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CYCLIC CODES FROM THE SECOND CLASS TWO-PRIME WHITEMAN’S

GENERALIZED CYCLOTOMIC SEQUENCE WITH ORDER 6

PRAMOD KUMAR KEWAT AND PRITI KUMARI

Abstract. Let n1 = ef + 1 and n2 = ef ′ + 1 be two distinct odd primes with positive integers
e, f, f ′. In this paper, the two-prime Whiteman’s generalized cyclotomic sequence of order e = 6 is
employed to construct several classes of cyclic codes over GF(q) with length n1n2. The lower bounds
on the minimum distance of these cyclic codes are obtained.

1. Introduction

Let q be a power of a prime p. An [n, k, d] linear code C over a finite field GF(q) is a k−dimensional

subspace of the vector space GF(q)n with the minimum distance d. A linear code C is a cyclic code

if the cyclic shift of a codeword in C is again a codeword in C, i.e., if (c0, · · · , cn−1) ∈ C then

(cn−1, c0 · · · , cn−2) ∈ C. Let gcd(n, q) = 1. We consider the univarivate polynomial ring GF(q)[x]

and the ideal I = 〈xn − 1〉 of GF(q)[x]. We denote by R the ring GF(q)[x]/I. We can consider a cyclic

code of length n over GF(q) as an ideal in R via the following correspondence

GF(q)n → R, (c0, c1, · · · , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.

Then, a linear code C over GF(q) is a cyclic code if and only if C is an ideal of R. Since R is a principal

ideal ring, if C is not trivial, there exists a unique monic polynomial g(x) dividing xn − 1 in GF(q)[x]

and C = 〈g(x)〉. The polynomials g(x) and h(x) = (xn − 1)/g(x) are called the generator polynomial

and the parity-check polynomial of C respectively. If the dimension of the code C is k, the generator

polynomial has degree n− k. An [n, k, d] cyclic code C is capable of encoding q−ary messages of length

k and requires n− k redundancy symbols.

The total number of cyclic codes over GF(q) and their construction are closely related to the cy-

clotomic cosets modulo n. One way to construct cyclic codes over GF(q) with length n is to use the

generator polynomial

xn − 1

gcd(xn − 1, S(x))
, (1)
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where S(x) =
n−1
∑

i=0

six
i ∈ GF(q)[x] and s∞ = (si)

∞
i=0 is a sequence of period n over GF(q). The cyclic

code Cs generated by the polynomial in Eq. (1) is called the cyclic code defined by the sequence s∞,

and the sequence s∞ is called the defining sequence of the cyclic code Cs.

Cyclic codes have been studied in a series of papers and a lot of progress have been accomplished

(see, for example [1], [6], [7], [11] and [13]). The Whiteman generalized cyclotomy was introduced by

Whiteman and its properties were studied in [14]. The two-prime Whiteman’s generalized cyclotomic

sequence(WGCS) was introduced by Ding [4] and its coding properties were studied in [5] and [12]. Ding

[5] and Sun et al.[12] constructed number of classes of cyclic codes over GF(q) with length n = n1n2

from the two-prime Whiteman’s generalized cyclotomic sequences of order 2 and 4 respectively and gave

the lower bounds on the minimum weight of these cyclic codes under certain conditions. Li et al. [9]

gave a lower bound on linear complexity of WGCS of order six, which indicates the linear complexity

is large. The autocorrelation values of WGCS were determined in [15]. Inspired by the construction

of above two papers ( [5] and [12]), in this paper, we employ the two-prime Whiteman’s generalized

cyclotomic sequences with order 6 to construct several classes of cyclic codes over GF(q)[x]. We also

obtain lower bounds on the minimum weight of these cyclic codes.

2. Preliminaries

2.1. Linear complexity and minimal polynomial. If (si)
∞
i=0 is a sequence over a finite field GF(q)

and f(x) is a polynomial with coefficients in GF(q) given by

f(x) = c0 + c1x+ · · ·+ cL−1x
L−1,

then we define

f(E)sj = c0sj + c1sj−1 + · · ·+ cL−1sj−L+1,

where E is a left shift operator defined by Esi = si−1 for i ≥ 1. Let sn be a sequence s0s1 · · · sn−1 of

length n over a finite field GF(q). For a finite sequence, the n is finite; for a semi-infinite sequence, the

n is ∞. A polynomial f(x) ∈ GF(q)[x] of degree 6 l with c0 6= 0 is called a characteristic polynomial

of the sequence sn if f(E)sj = 0 for all j with j ≥ l. For every characteristic polynomial there is a least

l ≥ deg(f) such that the above equation hold. The smallest l is called the associate recurrence length

of f(x) with respect to the sequence sn. The characteristic polynomial with smallest length is known

as minimal polynomial of the sequence sn and the associated recurrence length is called the linear span

or linear complexity of the sequence sn.

If a semi-infinite sequence s∞ is periodic, then its minimal polynomial is unique if c0 = 1. The linear

complexity of a periodic sequence is equal to the degree of its minimal polynomial. For the periodic
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sequences, there are few ways to determine their linear spans and minimal polynomials. One of them

is given in the following lemma.

Lemma 1. [10] Let s∞ be a sequence of a period n over GF (q). Define

Sn(x) = s0 + s1x+ · · ·+ sn−1x
n−1 ∈ GF(q)[x].

Then the minimal polynomial ms of s∞ is given by

xn − 1

gcd(xn − 1, Sn(x))
. (2)

Consequently, the linear span Ls of s∞ is given by

Ls = n− deg(gcd(xn − 1, Sn(x))). (3)

2.2. The Whiteman’s generalized cyclotomic sequences and its construction. An integer a

is called a primitive root of modulo n if the multiplicative order of a modulo n, denoted by ordn(a), is

equal to φ(n), where φ(n) is the Euler phi function and gcd(a, n) = 1.

Let n1 and n2 be two distinct odd primes, define n = n1n2, d = gcd(n1 − 1, n2 − 1) and e = (n1 −
1)(n2− 1)/d. From the Chinese Remainder theorem , there are common primitive roots of both n1 and

n2. Let g be a fixed common primitive root of both n1 and n2. Let u be an integer satisfying

u ≡ g (mod n1), u ≡ 1 (mod n2). (4)

Whiteman [14] proved that

Z
∗
n = {gsui : s = 0, 1, · · · , e− 1; i = 0, 1, 2, · · · , d− 1}.

where Z
∗
n denotes the set of all invertible elements of the residue class ring Zn and e is the order of g

modulo n. The Whiteman’s generalized cyclotomic classes Wi of order d are defined by

Wi = {gsui (mod n) : s = 0, 1, · · · , e− 1}, i = 0, 1, · · · , d− 1.

The classes Wi, 1 ≤ i ≤ d− 1 give a partition of Z∗
n, i.e., Z

∗
n = ∪d−1

i=0Wi, Wi ∩Wj = ∅ for i 6= j.

Let

P = {n1, 2n1, 3n1, · · · , (n2 − 1)n1}, Q = {n2, 2n2, 3n2, · · · , (n1 − 1)n2},

C0 = {0} ∪Q ∪
d
2
−1
⋃

i=0

Wi, C1 = P ∪
d−1
⋃

i= d
2

Wi,

C∗
0 = {0} ∪Q ∪

d
2
−1
⋃

i=0

W2i and C∗
1 = P ∪

d
2
−1
⋃

i=0

W2i+1.
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It is easy to see that if d > 2, then C0 6= C∗
0 and C1 6= C∗

1 . Now, we introduce two kinds of Whiteman’s

generalized cyclotomic sequences of order d (see [2]).

Definition. The two-prime Whiteman’s generalized cyclotomic sequence (s∗)∞ = (s∗i )
n−1
i=0 of order d

and period n, which is called two-prime WGCS-I, is defined by

s∗i =

{

0, if i ∈ C∗
0 ,

1, if i ∈ C∗
1 .

The two-prime Whiteman’s generalized cyclotomic sequence s∞ = (si)
n−1
i=0 of order d and period n,

which is called two-prime WGCS-II, is defined by

si =

{

0, if i ∈ C0,

1, if i ∈ C1.
(5)

The cyclotomic numbers corresponding to these cyclotomic classes are defined as

(i, j)d = |(Wi + 1) ∩Wj |, where 0 ≤ i, j ≤ d− 1.

Additionally, for any t ∈ Zn, we define

d(i, j; t) = |(Wi + t) ∩Wj |,

where Wi + t = {w + t|w ∈ Wi}.

3. A class of cyclic codes over GF(q) defined by the two-prime WGCS

3.1. Properties of the Whiteman’s cyclotomy of order d. In this subsection, we summarize

number of properties of the Whiteman’s generalized cyclotomy of order d = gcd(n1 − 1, n2 − 1). The

following Lemma follows from the Theorem 4.4.6 of [3].

Lemma 2. Let the notations be same as before and t 6= 0. We have

d(i, j; t) =























(n1−1)(n2−1)
d2 , i 6= j, t ∈ P ∪Q,

(n1−1)(n2−1−d)
d2 , i = j, t ∈ P, t /∈ Q,

(n1−1−d)(n2−1)
d2 , i = j, t ∈ Q, t /∈ P,

(i′, j′)d for some i′, j′, otherwise.

Lemma 3. Let the symbols be defined as before. The following four statements are equivalent:

(1) −1 ∈ W d
2

.

(2) (n1−1)(n2−1)
d2 is even.



Cyclic codes from the second class two-prime WGCS with order 6 5

(3) One of the following sets of equations are satisfied:
{

n1 ≡ 1 (mod 2d)

n2 ≡ d+ 1 (mod 2d),

{

n1 ≡ d+ 1 (mod 2d)

n2 ≡ 1 (mod 2d).

(4) n1n2 ≡ d+ 1 (mod 2d).

Proof. (1) ⇔ (2) The result follows from (2.3) in [14].

(2) ⇒ (3) Let n1 − 1 = df, n2 − 1 = df ′ and e = dff ′, where f and f ′ are integer. Since (f, f ′) = 1, f

and f ′ can not both be even. Here ff ′ = (n1−1)(n2−1)
d2 is even. So, f or f ′ is even. Let f is even and f ′

is odd. If f is even, then n1 − 1 = d(2k1), where k1 is an integer. Therefore, n1 ≡ 1 (mod 2d). If f ′ is

odd, then n1 − 1 = d(2k2 +1), where k2 is an integer. Therefore, n2 ≡ d+ 1 (mod 2d). Similarly, when

f is odd and f ′ is even. We get n1 ≡ d+ 1 (mod 2d) and n2 ≡ 1 (mod 2d).

(3) ⇒ (2) and (3) ⇒ (4) are obvious.

(4) ⇒ (3) Since, gcd(n1 − 1, n2 − 1) = d, let n1 − 1 = fd and n2 − 1 = f ′d. We have n1n2 ≡
d+ 1 (mod 2d), this gives fd+ f ′d ≡ d (mod 2d). Thus, we have f + f ′ = 2k + 1 for an integer k. So,

n1 = 2kd + (1 − f ′)d + 1, this gives n1 ≡ (1 − f ′)d + 1 (mod 2d). If f ′ is odd, then n1 ≡ 1 (mod 2d)

and n2 ≡ d+ 1 (mod 2d). If f ′ is even, then n1 ≡ d+ 1 (mod 2d) and n2 ≡ 1 (mod 2d). �

Lemma 4. Let the symbols be defined as before. The following four statements are equivalent:

(1) −1 ∈ W0.

(2) (n1−1)(n2−1)
d2 is odd.

(3) The following set of equation is satisfied:
{

n1 ≡ d+ 1 (mod 2d)

n2 ≡ d+ 1 (mod 2d),

(4) n1n2 ≡ 1 (mod 2d).

Proof. Similar to the proof of the above lemma. �

3.2. Properties of Whiteman’s cyclotomy of order 6. We recall the following lemmas (Lemma 1

and Lemma 2) from [8].

Lemma 5. Let gcd(n1 − 1, n2 − 1) = 6, i.e., n1 ≡ 1 mod 6, n2 ≡ 1 mod 6. Let a, b, x, y, c and d

are integers. There are 10 possible different cyclotomic numbers of order 6 and they are given by the

following relations:
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If (n1−1)(n2−1)
36 is odd, we have

(0, 0)6 =
1
72 (12M + 32 + 6a− 24x+ 2c),

(0, 1)6 = (1, 0)6 = (5, 5)6 = 1
72 (12M + 8 + a+ 3b+ 8x+ 24y − c+ 9d),

(0, 2)6 = (2, 0)6 = (4, 4)6 = 1
72 (12M + 8− 3a+ 9b− c− 9d),

(0, 3)6 = (3, 0)6 = (3, 3)6 = 1
72 (12M + 8− 2a+ 8x+ 2c),

(0, 4)6 = (4, 0)6 = (2, 2)6 = 1
72 (12M + 8− 3a− c− 9b+ 9d),

(0, 5)6 = (5, 0)6 = (1, 1)6 = 1
72 (12M + 8 + a− 3b+ 8x− 24y − c− 9d),

(1, 2)6 = (2, 1)6 = (4, 5)6 = (5, 4)6 = (5, 1)6 = (1, 5)6 = 1
72 (12M − 4− 2a− 4x+ 2c),

(1, 3)6 = (2, 5)6 = (3, 1)6 = (3, 4)6 = (4, 3)6 = (5, 2)6 = 1
72 (12M − 4 + a+ 3b− 4x− 12y − c+ 9d),

(1, 4)6 = (2, 3)6 = (3, 2)6 = (3, 5)6 = (4, 1)6 = (5, 3)6 = 1
72 (12M − 4 + a− 3b− 4x+ 12y − c− 9d) and

(2, 4)6 = (4, 2)6 = 1
72 (12M − 4 + 6a+ 12x+ 2c).

If (n1−1)(n2−1)
36 is even, we have

(0, 0)6 = (3, 0)6 = (3, 3)6 = 1
72 (12M + 20− 8x− 2a+ 2c),

(0, 1)6 = (2, 5)6 = (4, 3)6 = 1
72 (12M − 4− 3a− 9b− c+ 9d),

(0, 2)6 = (1, 4)6 = (5, 3)6 = 1
72 (12M − 4− 8x+ a− c+ 24y − 3b− 9d),

(0, 3)6 = 1
72 (12M − 4 + 24x+ 6a+ 2c),

(0, 4)6 = (1, 3)6 = (5, 2)6 = 1
72 (12M − 4− 8x+ a− c− 24y + 3b+ 9d),

(0, 5)6 = (2, 3)6 = (4, 1)6 = 1
72 (12M − 4− 3a− c+ 9b− 9d),

(1, 0)6 = (2, 2)6 = (3, 1)6 = (3, 4)6 = (4, 0)6 = (5, 5)6 =
1
72 (12M + 8 + 4x+ a− c+ 12y + 3b+ 9d),

(1, 1)6 = (2, 0)6 = (3, 2)6 = (3, 5)6 = (4, 4)6 = (5, 0)6 =
1
72 (12M + 8 + 4x+ a− c− 12y − 3b− 9d),

(1, 2)6 = (1, 5)6 = (2, 4)6 = (4, 2)6 = (5, 1)6 = (5, 4)6 =
1
72 (12M − 4 + 4x− 2a+ 2c) and

(2, 1)6 = (4, 5)6 = 1
72 (12M − 4 + 6a− 12x+ 2c).

Where n1n2 = x2 + 3y2, M = 1
6 ((n1 − 2)(n2 − 2)− 1) and 4n1n2 = a2 + 3b2 = c2 + 27d2.

From [[3], Theorem I.15 and page 118], we get following relation between the parameters a, b, x, y, c

and d.

Lemma 6. Let k and l be integer such that k ≡ g mod(n1) and l ≡ g mod(n2). Suppose kρ = 2 ∈ Fn1

and l̺ = 2 ∈ Fn2
for some integers ρ and ̺. Let the parameters a, b, x, y, c, d be same as in the above

lemma. Then, we have the following results.

Case-I If {(n1 − 1)(n2 − 1)}/36 is even, we have

1) If ρ− ̺ ≡ 0 (mod 3), then a = 2x = −c, b = −2y = −3d.

2) If ρ− ̺ ≡ 1 (mod 3), then a = −x− 3y, b = −x+ y, c = x− 3y, 3d = −x− y.

3) If ρ− ̺ ≡ 2 (mod 3), then a = −x+ 3y, b = x+ y, c = x+ 3y, 3d = x− y.

Case-II {(n1 − 1)(n2 − 1)}/36 is odd, we have
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1) If ρ− ̺ ≡ 0 (mod 3), then a = −2x = c, b = 2y = 3d.

2) If ρ− ̺ ≡ 1 (mod 3), then a = x+ 3y, b = x− y, c = x− 3y, 3d = −x− y.

3) If ρ− ̺ ≡ 2 (mod 3), then a = x− 3y, b = −x− y, c = x+ 3y, 3d = x− y.

Furthermore, we get the following form for the cyclotomic numbers of order 6 after substituting the

value of a, b, c and d from Lemma 6 to Lemma 5.

Table 1. The cyclotomic number of order 6 for even {(n1 − 1)(n2 − 1)}/36

ρ− ̺ ≡ 0 (mod 3) ρ− ̺ ≡ 1 (mod 3) ρ− ̺ ≡ 2 (mod 3)

36(0, 0)6 6M + 10 - 8x 6M + 10 - 2x 6M + 10 - 2x

36(0, 1)6 6M - 2 - 2x + 12y 6M - 2 + 4x 6M - 2 - 2x - 12y

36(0, 2)6 6M - 2 - 2x + 12y 6M - 2 - 2x + 12y 6M - 2 - 8x + 12y

36(0, 3)6 6M - 2 + 16x 6M - 2 + 10x - 12y 6M - 2 + 10x + 12y

36(0, 4)6 6M - 2 - 2x - 12y 6M - 2 - 8x - 12y 6M - 2 - 2x - 12y

36(0, 5)6 6M - 2 - 2x - 12y 6M - 2 - 2x + 12y 6M - 2 + 4x

36(1, 0)6 6M + 4 + 4x + 6y 6M + 4 - 2x + 6y 6M + 4 + 4x + 6y

36(1, 1)6 6M + 4 + 4x - 6y 6M + 4 + 4x - 6y 6M + 4 - 2x - 6y

36(1, 2)6 6M - 2 - 2x 6M - 2 + 4x 6M - 2 + 4x

36(2, 1)6 6M - 2 - 2x 6M - 2 - 8x - 12y 6M - 2 - 8x + 12y

Table 2. The cyclotomic number of order 6 for odd {(n1 − 1)(n2 − 1)}/36

ρ− ̺ ≡ 0 (mod 3) ρ− ̺ ≡ 1 (mod 3) ρ− ̺ ≡ 2 (mod 3)

36(0, 0)6 6M + 16 - 20x 6M + 16 - 8x + 6y 6M + 16 - 8x - 6y

36(0, 1)6 6M + 4 + 4x + 18y 6M + 4 + 4x + 12y 6M + 4 + 4x + 6y

36(0, 2)6 6M + 4 + 4x + 6y 6M + 4 + 4x - 6y 6M + 4 - 8x

36(0, 3)6 6M + 4 + 4x 6M + 4 + 4x - 6y 6M + 4 + 4x + 6y

36(0, 4)6 6M + 4 + 4x - 6y 6M + 4 - 8x 6M + 4 + 4x + 6y

36(0, 5)6 6M + 4 + 4x - 18y 6M + 4 + 4x - 6y 6M + 4 + 4x - 12y

36(1, 2)6 6M - 2 - 2x 6M - 2 - 2x - 6y 6M - 2 - 2x + 6y

36(1, 3)6 6M - 2 - 2x 6M - 2 - 2x - 6y 6M - 2 - 2x - 12y

36(1, 4)6 6M - 2 - 2x 6M - 2 - 2x + 12y 6M - 2 - 2x + 6y

36(2, 4)6 6M - 2 - 2x 6M - 2 + 10x + 6y 6M - 2 + 10x - 6y

These 36 cyclotomic numbers (i, j) are solely functions of the unique representation of p = x2 +

3y2; x ≡ 1 (mod 3) and the sign of y is ambiguously determined.
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Lemma 7. [14] Define η = (n1−1)(n2−1)
36 . Let symbols be same as before. Then

−1 ∈
{

W0, if η is odd,

W3, if η is even.

3.3. A class of cyclic codes over GF(q) defined by two-prime WGCS-II. We have gcd(n, q) = 1.

Let m be the order of q modulo n. Then the field GF(qm) has a primitive nth root of unity β. We

define

S(x) =
∑

i∈C1

xi =

(

∑

i∈P

+
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

xi ∈ GF(q)[x], (6)

T (x) =

(

∑

i∈P

+
∑

i∈W1

+
∑

i∈W2

+
∑

i∈W3

)

xi ∈ GF(q)[x] and (7)

U(x) =

(

∑

i∈P

+
∑

i∈W2

+
∑

i∈W3

+
∑

i∈W4

)

xi ∈ GF(q)[x]. (8)

Our main aim in this section is to find the generator polynomial

g(x) =
xn − 1

gcd(xn − 1, S(x))
.

of the cyclic code Cs defined by the sequence s∞. To compute the parameters of the cyclic code Cs

defined by the sequence s∞, we need to compute gcd(xn − 1, S(x)). Since β is a primitive nth root of

unity, we need only to find such t’s that S(βt) = 0, where 0 ≤ t ≤ n− 1. To this end, we need number

of auxiliary results. We have

0 = βn − 1 = (βn1)n2 − 1 = (βn1 − 1)(1 + βn1 + β2n1 + · · ·+ β(n2−1)n1).

It follows that

βn1 + β2n1 + · · ·+ β(n2−1)n1 = −1, i.e.,
∑

i∈P

βi = −1. (9)

By symmetry we get

βn2 + β2n2 + · · ·+ β(n1−1)n2 = −1, i.e.,
∑

i∈Q

βi = −1. (10)

Lemma 8. Let the symbols be same as before. For 0 ≤ j ≤ 5, we have

∑

i∈Wj

βit =

{

−n1−1
6 (mod p), if t ∈ P,

−n2−1
6 (mod p), if t ∈ Q.
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Proof. Suppose that t ∈ Q. Since g is a common primitive roots of n1 and n2 and the order of g modulo

n is e, by the definition of u, we have

Wj mod n1 = {gsuj mod n1 : s = 0, 1, 2, · · · , e− 1}

= {gs+j mod n1 : s = 0, 1, 2, · · · , e− 1}

=
n2 − 1

6
∗ {1, 2, · · · , n1 − 1},

where n2−1
6 denotes the multiplicity of each element in the set {1, 2, · · · , n1 − 1}. We can write gsxj in

the form

1 + k11n1, 1 + k12n1, · · · , 1 + k1(n2−1)/6n1,

2 + k21n1, 2 + k22n1, · · · , 2 + k2(n2−1)/6n1,

...

n1 − 1 + k(n1−1)1n1, n1 − 1 + k(n1−1)2n1, · · · , n1 − 1 + k(n1−1)(n2−1)/6n1. (11)

where kli is an positive integer, 1 ≤ l ≤ n1 − 1 and 1 ≤ i ≤ (n2 − 1)/6.

When s ranges over {0, 1, · · · , e−1}, we divides the set Wj into (n2−1)/6 subsets each of which contains

n1 − 1 consecutive integers, i.e., gs+j mod n1 takes on each element of {1, 2, · · · , n1 − 1} exactly n2−1
6

times. From (11), it follows that if t ∈ Q, we have β(m+klin1)t = βmt, where 1 ≤ m ≤ n1 − 1. It follows

from (10) that

∑

i∈Wj

βit = (
n2 − 1

6
)
∑

j∈Q

βj = −n2 − 1

6
(mod p).

For t ∈ P , we can get the result by similar argument. �

Lemma 9. For any r ∈ Wi, we have rWj = Wi+j (mod d), where rWj = {rt | t ∈ Wj}.

Proof. We have Wi = {gsui : s = 0, 1, 2, · · · , e − 1}, i = 0, 1, · · · , d − 1 and let r = gs1ui ∈ Wi.

Then rWj = gs1ui{uj + guj + g1uj + · · ·+ ge−1uj} = {gs1ui+j + gs1+1ui+j + · · ·+ gs1+e−1ui+j}. Since
u ∈ Z

∗
n, there must exist an integer υ with 0 6 υ 6 e − 1 such that ud = gυ, therefore, we must have

rWj = Wi+j (mod d). �
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Lemma 10. For all t ∈ Zn, we have

S(βt) =































































−n1+1
2 (mod p), if t ∈ P,

n2−1
2 (mod p), if t ∈ Q,

S(β), if t ∈ W0,

−(T (β) + 1), if t ∈ W1,

−(U(β) + 1), if t ∈ W2,

−(S(β) + 1), if t ∈ W3,

T (β), if t ∈ W4,

U(β), if t ∈ W5,

T (βt) =































































−n1+1
2 (mod p), if t ∈ P,

n2−1
2 (mod p), if t ∈ Q,

T (β), if t ∈ W0,

U(β), if t ∈ W1,

S(β), if t ∈ W2,

−(T (β) + 1), if t ∈ W3,

−(U(β) + 1), if t ∈ W4,

−(S(β) + 1), if t ∈ W5,

and

U(βt) =































































−n1+1
2 (mod p), if t ∈ P,

n2−1
2 (mod p), if t ∈ Q,

U(β), if t ∈ W0,

S(β), if t ∈ W1,

−(T (β) + 1), if t ∈ W2,

−(U(β) + 1), if t ∈ W3,

−(S(β) + 1), if t ∈ W4,

T (β), if t ∈ W5.

Proof. Since gcd(n1, n2) = 1, if t ∈ P then tP = P . Then by (9) and Lemma 8, we get

S(βt) =
∑

i∈C1

βti =

(

∑

i∈P

+
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βti

= (−1 mod p)−
(

n1 − 1

6
mod p

)

−
(

n1 − 1

6
mod p

)

−
(

n1 − 1

6
mod p

)

= −n1 + 1

2
mod p.
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If t ∈ Q, then tP = 0. Then by (9) and Lemma 8, we get

S(βt) =
∑

i∈C1

βti =

(

∑

i∈P

+
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βti

= (n2 − 1 mod p)−
(

n2 − 1

6
mod p

)

−
(

n2 − 1

6
mod p

)

−
(

n2 − 1

6
mod p

)

=
n2 − 1

2
mod p.

By Lemma 9, tWi = Wi if t ∈ W0. If t ∈ W0, then tP = P since gcd(t, n2) = 1. Hence

S(βt) =
∑

i∈C1

βti =

(

∑

i∈P

+
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βti

=

(

∑

i∈P

+
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βi

= S(β).

By Lemma 9, if t ∈ W1 then tWi = W(i+1)(mod 6) for 0 ≤ i ≤ 5. And since gcd(a, n2) = 1, if t ∈ W1

then tP = P . We have βn − 1 = (β − 1)(
n−1
∑

i=0

βi) = 0 and β − 1 6= 0, this gives
n−1
∑

i=0

βi = 0. Therefore,

n−1
∑

i=0

βi = 1+
∑

i∈P

βi +
∑

i∈Q

βi +
∑

i∈
5⋃

j=0

Wj

βi = 0. From (9) and (10), we get

∑

i∈
5⋃

j=0

Wj

βi = 1. (12)
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Hence

S(βt) =
∑

i∈C1

βti =

(

∑

i∈P

+
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βti

=

(

∑

i∈P

+
∑

i∈W4

+
∑

i∈W5

+
∑

i∈W0

)

βi

=

(

∑

i∈P

−
∑

i∈W1

−
∑

i∈W2

−
∑

i∈W3

)

βi + 1

=

(

−
∑

i∈P

−
∑

i∈W1

−
∑

i∈W2

−
∑

i∈W3

)

βi + 2
∑

i∈P

βi + 1

= −(T (β) + 1).

Similarly, we can get the result when t ∈ Wi, 2 ≤ i ≤ 5.

In a similar fashion, we can get the result for T (βt) and U(βt). This completes the proof of this

lemma. �

Note that

S(1) =
(n1 + 1)(n2 − 1)

2
(mod p). (13)

Corollary 1. Let the symbols be defined as before. We have the following conclusions.

(I) If q /∈ W0, we have S(β) 6= 0,−1, T (β) 6= 0,−1 and U(β) 6= 0,−1.

(II) If q ∈ W0, we have S
q(β) = S(β), T q(β) = T (β) and U q(β) = U(β) and S(β), T (β), U(β) ∈ GF (q).

Proof. (I) Note that gcd(n, q) = 1, i.e., q ∈ Z
∗
n then q ∈

5
⋃

i=1

Wi. If q /∈ W0, without loss of generality,

assume that q ∈ W1. By Lemma 10, we have

Sq3(β) = Sq2(βq) = (−T (β)− 1)q
2

= (−T (βq)− 1)q = (−U(β)− 1)q = (−U(βq)− 1) = −S(β)− 1,

i.e.,

Sq3(β) + S(β) + 1 = 0. (14)

It is easy to see that 0 and −1 is not the solution of Eq. (14). Similarly, we have

T q3(β) + T (β) + 1 = 0,

and

U q3(β) + U(β) + 1 = 0,
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i.e., T (β) 6= 0,−1 and U(β) 6= 0,−1. If q ∈ Wi, 2 6 i 6 5 the results can be proved by similar argument.

(II) If q ∈ W0, the conclusion is obvious. �

Lemma 11. Let the symbols be the same as before. We have the following conclusions.

(I) If η is odd, then we have three cases:

Case (A) If ρ− ̺ ≡ 0 (mod 3),

S(β)(S(β) + 1) =
n− 1

4
− 2y

3

(

−
∑

i∈W0

+
∑

i∈W2

−
∑

i∈W3

+
∑

i∈W5

)

βi,

T (β)(T (β) + 1) =
n− 1

4
− 2y

3

(

∑

i∈W0

−
∑

i∈W1

+
∑

i∈W3

−
∑

i∈W4

)

βi and

U(β)(U(β) + 1) =
n− 1

4
− 2y

3

(

∑

i∈W1

−
∑

i∈W2

+
∑

i∈W4

−
∑

i∈W5

)

βi.

Case (B) If ρ− ̺ ≡ 1 (mod 3),

S(β)(S(β) + 1) =
n− 1

4
+

x+ y

3

(

∑

i∈W1

−
∑

i∈W2

+
∑

i∈W4

−
∑

i∈W5

)

βi,

T (β)(T (β) + 1) =
n− 1

4
+

x+ y

3

(

−
∑

i∈W0

+
∑

i∈W2

−
∑

i∈W3

+
∑

i∈W5

)

βi and

U(β)(U(β) + 1) =
n− 1

4
+

x+ y

3

(

∑

i∈W0

−
∑

i∈W1

+
∑

i∈W3

−
∑

i∈W4

)

βi.

Case (C) If ρ− ̺ ≡ 2 (mod 3),

S(β)(S(β) + 1) =
n− 1

4
− x− y

3

(

∑

i∈W0

−
∑

i∈W1

+
∑

i∈W3

−
∑

i∈W4

)

βi,

T (β)(T (β) + 1) =
n− 1

4
− x− y

3

(

∑

i∈W1

−
∑

i∈W2

+
∑

i∈W4

−
∑

i∈W5

)

βi and

U(β)(U(β) + 1) =
n− 1

4
− x− y

3

(

−
∑

i∈W0

+
∑

i∈W2

−
∑

i∈W3

+
∑

i∈W5

)

βi.
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(II) If η is even, then we have three cases:

Case (A) If ρ− ̺ ≡ 0 (mod 3),

S(β)(S(β) + 1) = −n+ 1

4
+

2y

3

(

−
∑

i∈W0

+
∑

i∈W2

−
∑

i∈W3

+
∑

i∈W5

)

βi,

T (β)(T (β) + 1) = −n+ 1

4
+

2y

3

(

∑

i∈W0

−
∑

i∈W1

+
∑

i∈W3

−
∑

i∈W4

)

βi and

U(β)(U(β) + 1) = −n+ 1

4
+

2y

3

(

∑

i∈W1

−
∑

i∈W2

+
∑

i∈W4

−
∑

i∈W5

)

βi.

Case (B) If ρ− ̺ ≡ 1 (mod 3),

S(β)(S(β) + 1) = −n+ 1

4
− x+ y

3

(

∑

i∈W1

−
∑

i∈W2

+
∑

i∈W4

−
∑

i∈W5

)

βi,

T (β)(T (β) + 1) = −n+ 1

4
− x+ y

3

(

−
∑

i∈W0

+
∑

i∈W2

−
∑

i∈W3

+
∑

i∈W5

)

βi and

U(β)(U(β) + 1) = −n+ 1

4
− x+ y

3

(

∑

i∈W0

−
∑

i∈W1

+
∑

i∈W3

−
∑

i∈W4

)

βi.

Case (C) If ρ− ̺ ≡ 2 (mod 3),

S(β)(S(β) + 1) = −n+ 1

4
+

x− y

3

(

∑

i∈W0

−
∑

i∈W1

+
∑

i∈W3

−
∑

i∈W4

)

βi,

T (β)(T (β) + 1) = −n+ 1

4
+

x− y

3

(

∑

i∈W1

−
∑

i∈W2

+
∑

i∈W4

−
∑

i∈W5

)

βi and

U(β)(U(β) + 1) = −n+ 1

4
+

x− y

3

(

−
∑

i∈W0

+
∑

i∈W2

−
∑

i∈W3

+
∑

i∈W5

)

βi.

Proof. (I) By the definition of S(x) and from (9), we have

S(β) = −1 +

(

∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βi.
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Then, we get

S(β)(S(β + 1)) = −
(

∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βi +





∑

i∈W3

∑

j∈W3

+
∑

i∈W4

∑

j∈W4

+
∑

i∈W5

∑

j∈W5



βi+j

+



2
∑

i∈W3

∑

j∈W4

+2
∑

i∈W3

∑

j∈W5

+2
∑

i∈W4

∑

j∈W5



 βi+j . (15)

From Lemma 7, if η is odd then −1 ∈ W0 and that −Wj = {−t : t ∈ Wj} = Wj .

∑

i∈W3

∑

j∈W3

βi+j =
∑

i∈W3

∑

j∈W3

βi−j

= |W3|+
∑

r∈P∪Q

d(3, 3; r)βr + (3, 3)6
∑

i∈W0

βi + (2, 2)6
∑

i∈W1

βi + (1, 1)6
∑

i∈W2

βi + (0, 0)6
∑

i∈W3

βi

+ (5, 5)6
∑

i∈W4

βi + (4, 4)6
∑

i∈W5

βi, (16)

∑

i∈W4

∑

j∈W4

βi+j =
∑

i∈W4

∑

j∈W4

βi−j

= |W4|+
∑

r∈P∪Q

d(4, 4; r)βr + (4, 4)6
∑

i∈W0

βi + (3, 3)6
∑

i∈W1

βi + (2, 2)6
∑

i∈W2

βi + (1, 1)6
∑

i∈W3

βi

+ (0, 0)6
∑

i∈W4

βi + (5, 5)6
∑

i∈W5

βi, (17)

∑

i∈W5

∑

j∈W5

βi+j =
∑

i∈W5

∑

j∈W5

βi−j

= |W5|+
∑

r∈P∪Q

d(5, 5; r)βr + (5, 5)6
∑

i∈W0

βi + (4, 4)6
∑

i∈W1

βi + (3, 3)6
∑

i∈W2

βi + (2, 2)6
∑

i∈W3

βi

+ (1, 1)6
∑

i∈W4

βi + (0, 0)6
∑

i∈W5

βi, (18)

2
∑

i∈W3

∑

j∈W4

βi+j =
∑

i∈W3

∑

j∈W4

βi−j

= 2





∑

r∈P∪Q

d(4, 3; r)βr + (4, 3)6
∑

i∈W0

βi + (3, 2)6
∑

i∈W1

βi + (2, 1)6
∑

i∈W2

βi + (1, 0)6
∑

i∈W3

βi

+(0, 5)6
∑

i∈W4

βi + (5, 4)6
∑

i∈W5

βi

)

, (19)
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2
∑

i∈W3

∑

j∈W5

βi+j =
∑

i∈W3

∑

j∈W5

βi−j

= 2





∑

r∈P∪Q

d(5, 3; r)βr + (5, 3)6
∑

i∈W0

βi + (4, 2)6
∑

i∈W1

βi + (3, 1)6
∑

i∈W2

βi + (2, 0)6
∑

i∈W3

βi

+(1, 5)6
∑

i∈W4

βi + (0, 4)6
∑

i∈W5

βi

)

, (20)

2
∑

i∈W4

∑

j∈W5

βi+j =
∑

i∈W4

∑

j∈W5

βi−j

= 2





∑

r∈P∪Q

d(5, 4; r)βr + (5, 4)6
∑

i∈W0

βi + (4, 3)6
∑

i∈W1

βi + (3, 2)6
∑

i∈W2

βi + (2, 1)6
∑

i∈W3

βi

+(1, 0)6
∑

i∈W4

βi + (0, 5)6
∑

i∈W5

βi

)

, (21)

Substituting (16 - 21) into (15) and combining Lemma 2, Lemma 5 and (12), we get

S(β)(S(β) + 1) = −(
∑

i∈W3

βi +
∑

i∈W4

βi +
∑

i∈W5

βi) +

(

3M

2
− 8x− 4a

72
+

12b+ 24y

72

)

∑

i∈W0

βi

+

(

3M

2
− 16x+ 8a

72

)

∑

i∈W1

βi +

(

3M

2
− 8x− 4a

72
− 12b+ 24y

72

)

∑

i∈W2

βi

+

(

3M

2
+ 1− 8x− 4a

72
+

12b+ 24y

72

)

∑

i∈W3

βi +

(

3M

2
+ 1 +

16x+ 8a

72

)

∑

i∈W4

βi

+

(

3M

2
+ 1− 8x− 4a

72
− 24y − 12b

72

)

∑

i∈W5

βi − 12
(n1 − 1)(n2 − 1)

36
− 3

(n1 − 1)(n2 − 7)

36

−3
(n1 − 7)(n2 − 1)

36
+ 3

(n1 − 1)(n2 − 1)

6

=
n− 1

4
− a+ 2x

18

(

∑

i∈W0

−2
∑

i∈W1

+
∑

i∈W2

+
∑

i∈W3

−2
∑

i∈W4

+
∑

i∈W5

)

βi

+
b+ 2y

6

(

∑

i∈W0

−
∑

i∈W2

+
∑

i∈W3

−
∑

i∈W5

)

βi.
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By the same argument as above, we can get

T (β)(T (β) + 1) =
n− 1

4
− a+ 2x

18

(

∑

i∈W0

+
∑

i∈W1

−2
∑

i∈W2

+
∑

i∈W3

+
∑

i∈W4

−2
∑

i∈W5

)

βi

+
b+ 2y

6

(

−
∑

i∈W0

+
∑

i∈W1

−
∑

i∈W3

+
∑

i∈W4

)

βi and

U(β)(U(β) + 1) =
n− 1

4
− a+ 2x

18

(

−2
∑

i∈W0

+
∑

i∈W1

+
∑

i∈W2

−2
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βi

+
b+ 2y

6

(

−
∑

i∈W1

+
∑

i∈W2

−
∑

i∈W4

+
∑

i∈W5

)

βi.

(II) From the Lemma 7, if η is even then −1 ∈ W3 and that −Wj = {−t : t ∈ Wj} = W(j+3) mod 6,

we get

S(β)(S(β) + 1) = −n− 1

4
− 1

2
− a− 2x

18

(

∑

i∈W0

−2
∑

i∈W1

+
∑

i∈W2

+
∑

i∈W3

−2
∑

i∈W4

+
∑

i∈W5

)

βi

+
b− 2y

6

(

∑

i∈W0

−
∑

i∈W2

+
∑

i∈W3

−
∑

i∈W5

)

βi,

T (β)(T (β) + 1) = −n− 1

4
− 1

2
− a− 2x

18

(

∑

i∈W0

+
∑

i∈W1

−2
∑

i∈W2

+
∑

i∈W3

+
∑

i∈W4

−2
∑

i∈W5

)

βi

+
b− 2y

6

(

−
∑

i∈W0

+
∑

i∈W1

−
∑

i∈W3

+
∑

i∈W4

)

βi and

U(β)(U(β) + 1) = −n− 1

4
− 1

2
− a− 2x

18

(

−2
∑

i∈W0

+
∑

i∈W1

+
∑

i∈W2

−2
∑

i∈W3

+
∑

i∈W4

+
∑

i∈W5

)

βi

+
b− 2y

6

(

−
∑

i∈W1

+
∑

i∈W2

−
∑

i∈W4

+
∑

i∈W5

)

βi.

From Lemma 6, Table 1 and Table 2, we get the desired result.

�
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We need to discuss the factorization of xn − 1 over GF(q). Let β be the same as before. Define for

each i; 0 ≤ i ≤ 5,

ωi(x) =
∏

j∈Wi

(x− βj),

where Wi denote the Whiteman’s cyclotomic classes of order 6. Among the nth roots of unity βi, where

0 ≤ i ≤ n− 1, the n2 elements βi, i ∈ P ∪ {0}, are n2th roots of unity, the n1 elements βi, i ∈ Q ∪ {0},
are n1th roots of unity. Hence,

xn2 − 1 =
∏

i∈P∪{0}

(x− βi)

and

xn1 − 1 =
∏

i∈Q∪{0}

(x− βi).

Then, we have xn− 1 =
n−1
∏

i=0

(x−βi) = (xn1−1)(xn2−1)
x−1 ω(x), where ω(x) =

5
∏

i=0

ωi(x). It is straightforward

to prove that if q ∈ W0 then ωi(x) ∈ GF(q) for all i.

Let △1 = n1+1
2 (mod p), △2 = n2−1

2 (mod p) and △ = (n1+1)(n2−1)
2 (mod p). From Corollary 1, we

have the following theorems. First, we derive the expression of generator polynomial g(x) for the case

q /∈ W0.

Theorem 1. Let the symbols be defined as before and assume that q /∈ W0. Then the generator

polynomial g(x) of the sequence s∞ (defined in (5)) is expressed as

g(x) =



































xn − 1, if △1 6= 0, △2 6= 0, △ 6= 0
xn−1
x−1 , if △1 6= 0, △2 6= 0, △ = 0
xn−1
xn2−1 , if △1 = 0, △2 6= 0
xn−1
xn1−1 , if △1 6= 0, △2 = 0
(xn−1)(x−1)

(xn1−1)(xn2−1)
, if △1 = △2 = 0.

The linear span of the sequence s∞ is equal to deg(g(x)). In this case, the cyclic code Cs over GF (q)

defined by the two-prime WGCS-II of order 6 (defined in (5)) has generator polynomial g(x) as above

and parameters [n, k, d], where the dimension k = n− deg(g(x)).

Proof. If q /∈ W0. Then, from Part I of Corollary 1, we have S(β), T (β) and U(β) 6= 0,−1. Therefore,

from Lemma 10, S(βt) = 0 only when t is in P or Q or both. So, from (13) and Lemma 10 the generator

polynomial of the cyclic code Cs defined by s∞ is expressed as above. �
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The following theorem give the expression of the generator polynomials gi(x), 1 6 i 6 5 for the case

q ∈ W0.

Theorem 2. Let the symbols be defined as before. Let q ∈ W0. Then we have the following results.

(I) For △1 6= 0, △2 6= 0 and △ 6= 0, let g1(x) denote the generator polynomial of cyclic code generated

by the two-prime WGCS-II with order 6 (defined in (5)). Then we have

g1(x) =















































































































































































































































































xn − 1 if S(β) 6= 0,−1, T (β) 6= 0,−1, U(β) 6= 0,−1,
xn−1
ω0(x)

if S(β) = 0, T (β) 6= 0,−1, U(β) 6= 0,−1,
xn−1
ω3(x)

if S(β) = −1, T (β) 6= 0,−1, U(β) 6= 0,−1,
xn−1
ω4(x)

if T (β) = 0, S(β) 6= 0,−1, U(β) 6= 0,−1,
xn−1
ω1(x)

if T (β) = −1, S(β) 6= 0,−1, U(β) 6= 0,−1,
xn−1
ω5(x)

if U(β) = 0, S(β) 6= 0,−1, T (β) 6= 0,−1,
xn−1
ω2(x)

if U(β) = −1, S(β) 6= 0,−1, T (β) 6= 0,−1,
xn−1

ω0(x)ω4(x)
if S(β) = T (β) = 0, U(β) 6= 0,−1,

xn−1
ω0(x)ω1(x)

if S(β) = 0, T (β) = −1, U(β) 6= 0,−1,
xn−1

ω3(x)ω4(x)
if S(β) = −1, T (β) = 0, U(β) 6= 0,−1,

xn−1
ω3(x)ω1(x)

if S(β) = T (β) = −1, U(β) 6= 0,−1,
xn−1

ω0(x)ω5(x)
if S(β) = U(β) = 0, T (β) 6= 0,−1,

xn−1
ω0(x)ω2(x)

if S(β) = 0, U(β) = −1, T (β) 6= 0,−1,
xn−1

ω3(x)ω5(x)
if S(β) = −1, U(β) = 0, T (β) 6= 0,−1,

xn−1
ω3(x)ω2(x)

if S(β) = U(β) = −1, T (β) 6= 0,−1,
xn−1

ω4(x)ω5(x)
if T (β) = U(β) = 0, S(β) 6= 0,−1,

xn−1
ω4(x)ω2(x)

if T (β) = 0, U(β) = −1, S(β) 6= 0,−1,
xn−1

ω1(x)ω5(x)
if T (β) = −1, U(β) = 0, S(β) 6= 0,−1,

xn−1
ω1(x)ω2(x)

if T (β) = U(β) = −1, S(β) 6= 0,−1,
xn−1

ω0(x)ω4(x)ω5(x)
if S(β) = T (β) = U(β) = 0,

xn−1
ω0(x)ω4(x)ω2(x)

if S(β) = T (β) = 0, U(β) = −1,
xn−1

ω0(x)ω1(x)ω5(x)
if S(β) = 0, T (β) = −1 U(β) = 0,

xn−1
ω0(x)ω1(x)ω2(x)

if S(β) = 0, T (β) = U(β) = −1,
xn−1

ω3(x)ω4(x)ω5(x)
if S(β) = −1, T (β) = U(β) = 0,

xn−1
ω3(x)ω4(x)ω2(x)

if S(β) = −1, T (β) = 0, U(β) = −1,
xn−1

ω3(x)ω1(x)ω5(x)
if S(β) = T (β) = −1, U(β) = 0,

xn−1
ω3(x)ω1(x)ω2(x)

if S(β) = T (β) = U(β) = −1.

(II) For △1 6= 0, △2 6= 0 and △ = 0, let g2(x) denote the generator polynomial of cyclic code generated

by the two-prime WGCS-II of order 6 (defined in (5)). And let g1(x) be the same as in (I). Then we

have g2(x) =
g1(x)
x−1 .
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(III) For △1 6= 0 and △2 = 0, let g3(x) denote the generator polynomial of cyclic code generated by

the two-prime WGCS-II of order 6 (defined in (5)). And let g1(x) be the same as in (I). Then we have

g3(x) =
g1(x)
xn1−1 .

(IV) For △2 6= 0 and △1 = 0, let g4(x) denote the generator polynomial of cyclic code generated by

the two-prime WGCS-II of order 6 (defined in (5)). And let g1(x) be the same as in (I). Then we have

g4(x) =
g1(x)
xn2−1 .

(V) For △1 = △2 = 0, let g5(x) denote the generator polynomial of cyclic code generated by the

two-prime WGCS-II of order 6 (defined in (5)). And let g1(x) be the same as in (I). Then we have

g5(x) =
g1(x)(x−1)

(xn1−1)(xn2−1) .

Proof. From Part II of Corollary 1, if q ∈ W0 then we have S(β), T (β), U(β) ∈ GF(q). Hence, it is

possible that S(β) ∈ {0,−1}, T (β) ∈ {0,−1}, and U(β) ∈ {0,−1}. The conclusion on the generator

polynomial g1(x) of cyclic code generated by the two-prime WGCS-II of order 6 follows from Theorem

1 and Lemma 10.

We give the following corollary for S(β)(S(β)+1) = 0, T (β)(T (β)+1) = 0 and U(β)(U(β)+1) = 0. �

Corollary 2. Let the symbols be defined as before. We have the following conclusions for q ∈ W0.

When n ≡ 1(mod 12) and n−1
4 ≡ 0(mod p) or n ≡ 7(mod 12) and n+1

4 ≡ 0(mod p) then the generator

polynomial g1(x) (defined as above) is expressed as:

Case (I) If ρ− ̺ ≡ 0 (mod 3),

g1(x) =



































































xn−1
ω0(x)ω4(x)ω5(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = T (β) = U(β) = 0,

xn−1
ω0(x)ω4(x)ω2(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = T (β) = 0, U(β) = −1,

xn−1
ω0(x)ω1(x)ω5(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = 0, T (β) = −1 U(β) = 0,

xn−1
ω0(x)ω1(x)ω2(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = 0, T (β) = U(β) = −1,

xn−1
ω3(x)ω4(x)ω5(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = −1, T (β) = U(β) = 0,

xn−1
ω3(x)ω4(x)ω2(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = −1, T (β) = 0, U(β) = −1,

xn−1
ω3(x)ω1(x)ω5(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = T (β) = −1, U(β) = 0,

xn−1
ω3(x)ω1(x)ω2(x)

, if 2y
3 ≡ 0 (mod p) and S(β) = T (β) = U(β) = −1.
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Case (II) If ρ− ̺ ≡ 1 (mod 3),

g1(x) =



































































xn−1
ω0(x)ω4(x)ω5(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = T (β) = U(β) = 0,

xn−1
ω0(x)ω4(x)ω2(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = T (β) = 0, U(β) = −1,

xn−1
ω0(x)ω1(x)ω5(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = 0, T (β) = −1 U(β) = 0,

xn−1
ω0(x)ω1(x)ω2(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = 0, T (β) = U(β) = −1,

xn−1
ω3(x)ω4(x)ω5(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = −1, T (β) = U(β) = 0,

xn−1
ω3(x)ω4(x)ω2(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = −1, T (β) = 0, U(β) = −1,

xn−1
ω3(x)ω1(x)ω5(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = T (β) = −1, U(β) = 0,

xn−1
ω3(x)ω1(x)ω2(x)

, if x+y
3 ≡ 0 (mod p) and S(β) = T (β) = U(β) = −1.

Case (III) If ρ− ̺ ≡ 2 (mod 3),

g1(x) =



































































xn−1
ω0(x)ω4(x)ω5(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = T (β) = U(β) = 0,

xn−1
ω0(x)ω4(x)ω2(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = T (β) = 0, U(β) = −1,

xn−1
ω0(x)ω1(x)ω5(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = 0, T (β) = −1 U(β) = 0,

xn−1
ω0(x)ω1(x)ω2(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = 0, T (β) = U(β) = −1,

xn−1
ω3(x)ω4(x)ω5(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = −1, T (β) = U(β) = 0,

xn−1
ω3(x)ω4(x)ω2(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = −1, T (β) = 0, U(β) = −1,

xn−1
ω3(x)ω1(x)ω5(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = T (β) = −1, U(β) = 0,

xn−1
ω3(x)ω1(x)ω2(x)

, if x−y
3 ≡ 0 (mod p) and S(β) = T (β) = U(β) = −1.

For j = 2, 3, 4, 5, the generator polynomials gj(x) (defined as in Theorem 2) can be expressed in a

similar fashion as above (as for g1(x)) for η is even and odd.

Proof. From Lemma 4, if η is odd then n ≡ 1 (mod 12). Let n ≡ 1 (mod 12) and (n−1)/4 ≡ 0 (mod p).

By Lemma 6, we have

if ρ− ̺ ≡ 0 (mod 3), then (2y)/3 is an integer,

if ρ− ̺ ≡ 1 (mod 3), then (x + y)/3 is an integer and

if ρ− ̺ ≡ 2 (mod 3), then (x− y)/3 is an integer.

By the help of Lemma 11 and Theorem 2, we get the desired result on the generator polynomial g1(x)

of cyclic code generated by two-prime WGCS-II with order 6. In this case, the cyclic code Cs over

GF(q) defined by sequence s∞ has parameters [n, k, d], where the dimension k = n − deg(g1(x)). In a

similar fashion, we get the result for n ≡ 7 (mod 12) and n+1
4 ≡ 0 (mod p).

�

Remark. We discuss the cases for 2y
3 mod p 6= 0, x+y

3 mod p 6= 0 and x−y
3 mod p 6= 0 in

the above corollary. Let C0 =

(

∑

i∈W0

+
∑

i∈W3

)

βi, C1 =

(

∑

i∈W1

+
∑

i∈W4

)

βi and C2 =

(

∑

i∈W2

+
∑

i∈W5

)

βi.
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When n ≡ 1 (mod 12) and n−1
4 ≡ 0 (mod p) or n ≡ 7 (mod 12) and n+1

4 ≡ 0 (mod p). We have

following three cases:

(I) If ρ− ̺ ≡ 0 (mod 3) and 2y
3 mod p 6= 0 , (II) ρ− ̺ ≡ 1 (mod 3) and x+y

3 mod p 6= 0 and (III)

ρ− ̺ ≡ 2 (mod 3) and x−y
3 mod p 6= 0.

(I) If ρ− ̺ ≡ 0 (mod 3) and 2y
3 mod p 6= 0, then we have

S(β)(S(β) + 1) = 0 if C2 − C0 = 0, C0 − C1 6= 0, C1 − C2 6= 0,

T (β)(T (β) + 1) = 0 if C0 − C1 = 0, C2 − C0 6= 0, C1 − C2 6= 0,

U(β)(U(β) + 1) = 0 if C1 − C2 = 0, C2 − C0 6= 0, C0 − C1 6= 0,

S(β)(S(β) + 1) = 0 and T (β)(T (β) + 1) = 0 if C2 − C0 = 0, C0 − C1 = 0, C1 − C2 6= 0,

S(β)(S(β) + 1) = 0 and U(β)(U(β) + 1) = 0 if C2 − C0 = 0, C1 − C2 = 0, C0 − C1 6= 0,

T (β)(T (β) + 1) = 0 and U(β)(U(β) + 1) = 0 if C0 − C1 = 0, C1 − C2 = 0, C2 − C0 6= 0,

S(β)(S(β) + 1) = 0, T (β)(T (β) + 1) = 0 if C2 − C0 = 0, C0 − C1 = 0, C1 − C2 = 0.

and U(β)(U(β) + 1) = 0

From the above expressions, we get the similar result on generator polynomials as in Theorem 2 with

condition on S(β), U(β), T (β), C0 − C1, C1 − C2 and C2 − C0. Similarly, we get the condition for

ρ− ̺ ≡ 1 (mod 3) and x+y
3 mod p 6= 0 and for ρ− ̺ ≡ 2 (mod 3) and x−y

3 mod p 6= 0.

4. The minimum distance of the cyclic codes

In this section, we determine the lower bounds on the minimum distance of some of the cyclic codes

of this paper.

Theorem 3. [5] Let Ci denote the cyclic code over GF(q) with the generator polynomial gi(x) =
xn−1
xni−1 .

The cyclic code Ci has parameters [n, ni, di], where di = ni−(−1)i and i = 1, 2.

Theorem 4. [5] Let C(n1,n2,q) denote the cyclic code over GF(q) with the generator polynomial g(x) =

(xn−1)(x−1)
(xn1−1)(xn2−1) . The cyclic code C(n1,n2,q) has parameters [n, n1 + n2 − 1, d(n1,n2,q)], where d(n1,n2,q) =

min(n1, n2).

Theorem 5. Assume that q ∈ W0. Let C
(i,j)
(ni,q)

denote the cyclic code over GF(q) with the generator

polynomial g
(i,j)
(ni,q)

(x) = xn−1
(xni−1)ωj(x)

, where i = 1, 2, and 0 6 j 6 5. The cyclic code C
(i,j)
(ni,q)

has

parameters [n, ni +
(n1−1)(n2−1)

6 , d
(i,j)
(ni,q)

], where d
(i,j)
(ni,q)

≥ ⌈√ni−(−1)i⌉.

If −1 ∈ W3, we have (d
(i,j)
(ni,q)

)2 − d
(i,j)
(ni,q)

+ 1 ≥ ni−(−1)i .
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Proof. Let c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in C
(i,j)
(ni,q)

. Take any r ∈ Wk

for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in C
(i,(j−k) mod 6)
(ni,q)

. It then follows

that d
(i,j)
(ni,q)

= d
(i,(j−k) mod 6)
(ni,q)

. Therefore, we have d
(i,0)
(ni,q)

= d
(i,1)
(ni,q)

= d
(i,2)
(ni,q)

= d
(i,3)
(ni,q)

= d
(i,4)
(ni,q)

= d
(i,5)
(ni,q)

.

Let c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of minimum weight in C
(i,j)
(ni,q)

. Then c(xr) is a codeword

of same weight in C
(i,(j−k) mod 6)
(ni,q)

. Further, for any r ∈ Wk, we have c(x)c(xr) is a codeword of

Ci, where Ci denote the cyclic code over GF(q) with the generator polynomial gi(x) = xn−1
xni−1 and

minimum distance di = ni−(−1)i . Hence, from Theorem 3, we have (d
(i,j)
(ni,q)

)2 ≥ di = ni−(−1)i , and

(d
(i,j)
(ni,q)

)2 − d
(i,j)
(ni,q)

+ 1 ≥ ni−(−1)i if −1 ∈ W3. �

Theorem 6. Assume that q ∈ W0. Let C
(j)
(n1,n2,q)

denote the cyclic code over GF(q) with the generator

polynomial g
(j)
(n1,n2,q)

(x) = (xn−1)(x−1)
(xn1−1)(xn2−1)ωj(x)

, where 0 6 j 6 5. The cyclic code C
(j)
(n1,n2,q)

has parame-

ters [n, n1 + n2 − 1 + (n1−1)(n2−1)
6 , d

(j)
(n1,n2,q)

], where d
(j)
(n1,n2,q)

≥ ⌈
√

min(n1, n2)⌉.

If −1 ∈ W3, we have (d
(j)
(n1,n2,q)

)2 − d
(j)
(n1,n2,q)

+ 1 ≥ min(n1, n2).

Proof. Let c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in C
(j)
(n1,n2,q)

. Take any

r ∈ Wk for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in C
((j−k) mod 6)
(n1,n2,q)

. It then follows

that d
(j)
(n1,n2,q)

= d
((j−k) mod 6)
(n1,n2,q)

. Therefore, we have d
(0)
(n1,n2,q)

= d
(1)
(n1,n2,q)

= d
(2)
(n1,n2,q)

= d
(3)
(n1,n2,q)

=

d
(4)
(n1,n2,q)

= d
(5)
(n1,n2,q)

. Let c(x) ∈ GF(q)[x]/(xn−1) be a codeword of minimum weight in C
(j)
(n1,n2,q)

. Then

c(xr) is a codeword of same weight in C
((j−k) mod 6)
(n1,n2,q)

. Further, for any r ∈ Wk, we have c(x)c(xr) is a

codeword of C(n1,n2,q), where C(n1,n2,q) denote the cyclic code over GF(q) with the generator polynomial

g(x) = (xn−1)(x−1)
(xn1−1)(xn2−1) and minimum distance d(n1,n2,q) = min(n1, n2). Hence, from Theorem 4, we have

(d
(j)
(n1,n2,q)

)2 ≥ d(n1,n2,q) = min(n1, n2), and (d
(j)
(n1,n2,q)

)2 − d
(j)
(n1,n2,q)

+ 1 ≥ min(n1, n2) if −1 ∈ W3. �

Theorem 7. Assume that q ∈ W0. Let C
(i,j,h)
(ni,q)

denote the cyclic code over GF(q) with the generator

polynomial g
(i,j,h)
(ni,q)

(x) = xn−1
(xni−1)ωj(x)ωh(x)

, where i = 1, 2 and

(j, h) ∈ {(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 0), (4, 5), (5, 0), (5, 1)}.

The cyclic code C
(i,j,h)
(ni,q)

has parameters [n, ni +
(n1−1)(n2−1)

3 , d
(i,j,h)
(ni,q)

], where d
(i,j,h)
(ni,q)

≥ ⌈√ni−(−1)i⌉. If

−1 ∈ W3, we have (d
(i,j,h)
(ni,q)

)2 − d
(i,j,h)
(ni,q)

+ 1 ≥ ni−(−1)i .
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Proof. Let j = 0, h = 1 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in

C
(i,0,1)
(ni,q)

. Take any r ∈ Wk for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in

C
(i,(0−k) mod 6,(1−k) mod 6)
(ni,q)

. It then follows that d
(i,0,1)
(ni,q)

= d
(i,(0−k) mod 6,(1−k) mod 6)
(ni,q)

. Therefore, we

have

d
(i,0,1)
(ni,q)

= d
(i,5,0)
(ni,q)

= d
(i,4,5)
(ni,q)

= d
(i,3,4)
(ni,q)

= d
(i,2,3)
(ni,q)

= d
(i,1,2)
(ni,q)

. (22)

Let j = 0, h = 2 and c(x) ∈ GF(q)[x]/(xn−1) be a codeword of Hamming weight ω in C
(i,0,2)
(ni,q)

. Take any

r ∈ Wk for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in C
(i,(0−k) mod 6,(2−k) mod 6)
(ni,q)

.

It then follows that d
(i,0)
(ni,q)

= d
(i,(0−k) mod 6,(2−k) mod 6)
(ni,q)

. Therefore, we have

d
(i,0,2)
(ni,q)

= d
(i,5,1)
(ni,q)

= d
(i,4,0)
(ni,q)

= d
(i,3,5)
(ni,q)

= d
(i,2,4)
(ni,q)

= d
(i,1,3)
(ni,q)

. (23)

Further, from (22) and (23) for any r ∈ W3, we have that c(x)c(xr) is a codeword of Ci. where Ci

denote the cyclic code over GF(q) with the generator polynomial gi(x) =
xn−1
xni−1 and minimum distance

di = ni−(−1)i . Hence, from Theorem 3, we have (di,j,hni,q )
2 ≥ di = ni−(−1)i , i.e., d

(i,j,h)
(ni,q)

≥ ⌈√ni−(−1)i⌉ and

(d
(i,j,h)
(ni,q)

)2 − d
(i,j,h)
(ni,q)

+ 1 ≥ ni−(−1)i if −1 ∈ W3. �

Theorem 8. Assume that q ∈ W0. Let C
(j,h)
(n1,n2,q)

denote the cyclic code over GF(q) with the generator

polynomial g
(j,h)
(n1,n2,q)

(x) = (xn−1)(x−1)
(xn1−1)(xn2−1)ωj(x)ωh(x)

, where

(j, h) ∈ {(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 0), (4, 5), (5, 0), (5, 1)}.

The cyclic code C
(j,h)
(n1,n2,q)

has parameters [n, n1 + n2 − 1 + (n1−1)(n2−1)
3 , d

(j,h)
(n1,n2,q)

], where d
(j,h)
(n1,n2,q)

≥

⌈
√

min(n1, n2)⌉. If −1 ∈ W3, we have (d
(j,h)
(n1,n2,q)

)2 − d
(j,h)
(n1,n2,q)

+ 1 ≥ min(n1, n2).

Proof. Let j = 0, h = 1 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in

C
(0,1)
(n1,n2,q)

. Take any r ∈ Wk for 1 ≤ k ≤ 5, then c(xr) is a codeword of Hamming weight ω in

C
(i,(0−k) mod 6,(1−k) mod 6)
(n1,n2,q)

. It then follows that d
(0,1)
(n1,n2,q)

= d
((0−k) mod 6,((1−k) mod 6)
(n1,n2,q)

. Therefore, we

have

d
(0,1)
(n1,n2,q)

= d
(5,3)
(n1,n2,q)

= d
(4,5)
(n1,n2,q)

= d
(3,4)
(n1,n2,q)

= d
(2,3)
(n1,n2,q)

= d
(1,2)
(n1,n2,q)

. (24)

Let j = 0, h = 2 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in C
(0,2)
(n1,n2,q)

. Take

any r ∈ Wk for 1 ≤ k ≤ 5, then c(xr) is a codeword of Hamming weight ω in C
((0−k) mod 6,(2−k) mod 6)
(n1,n2,q)

.
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It then follows that d
(0,2)
(n1,n2,q)

= d
((0−k) mod 6,(2−k) mod 6)
(n1,n2,q)

. Therefore, we have

d
(0,2)
(n1,n2,q)

= d
(5,1)
(n1,n2,q)

= d
(4,0)
(n1,n2,q)

= d
(3,5)
(n1,n2,q)

= d
(2,4)
(n1,n2,q)

= d
(1,3)
(n1,n2,q)

. (25)

Further, from (24) and (25) for any r ∈ W3, we have that c(x)c(xr) is a codeword of Ci. Hence, from

Theorem 4, we have (d
(j,h)
(n1,n2,q)

)
2
≥ d(n1,n2,q) = min(n1, n2) i.e., d

(j,h)
(n1,n2,q)

≥ ⌈
√

min(n1, n2)⌉,

and (d
(j,h)
(n1,n2,q)

)2 − d
(j,h)
(n1,n2,q)

+ 1 ≥ min(n1, n2) if −1 ∈ W3. �

Theorem 9. Assume that q ∈ W0. Let C
(i,j,h,l)
(ni,q)

denote the cyclic code over GF(q) with the generator

polynomial g
(i,j,h,l)
(ni,q)

(x) = xn−1
(xni−1)ωj(x)ωh(x)ωl(x)

, where i = 1, 2 and

(j, h, l) ∈ {(0, 4, 2), (0, 4, 5), (1, 5, 0), (2, 0, 1), (3, 1, 2), (4, 2, 3), (5, 3, 1), (5, 3, 4)}.

The cyclic code C
(i,j,h,l)
(ni,q)

has parameters [n, ni +
(n1−1)(n2−1)

2 , d
(i,j,h,l)
(ni,q)

], where d
(i,j,h,l)
(ni,q)

≥ ⌈√ni−(−1)i⌉.

If −1 ∈ W3, we have (d
(j,h,l)
(n1,n2,q)

)2 − d
(j,h.l)
(n1,n−2,q) + 1 ≥ ni−(−1)i .

Proof. Let j = 0, h = 4, l = 2 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in

C
(i,0,4,2)
(ni,q)

. Take any r ∈ Wk for 1 ≤ k ≤ 5. The cyclic code c(xr) is a codeword of Hamming weight ω

in C
(i,(0−k) mod 6,(4−k) mod 6,(2−k) mod 6)
(ni,q)

. It then follows that

d
(i,0,4,2)
(ni,q)

= d
(i,(0−k) mod 6,(4−k) mod 6,(2−k) mod 6)
(ni,q)

. Therefore, we have

d
(i,0,4,2)
(ni,q)

= d
(i,5,3,1)
(ni,q)

= d
(i,4,2,0)
(ni,q)

= d
(i,3,1,5)
(ni,q)

= d
(i,2,0,4)
(ni,q)

= d
(i,1,5,3)
(ni,q)

. (26)

Let j = 0, h = 4, l = 5 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in

C
(i,0,4,5)
(ni,q)

. Take any r ∈ Wk for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in

C
(i,(0−k) mod 6,(4−k) mod 6,(5−k) mod 6)
(ni,q)

. It then follows that

d
(i,0,4,5)
(ni,q)

= d
(i,(0−k) mod 6,(4−k) mod 6,(5−k) mod 6)
(ni,q)

. Therefore, we have

d
(i,0,4,5)
(ni,q)

= d
(i,5,3,4)
(ni,q)

= d
(i,4,2,3)
(ni,q)

= d
(i,3,1,2)
(ni,q)

= d
(i,2,0,1)
(ni,q)

= d
(i,1,5,0)
(ni,q)

. (27)

Further, from (26) and (27) for any r ∈ W3, we have that c(x)c(xr) is a codeword of Ci, where Ci

and di be defined as in Theorem 3. Hence, from Theorem 3, we have (d
(i,j,h,l)
(ni,q)

)2 ≥ di = ni−(−1)i , i.e.,

d
(i,j,h,l)
(ni,q)

≥ ⌈√ni−(−1)i⌉ and (d
(i,j,h,l)
(ni,q)

)2 − d
(i,j,h,l)
(ni,q)

+ 1 ≥ ni−(−1)i , if −1 ∈ W3. �

Theorem 10. Assume that q ∈ W0. Let C
(j,h,l)
(n1,n2,q)

denote the cyclic code over GF(q) with the generator

polynomial g
(j,h,l)
(n1,n2,q)

(x) = (xn−1)(x−1)
(xn1−1)(xn2−1)ωj(x)ωh(x)ωl(x)

, where
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(j, h, l) ∈ {(0, 4, 2), (0, 4, 5), (1, 5, 0), (2, 0, 1), (3, 1, 2), (4, 2, 3), (5, 3, 1), (5, 3, 4)}. The cyclic code C(j,h,l)
(n1,n2,q)

has parameters [n, n1 + n2 − 1 + (n1−1)(n2−1)
2 , d

(j,h,l)
(n1,n2,q)

], where d
(j,h,l)
(n1,n2,q)

≥ ⌈
√

min(n1, n2)⌉.

If −1 ∈ W3, we have (d
(j,h,l)
(n1,n2,q)

)2 − d
(j,h.l)
(n1,n−2,q) + 1 ≥ min(n1, n2).

Proof. Let j = 0, h = 4, l = 2 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω

in C
(0,4,2)
(n1,n2,q)

. Take any r ∈ Wk for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in

C
((0−k) mod 6,(4−k) mod 6,(2−k) mod 6)
(n1,n2,q)

. It then follows that

d
(i,0,4,2)
(n1,n2,q)

= d
(i,(0−k) mod 6,(4−k) mod 6,(2−k) mod 6)
(n1,n2,q)

. Therefore, we have

d
(0,4,2)
(n1,n2,q)

= d
(5,3,1)
(n1,n2,q)

= d
(4,2,0)
(n1,n2,q)

= d
(3,1,5)
(n1,n2,q)

= d
(2,0,4)
(n1,n2,q)

= d
(1,5,3)
(n1,n2,q)

. (28)

Let j = 0, h = 4, l = 5 and c(x) ∈ GF(q)[x]/(xn − 1) be a codeword of Hamming weight ω in

C
(0,4,5)
(n1,n2,q)

.Take any r ∈ Wk for 1 ≤ k ≤ 5. Then c(xr) is a codeword of Hamming weight ω in

C
((0−k) mod 6,(4−k) mod 6,(5−k) mod 6)
(n1,n2,q)

. It then follows that

d
(i,0,4,5)
(n1,n2,q)

= d
(i,(0−k) mod 6,(4−k) mod 6,(5−k) mod 6)
(n1,n2,q)

. Therefore, we have

d
(0,4,5)
(n1,n2,q)

= d
(5,3,4)
(n1,n2,q)

= d
(4,2,3)
(n1,n2,q)

= d
(3,1,2)
(n1,n2,q)

= d
(2,0,1)
(n1,n2,q)

= d
(1,5,3)
(n1,n2,q)

. (29)

Further, from (28) and (29) for any r ∈ W3, we have that c(x)c(xr) is a codeword of C(n1,n2,q), where

C(n1,n2,q) and d(n1,n2,q) be defined as in Theorem 4. Hence, from Theorem 4, we have (dj,h,ln1,n2,q)
2 ≥

d(n1,n2,q) = min(n1, n2), i.e., d
(j,h,l)
(n1,n2,q)

≥ ⌈
√

min(n1, n2)⌉ and (d
(j,h,l)
(n1,n2,q)

)2−d
(j,h.l)
(n1,n−2,q)+1 ≥ min(n1, n2)

if −1 ∈ W3. �

Example 1. Let (p,m, n1, n2) = (2, 1, 13, 19). Then q = 2, n = 247 and Cs is a [247, 109] cyclic code

over GF(q) with generator polynomial g(x) = x247−1
(x−1)ω0(x)ω1(x)ω2(x)

= x138 + x137 + x136 + x134 + x130 +

x129 + x128 +x124 + x121 + x120 + x111 +x107 + x106 + x105 + x104 +x102 + x98 + x96 +x94 + x93 + x92 +

x88+x87+x86+x85+x83+x82+x75+x70+x67+x63+x62+x61+x60+x57+x55+x53+x52+x51+

x50+x47+x46+x45+x43+x42+x40+x39+x38+x37+x36+x35+x34+x33+x31+x30+x28+x27+

x26 + x25 + x22 + x21 + x16 + x13 + x12 + x10 + x9 + x8 + x6 + x3 + x2 + 1. We did some computation

and our computation shows that upper bound on the minimum distance for this binary code is 48.

Example 2. Let (p,m, n1, n2) = (3, 1, 7, 13). Then q = 2, n = 91 and Cs is a [91, 19, 7] cyclic code

over GF(q) with generator polynomial g(x) = (x91−1)(x−1)
(x7−1)(x13−1) = x72 + x71 + x65 + x64 + x59 + x57 + x52 +
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x50 + x46 + x43 + x39 + x36 + x33 + x29 + x26 + x22 + x20 + x15 + x13 + x8 + x7 + x+ 1. This is a bad

cyclic code due to its poor minimum distance. The code in this case is bad because q /∈ W0.

Example 3. Let (p,m, n1, n2) = (3, 1, 7, 19). Then q = 3, n = 133 and Cs is a [133, 61] cyclic code

over GF(q) with generator polynomial g(x) = x133−1
(x7−1)ω3(x)ω4(x)ω2(x)

= x72 + 2x66 + x65 + 2x64 + 2x63 +

2x61 + x60 +2x58 +2x57+2x56 + x55 + x54 + x53 +2x52+ x50 +2x49 + x48 +2x47+2x46 +2x45+ x44 +

2x41 + x40 + x37 +2x36 + x35 + x32 +2x31 + x28 +2x27 +2x26 +2x25 + x24 +2x23 + x22 +2x20 + x19 +

x18 + x17 + 2x16 +2x15 + 2x14 + x12 +2x11 + 2x9 + 2x8 + x7 + 2x6 + 1. We did some computation and

our computation shows that upper bound on the minimum distance for this ternary code is 35. From

Theorem 9, we have lower bound on the minimum distance for this ternary code is 5.

Conclusion. WGCS were used to construct cyclic codes in [5] and [12]. The idea of constructing cyclic

codes with two-prime WGCS-II of order 6 could be viewed as an extension of above these two papers.

The cyclic codes employed in this paper depend on n1, n2 and q. When q ∈ W0, we get a good code.

We expect that the codes in Examples 1 and 3 give good codes. When q /∈ W0, we get a bad code, for

example, we get a bad code in Example 2. Finally, we expect that cyclic codes described in this paper

can be employed to construct the good cyclic codes of large length.
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