 1−1 1−1
1 1−1−1−−−−−1−1−−1 1−−−−1 1 1−1 1−−−−1 1−−
1−1 1 1 1−1−1 1 1 1 1−1 1−−1−1 1−−−1−−1−1 1−−1
1 1−1 1−1 1−−1−−−1 1 1−−1 1−1 1−1 1−1−−1 1 1 1−
1−1 1−−1−−1−−−1 1−−−1 1−−1−1 1−−−−1 1 1−−−
1 1−1 1−−−1 1 1 1−−1−−1−1 1 1 1−−1−1−1 1−1 1−1
1−1 1−−−1 1−1−−1−−1 1 1 1 1−−−1 1 1 1 1 1−−1−1 1
1 1 1−1−1 1 1 1−−−−−−1−−−−1−−1−−−−−−−1 1 1 1
1−−−−−1−1−−1−1−1−−−1 1 1−1−−−1−1−1 1−1−
1 1−1 1 1 1−−1 1−1−−−−−1−1−−1 1−1 1−1 1 1 1−1 1
1−1 1 1−−−1 1−−−−−1−1−−−−1 1−−1−1 1 1−−−1−
1 1−1 1 1 1−1−−−−1 1 1−1 1 1−1−−1−1−1 1−1−1−1
1−1 1 1−−−−−−1 1 1 1−1 1 1−1 1−1−−−−1−1 1 1 1 1 1
1 1−1−−−1−−−−1 1 1 1−−−−−1−−−1 1 1−−1−−−1 1
1−1 1−1 1 1−1−1 1−1−−1−1 1 1−1 1 1 1−−1−−−1 1−
1 1 1 1−1−1 1 1−1−−1 1 1−−1 1−−1 1−−1 1−1 1−−−1
1−1−1 1 1 1 1−1 1−1 1−−−1 1−−1 1−−1 1−−1−−1 1 1
1 1−−1 1−1−1 1 1−1−1−1 1 1−1−1 1 1−−1−1−1−1−
1−−1 1−1 1 1 1 1−1 1 1 1 1 1 1−1 1 1 1 1−−1−−−−−−−−
1 1 1 1 1 1 1−1−1 1 1 1−−−−−−1−−−−1−−1−−−−−−−
1−1−1−−−−−1−1−−1−1−1−−−1 1 1−1−−−1−1−1
1 1−−−−−1−1−−1 1−−−−1 1 1−1 1−−−−1 1−−−1−1
1−−1−1 1 1 1 1−1 1−−1−1 1−−−1−−1−1 1−−1 1 1 1 1
1 1 1 1−−1−−−1 1 1−−1 1−1 1−1 1−1−−1 1 1 1−−1 1−
1−1−−1−−−1 1−−−1 1−−1−1 1−−−−1 1 1−−−1 1−−
1 1−−−−−−1 1 1 1 1−1−1 1 1 1−−−−−−1−−−−1−−1−
1−−1−1−1 1−1−−−−−1−1−−1−1−1−−−1 1 1−1−−








































































































































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Table 6: A pairH, K of weakly unbiased Hadamard matrices of order 20









































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1−1−1−1−1−1−1−1−1−1−
1 1−−−1−1 1−−1 1−1−1−−1
1−−1 1 1 1 1−−1 1−−−−−−1 1
1 1−1−−−1 1−1−−1−1 1−1−
1−1 1−1 1 1−−−−1 1 1 1−−−−
1 1−1−1−−−1 1−1−1−−1 1−
1−1 1 1 1−1 1 1−−−−−−1 1−−
1 1 1−1−−1−−−1−1 1−−1 1−
1−−−−−1 1−1 1 1 1 1−−1 1−−
1 1−1 1−1−−1−−−1 1−1−−1
1−1 1−−−−1 1−1 1 1−−−−1 1
1 1 1−−1 1−−1−1−−−1 1−1−
1−−−1 1−−1 1 1 1−1 1 1−−−−
1 1 1−−1 1−1−1−−1−−−1−1
1−−−1 1−−−−−−1 1−1 1 1 1 1
1 1 1−1−−1−1 1−1−−1−−−1
1−−−−−1 1 1 1−−−−1 1−1 1 1
1 1−1 1−1−1−−1 1−−1−1−−
1−1 1−−−−−−1 1−−1 1 1 1−1









































































,









































































1 1 1−−1−1−1 1 1−−−−−1 1 1
1−−−1 1 1 1 1 1 1−−1−1 1 1 1−
1 1 1−1 1 1−1−−1−−1−1 1−−
1−−−1−−−−−1 1−1−−1−−1
1 1−1−−1−−−−−−1−−−1 1−
1−1 1−1−−−1−1 1 1−1 1 1−−
1 1−1 1 1 1 1−1 1 1 1 1 1−−−−−
1−1 1 1−1−1 1 1−1−−−−1−1
1 1−1−−1 1 1 1−1−−−1 1−−1
1−1 1−1 1−1−1 1−1 1 1−−1 1
1 1 1−−−1 1−−1−1 1 1 1 1 1−1
1−−−−1 1−−1−−1−1−1−1 1
1 1−−−1−−1−1−1−−1−−−−
1−−1 1 1−1−−−−−−1 1−1−1
1 1 1 1 1−−−−1 1−−−1 1 1−1−
1−1−−−−1 1 1−−−1 1−−−−−
1 1−−1−−−1 1−1 1 1 1 1−1 1 1
1−−1−−−1 1−1 1 1−1−1 1 1−
1 1 1 1 1 1−1 1−−−1 1−−1−1 1
1−1−1−1 1−−−1 1−−1−−1−









































































4 Unbiased bases

Let H,K be a pair of special unbiased complex Hadamard matrices of order 2n2 corresponding
to the decomposition 2n2 = n2+n2. Then the normalized rows ofH andK, or equivalently the
rows of 1√

2n2
H and 1√

2n2
K, form two orthonormal bases forC2n2

in such a way that for every pair

of vectorsu,v from different bases,〈u,v〉 ∈ D = { 1
2n(1+ i),− 1

2n(1+ i), 1
2n(1− i),− 1

2n(1− i)}
(note thatn+in

2n2 = 1
2n(1+ i)). Here〈,〉 denotes the standard Hermitian inner product inC2n2

.

Adding{1+i√
2

b : b ∈ Bs}, whereBs denotes the standard basis inC2n2
, to these bases we get 3

orthonormal bases forC2n2
in such a way that for every pair of vectorsu,v from different bases,

〈u,v〉 ∈ D. Two orthonormal basesB1 andB2 in C2n2
are calledunbiased complex bases if

〈u,v〉 ∈ D for all u ∈ B1 andv ∈ B2.

We will use |MUCB(n)| to denote the number of elements in a set of mutually unbiased
complex bases forCn.

Lemma 19. |MUCB(2n2)| ≤ 3 for any odd integer n. Equality is attained for n = 1,3.

Proof. Let B1,B2,B3 be three mutually unbiased complex bases forC2n2
. Let Hi be the matrix
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formed by putting the vectors ofBi as the rows ofHi, i = 1,2,3. Then 2n
1+iH2H∗

1 and 2n
1+iH3H∗

1

form a pair of unbiased complex Hadamard matrices of order 2n2. Thus, it follows from Theo-
rem 3 that|MUCB(2n2)|−1≤ 2. The equality occurs forn = 1,3 as there are pair of special
unbiased complex Hadamard matrices of order 2 and 18.

Two orthonormal basesB1 andB2 for Rn are calledmutually unbiased real bases if
〈u,v〉 ∈ { 1√

n ,−
1√
n} for all u ∈ B1 andv ∈ B2, where〈,〉 is the standard Euclidean inner product

in Rn, see [1] for details. We will use|MURB(n)| to denote the number of elements in a set of
mutually unbiased real bases inRn.

Lemma 20. |MURB(4n2)| ≤ 3 for any odd integer n. Equality is attained for n = 1,3.

Proof. Let B1,B2,B3 be three mutually unbiased real bases forR4n2
. Let Hi be the matrix

formed by putting the vectors ofBi as the rows ofHi, i = 1,2,3. Then 2nH2Ht
1 and 2nH3Ht

1
form a pair of unbiased Hadamard matrices of order 4n2. The result now follows from Lemma
13 and Corollary 17. See also Observation 2.1 of [1].
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