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CHARACTER VALUES OF THE

SIDELNIKOV-LEMPEL-COHN-EASTMAN SEQUENCES

ŞABAN ALACA AND GOLDWYN MILLAR

Abstract. Binary sequences with good autocorrelation properties and large
linear complexity are useful in stream cipher cryptography. The Sidelnikov-
Lempel-Cohn-Eastman (SLCE) sequences have nearly optimal autocorrelation.
However, the problem of determining the linear complexity of the SLCE se-
quences is still open.

It is well known that one can gain insight into the linear complexity of a
sequence if one can say something about the divisors of the gcd of a certain
pair of polynomials associated with the sequence. The authors of [20], [24], and
[31] were able to obtain some results of this type for the SLCE sequences. The
authors of [24] mention that it would be nice to obtain more such results. We
derive new divisibility results for the SLCE sequences in this paper.

Our approach is to exploit the fact that character values associated with the
SLCE sequences can be expressed in terms of a certain type of Jacobi sum. By
making use of known evaluations of Gauss and Jacobi sums in the “pure” and
“small index” cases, we are able to obtain new insight into the linear complexity
of the SLCE sequences.

Key words and phrases: linear complexity, feedback shift registers, autocorrela-
tion, stream cipher cryptography, difference sets, almost difference sets, Jacobi
sums, Gauss sums
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1. Introduction

Let a = a0a1a2 . . . be a sequence over a field F. We say that a is periodic if there
is an integer v > 0 such that ai = av+i for all integers i ≥ 0. If v is the smallest such
integer, then we say that a has period v. Periodic sequences with certain properties
are useful in stream cipher cryptography. A list of general design parameters for
cryptographic sequences is given at the end of Section 5.1 in [17]. A good sequence
has a long period and ideally should posses two statistical properties known as
the balance property and the run property (Properties R-1 and R-2 from [17],
respectively). Furthermore, sequences should posses good correlation properties.
Individual sequences should have low-valued auto-correlation (Property R-3 from
[17]), and sets of sequences should have low-valued cross-correlation. Sequences
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should also have large linear complexity (large linear span). We will not discuss
the run-property or the low-valued cross-correlation property in this paper.

It is important that the number of zeroes and ones in the first v elements of a
binary sequence of period v differ by at most one [17]. This is the balance property.

It is possible to define autocorrelation for sequences with elements from various
different fields (see [17]). But in this paper, we will discuss only autocorrelation
of sequences defined over F2. Thus, we assume that a is a sequence with elements
in F2. We define the autocorrelation function Cτ of a by

Cτ = C(τ) :=
v−1
∑

i=0

(−1)ai+ai+τ ,

where τ ∈ {0, ..., v − 1}. From a cryptographic standpoint, it is important that
the maximum autocorrelation of the sequence be as small as possible.

Let ℓ be the smallest integer for which there exist c1, . . . , cℓ ∈ F such that

−ai = c1ai−1 + · · ·+ cℓai−ℓ for each i ≥ ℓ.

In other words, let ℓ be the length of the smallest linear feedback shift register
that can be used to generate the sequence a (see [17]). Then we say that ℓ is
the linear complexity of a. Linear complexity is one of the most important design
parameters for cryptographic sequences: using the Berlekamp-Massey algorithm,
one can deduce the entire sequence from 2ℓ of its consecutive elements [17]. Ideally,
the linear complexity of a sequence would be nearly as large as its period.

The polynomial c(x) = 1 + c1x + · · · + cℓx
ℓ ∈ F[x] is called the characteristic

polynomial of a. Let A(x) = a0 + a1x + · · · + av−1x
v−1. It is well known (see for

example [17] and [24]) that a has characteristic polynomial

c(x) =
xv − 1

gcd(xv − 1, A(x))
(1.1)

and linear complexity

l = v − deg(gcd(xv − 1, A(x))).(1.2)

As discussed in [24], the computation of gcd(xv − 1, A(x)) is harder when the
characteristic of F divides v than when it does not. For if the characteristic of F
divides v, then one must not only find the common factors of xv − 1 and A(x) but
also determine the multiplicity with which they divide gcd(xv − 1, A(x)).

In this paper, we study a class of sequences defined over F2 that were discovered
by Sidelnikov [33] and rediscovered by Lempel, Cohn, and Eastman [26]. Following
[24], we refer to these sequences as Sidelnikov-Lempel-Cohn-Eastman sequences
(or SLCE sequences). As the authors of [24] remark, SLCE sequences are some of
the best even length sequences: they have the same number of zeroes as they do
ones, and they have nearly optimal autocorrelation properties [26]. In fact, since
circulant Hadamard matrices seem not to exist [27], the autocorrelation properties
of the SLCE sequences may in fact be optimal.
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We now define the SLCE sequences, and in so doing, we fix notation (for p, q,
m, α, s, and S2(x)) that we use throughout the paper.

Definition 1.1. Let p an odd prime, m a positive integer, and q = pm. Let α be a
primitive element of the finite field Fq. An SLCE sequence s = s0s1s2 . . . of period
q − 1 over F2 is defined as follows:

For 0 ≤ t ≤ q − 2, we let st := 1 if αt = α2i+1 − 1 for some integer i with
0 ≤ i ≤ q − 2, and let st := 0 otherwise. We define S2(x) ∈ F2[x] by

S2(x) = s0 + s1x+ · · ·+ sq−2x
q−2.

Since the SLCE sequences have good autocorrelation and balance properties, it
makes sense to study their linear complexity. Since these sequences are binary, it
is natural to determine their linear complexity over F2. The study of the linear
complexity of the SLCE sequences over F2 began with [20] and was continued in
[24] and [31]. However, this problem has turned out to be rather difficult. There
are at least two reasons for this. For one thing, since q − 1 is always even, the
characteristic of F2 divides the periods of the sequences. But there is also another
problem, which is discussed in the concluding section of [24]. Many well-known
sequences correspond (in a sense) to reasonably well-behaved combinatorial objects
such as difference sets, divisible difference sets, and partial difference sets (see [8]
for difference sets and divisible difference sets, and see [28] for partial difference
sets). As a result of this correspondence, explicit formulae have been found for
the linear complexity of these sequences (see, for example, [14]). However, the
SLCE sequences do not correspond to any of these types of combinatorial objects.
Rather, they correspond to combinatorial objects called almost difference sets that
are, in a sense, more general and about which much less is presently known (see
[5] for background on almost difference sets).

The authors of [20], [24], and [31] were able to obtain conditions under which cer-
tain polynomials divide gcd(xq−1+1, S2(x)). In light of (1.1) and (1.2), such results
provide some insight into the characteristic polynomials of the SLCE sequences
over F2 and yield upper bounds on the linear complexity of these sequences. The
authors of [24] also computed gcd(S2(x), x

q−1 + 1) in a number of cases using
MAGMA. However, much still remains to be learned about the divisors of these
polynomials. Indeed, the authors of [24] mentioned that it would be nice to obtain
new divisibility results giving conditions under which certain polynomials divide
gcd(S2(x), x

q−1 + 1). We obtain more results of this type in this paper.
The results from [20] and [24] are based on a representation of the elements of

the SLCE sequences in terms of certain quadratic character values. Using this
representation in conjunction with certain facts concerning the cyclotomic num-
bers of order 2, the authors of [20] and [24] were able to gain some insight into
the characteristic polynomials of these sequences. Furthermore, the authors of [24]
showed that under certain conditions, the problem of determining whether or not
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a certain polynomial divides gcd(xq−1+1, S2(x)) is equivalent to determining con-
gruence classes of certain character sums known as Jacobsthal sums. The authors
of [31] used known evaluations of cyclotomic numbers in certain special cases to
obtain a number of new divisibility conditions.

By contrast, the approach of this paper is based on an expression of character
values associated with the SLCE sequences (in a manner to be specified later) in
terms of certain Jacobi sums (see Theorem 3.1 below). In fact, the problem of
determining whether certain polynomials divide gcd(xq−1 + 1, S2(x)) turns out to
be equivalent to determining the congruence classes of these Jacobi sums modulo
certain prime ideals in certain algebraic number fields.

Jacobi sums are closely related to both cyclotomic numbers and Jacobsthal sums
(see [7, Chapters 2 and 6]), so it is perhaps not surprising that the problem can
be interpreted in these various different manners. Nonetheless, our method does
have some virtues. At present, the Jacobsthal sum condition from [7] only applies
when q ≡ 1 (mod 4), and calculation of the cyclotomic numbers of order t is quite
complicated when t is large. Thus, our representation of the problem in terms
of Jacobi sums provides a convenient means by which to harness the information
from known evaluations of Gauss and Jacobi sums. Indeed, by making use of such
evaluations, we are able to obtain divisibility conditions different than those from
[20], [24], and [31] (see Theorems 4.1 and 4.2 below).

We should also note that since the problem of determining the linear complexity
of the SLCE sequences over F2 is rather difficult, many authors have turned to the
important work of calculating the linear complexity of these sequences over other
fields. For instance, since the SLCE sequences are constructed using the finite field
Fq, several authors have studied the linear complexity of these sequences over Fp

(see [18], [19], [16], [4], [9], [23], [12], [3], and [11]; some of the papers in fact deal
with closely related questions). The problem of determining the linear complexity
of the SLCE sequences over non-prime fields has also been considered [10].

2. Preliminary Results

We introduce some concepts and list some preliminary results that we use
throughout the paper. Let G denote a finite Abelian group of exponent v∗. The
integral group ring Z[G] consists of all formal sums

∑

g∈G agg, where ag ∈ Z and
with addition and multiplication defined as follows:

∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g

and
(

∑

g∈G

agg
)(

∑

h∈G

bhh
)

=
∑

f∈G

(

∑

gh=f

agbh

)

f.
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For any subset T ⊆ G, we identify T with the group ring sum of all the elements
in T ; indeed, we refer to this sum as T.

Notation 2.1. Let n be a positive integer. We write ζn to denote a primitive,
complex nth root of unity. Sometimes we write ζ to refer to a (not necessarily
primitive) root of unity.

A group character is a homomorphism χ : G → 〈ζv∗〉. Such a homomorphism
can be extended by linearity to a map from Z[G] to Z[ζv∗ ]. For a discussion of
the use of characters in the theory of difference sets, see [8]; for a discussion of
characters over finite fields, see [22].

Definition 2.1. Let D := {αt | ∃(i ∈ {0, 1, . . . , q − 2}) αt = α2i+1 − 1} ⊆ F∗
q. We

also refer to the group ring element D ∈ Z[F∗
q ] as SD(α).

We adopt the following convention. For an integer i ∈ {1, . . . , p − 1}, we refer
to the corresponding element of F∗

p by italicizing i .

Definition 2.2. Let Y := {y ∈ F∗
q | y = x(1 − x) for some x ∈ F∗

q}. Let Z := Y c

denote the complement of Y in F∗
q .

The following result, due to Lempel, Cohn, and Eastman [26, proof of Theo-
rem 5] plays a fundamental role in our work.

Theorem 2.1. Let D and Z be as in Definitions 2.1 and 2.2, respectively. Then
Z is a shift of D: in fact, Z = −4−1D, so that D = −4Z and Dc = −4Y.

We need several results concerning cyclotomic fields. First, we fix some notation.

Notation 2.2. Let k be a positive odd divisor of q − 1, and let f denote the
multiplicative order of 2 modulo k, so that f is the smallest positive integer for
which k|2f − 1. Let φ(k) denote the Euler phi-function, which is the number of
positive integers less than k and relatively prime to k.

For a proof of the next result, see [30, Theorems 8.7 and 8.8].

Theorem 2.2. In the ring of integers Z[ζk] of the cyclotomic field Q(ζk), the prime
ideal factorization of the ideal 〈2〉 is given by

〈2〉 = P1P2 · · ·Pφ(k)/f ,

where P1, . . . , Pφ(k)/f are distinct prime ideals, and for every i = 1, . . . , φ(k)/f,
Z[ζk]/Pi is a finite field of order 2f .

Notation 2.3. Let us now stipulate that P is a prime ideal lying above 2 in Z[ζk].

For a proof of the following theorem, see [22, Propositions 13.2.3 and 14.2.1].

Theorem 2.3. The elements 1, ζk, . . . , ζ
k−1
k belong to mutually distinct cosets of

Z[ζk]/P. Furthermore, if γ ∈ Z[ζk] and γ /∈ P, then there exists a unique (not
necessarily primitive) kth root of unity ζ such that

γ(2f−1)/k ≡ ζ (mod P).
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We note that for any quadratic field K, there exists a unique square-free integer
n such that K = Q(

√
n), see [2, p. 95] or [22, p. 188]. For the proof of the

following result, see [2, p. 96] or [22, p. 189].

Theorem 2.4. Let n ≡ 1 (mod 4). Let K = Q(
√
n) be a quadratic field. Then

the ring OK of algebraic integers in K is given by

OK = Z+ Z
(−1 +

√
n

2

)

.

The following result is a special case of Theorem 10.2.1 from [2, pp. 242-245].

Theorem 2.5. Let K = Q(
√
n) be a quadratic field. If n ≡ 1 (mod 8), then the

ideal 〈2〉 factors into a product of two prime ideals as

〈2〉 = P1P2 = 〈2, 1
2
(1 +

√
n)〉〈2, 1

2
(1−

√
n).

Further, OK/Pi is a finite field of order 2 for i = 1, 2.

The following result relates quadratic and cyclotomic fields, see [22, p. 199].

Theorem 2.6. Let ℓ be a prime. Then Q
(
√

(−1)(ℓ−1)/2ℓ
)

is the unique quadratic
field contained in the cyclotomic field Q(ζℓ).

LetK = Q(
√
n) be a quadratic field. It is known that the set I(K) of all nonzero

fractional and integral ideals of K forms an Abelian group under multiplication
[2, Theorem 8.3.4]. Let P (K) be the subgroup consisting of principal ideals. The
quotient group H(K) = I(K)/P (K) is finite [2, Theorem 12.5.4]. We call the
order of this group the class number of the field K and refer to it as h(K).

We now turn our attention to character sums. We note that for every (not
necessarily primitive) kth root of unity ζ, there exists a unique character χ : F∗

q →
〈ζk〉 of order dividing k such that χ(α) = ζ [22, Chapter 8].

Notation 2.4. Let χ : F∗
q → 〈ζk〉 denote the unique character mapping α to ζk,

and let ρ be the (unique) quadratic character on F∗
q. Note that χ has order k.

Definition 2.3. Let χ be the unique character given above, and let φ be another
nontrivial character of F∗

q. We define the Jacobi sum J(χ, φ) by

J(χ, φ) :=

q−2
∑

i=1

χ(αi)φ(1− αi).

We shall be particularly interested in the Jacobi sum

K(χ) := χ(4)J(χ, χ).

We mention the following congruence (see [7, Theorem 2.18]).

(2.1) K(χ) ≡ −q (mod 2(1− ζk)).
6



The following identity is also important for our work (see [7, Theorem 2.1.4]).

(2.2) K(χ) = J(χ, ρ).

It is well known that |J(χ, φ)| = √
q, but in general, the exact value of J(χ, φ) is not

known (and, in particular, the exact value of the Jacobi sum K(χ) is not known).
Such sums have been evaluated in certain special cases. For instance, evaluations
are known for Jacobi sums over characters of small order. This information has
already been used to obtain evaluations for cyclotomic numbers [7, Chapter 2]
which were in turn used in [31] to obtain divisibility conditions for the SLCE
sequences. So, we do not use these evaluations here.

Another case in which evaluations are known is that of the pure Jacobi sums.
A Jacobi sum is called pure if some positive integral power of it is real. Such sums
were studied in [1] and [32]. Indeed, in light of (2.2), the results from [1] and [32]
can be used to evaluate certain Jacobi sums of the type K(χ). The authors of [1]
and [32] showed that if m is odd, then no Jacobi sum defined on Fpm can be pure.
They completely determined conditions under which Jacobi sums are pure when
m = 2.

Theorem 2.7. If m = 2, then K(χ) is pure if and only if k is a divisor of p+ 1,
k is an even divisor of 2(p− 1), k = 24 and p ≡ 17, 19 (mod 24), or k = 60 and
p ≡ 41, 49 (mod 60).

It follows from Theorem 2.7 and Notation 2.2 that if q = p2, then our sum K(χ)
is pure only when k is an odd divisor of p + 1. In this case an explicit evaluation
of K(χ) is given in [6, Theorem 2.14].

Theorem 2.8. Let m = 2, and let k be an odd divisor of p+ 1. Then K(χ) = p.

The evaluation in Theorem 2.8 is a special case of a more general result. To
explain why, it is necessary to introduce another type of character sum.

Definition 2.4. Let ǫ be a character on Fq. We define the Gauss sum G(ǫ) by

(2.3) G(ǫ) :=
∑

α∈Fq

ǫ(α)e2πitr(α)/p,

where tr is the field trace from Fq to Fp.

The following identity relates Gauss and Jacobi sums (see [22, Theorem 2.1.3]
or [7]). If χφ is not the trivial character, then

(2.4) J(χ, φ) =
G(χ)G(φ)

G(χφ)
.

In particular, since χ is a character of order greater than 2, we have

(2.5) K(χ) = J(χ, ρ) =
G(ρ)G(χ)

G(χρ)
.
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Let s ≥ 1 be an integer, and let χ′ := χ ◦N, where N is the field norm from F∗
qs

to F∗
q . Then χ′ is a character of Fqs of order k, which is called a lifted character.

Note that every character on Fqs of order k can be obtained as a lifted character
from a character of Fq of order k. We mention the following important identity,
which is known as the Hasse-Davenport Lifting Theorem (see [7, Theorem 11.5.2]).

(2.6) G(χ′) = (−1)s−1(G(χ))s.

The problem of evaluating Gauss sums is just as hard as the problem of eval-
uating Jacobi sums. But explicit evaluations have been obtained in a number of
special cases. The first of these evaluations is due to Gauss, who evaluated G(ρ)
when q = p (i.e. when m = 1). His evaluation can be extended to a general (odd)
prime power q = pm [7, Theorem 11.5.4] as

(2.7) G(ρ) =

{

(−1)m−1pm/2 if p ≡ 1 (mod 4)

(−1)m−1impm/2 if p ≡ 3 (mod 4).

A Gauss sum is called pure if some positive integral power of it is real. The
following theorem completely classifies pure Gauss sums (see [7, Section 11.6]).

Theorem 2.9. Let n|q − 1, and let ǫ be a character of order n. Then G(ǫ) is
pure if and only if there exists a positive integer x such that px ≡ −1 (mod n).
Furthermore, if there exist such integers and t is the least such integer, then there
exists a positive integer s such that m = 2ts, and

G(ǫ) = (−1)s−1+(pt+1)s/npm/2.

We now assume that there exists a positive integer x such that px ≡ −1 (mod k);
indeed, we refer to the least such integer as t. Then, by Theorem 2.9, G(χ) is a
pure Gauss sum. Since k is odd and pt + 1 is even, then k|pt + 1 ⇐⇒ 2k|pt + 1.
Hence, since t is the smallest positive integer satisfying pt ≡ −1 (mod k), then t
is also the smallest positive integer satisfying pt ≡ −1 (mod 2k). We note that χρ
is a character of order lcm(2, k) = 2k. Thus, G(χρ) is a pure Gauss sum. Thus,
in this case, we can use Theorem 2.9, (2.7), and (2.4) to evaluate the Jacobi sum
K(χ). We note that by Theorem 2.9, m = 2ts for some positive integer s. Since
the evaluation in (2.7) breaks into two cases, our evaluation also breaks into two
cases.

First, we assume that p ≡ 1 (mod 4). Then

K(χ) =
(−1)m−1pm/2(−1)s−1+(pt+1)s/kpm/2

(−1)s−1+(pt+1)s/(2k)pm/2
= (−1)1+(pt+1)s/(2k)pm/2.

Let us consider the special case in which m = 2 and k|p + 1 (so that t = s = 1).
Since p ≡ 1 (mod 4), it follows that (pt+1)/2k is odd. Then by Theorem 2.8, the
evaluation of K(χ) given above reduces to the evaluation K(χ) = p.
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Next, we assume that p ≡ 3 (mod 4). Then

K(χ) =
(−1)m−1impm/2(−1)s−1+(pt+1)s/kpm/2

(−1)s−1+(pt+1)s/(2k)pm/2
= (−1)1+m/2+(pt+1)s/(2k)pm/2.

Again, let us consider the special case in which m = 2 and k|p + 1 (so that
s = t = 1). Since p ≡ 3 (mod 4), it follows that (pt + 1)/2k is even. Then
by Theorem 2.8, the evaluation of K(χ) given above reduces to the evaluation
K(χ) = p.

Corollary 2.1. Assume that there exist positive integers x such that px ≡ −1
(mod k), and let t be the least such integer. Then there exists s ∈ N such that
m = 2ts, and

K(χ) =

{

(−1)1+(pt+1)s/(2k)pm/2 if p ≡ 1 (mod 4)

(−1)1+m/2+(pt+1)s/(2k)pm/2 if p ≡ 3 (mod 4).

Finally, a third case in which there are known evaluations for Gauss and Jacobi
sums is that of the small index Gauss and Jacobi sums. We will discuss the sums
K(χ) in this context. Recall that Gal(Q(ζk)) ∼= (Z/kZ)∗ . Let σp ∈ Gal(Q(ζk))
be the automorphism mapping ζk to ζpk . Then, since the Froebenius map is an
automorphism of Fq fixing the elements of Fp, we have that

σp(K(χ)) = σp(χ(4))

q−2
∑

i=1

σp(χ(α
i))σp(χ(1− αi))

= χ(4p)

q−2
∑

i=1

χ((αi)p)χ(1p − (αi)p)

= χ(4)

q−2
∑

i=1

χ(αi)χ(1− αi) = K(χ).

Thus, K(χ) is in the fixed field of σp, and by the Fundamental Theorem of Galois
Theory, this field has degree [(Z/kZ)∗ : 〈p〉] as an extension of Q. Since we know
how to evaluate K(χ) when there exist positive integers x such that px ≡ −1
(mod k), we can confine ourselves to the case in which there exist no such integers.
Having made this assumption, we see that the quotient group (Z/kZ)∗/〈p〉 must
contain the (non-identity) element −1+ 〈p〉 and so (by Lagrange’s Theorem) must
have even order.

The small index assumption is the assumption that [(Z/kZ)∗ : 〈p〉] is a small
positive integer. By making this assumption, we can infer that K(χ) lies in an
algebraic number field of small degree, and can therefore use facts about such
number fields to evaluate K(χ). Explicit evaluations have been obtained for Gauss
sums in the index 2 and index 4 cases. It is sometimes possible to translate these
Gauss sum evaluations into evaluations of K(χ).
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Let us assume that [(Z/kZ)∗ : 〈p〉] = 2. It is easy to see that

(Z/kZ)∗ ∼= 〈p〉 × 〈−1〉.
Thus, (Z/kZ)∗ contains at most 3 elements of order 2, and it follows easily from
the Chinese Remainder Theorem that (since k is odd) either k = ℓr11 or k = ℓr11 ℓ

r2
2

for some odd primes ℓ1 and ℓ2, and some positive integers r1 and r2.
The following evaluation is due to Langevin [25]. We note that the congruence

condition ℓ ≡ 3 (mod 4) is actually forced by the index 2 assumption, as Langevin
demonstrates in his paper. Furthermore, the hypothesis in the evaluation below
that ℓ > 3 is only necessary to obtain a nice expression for the Gauss sum in terms
of the class number of a certain quadratic field. We have rephrased Langevin’s
result in the manner in which it was stated in [34].

Theorem 2.10. Let k = ℓr, where ℓ > 3 is a prime congruent to 3 (mod 4) and r
is a positive integer. We suppose that [(Z/kZ)∗ : 〈p〉] = 2 and m = φ(k)/2. Then

G(χ) = p
1
2
(m−h)

(

a + b
√
−ℓ

2

)

,

where h = h(Q(
√
−ℓ)) is the class number of Q(

√
−ℓ), and the integers a and b

satisfy the three conditions

a, b 6≡ 0 (mod p), 4ph = a2 + ℓb2, and a ≡ −2p
1
2
(m+h) (mod ℓ).

Furthermore, these conditions are sufficient to determine a completely and to de-
termine b up to sign.

In the above formula, in place of the expression
(

a+b
√
−ℓ

2

)

, Langevin had origi-

nally used the expression a′ + b′
(

−1+
√
−ℓ

2

)

, where a′, b′ ∈ Z. Note that

a′ + b′
(−1 +

√
−ℓ

2

)

=
(2a′ − b′) + b′

√
−ℓ

2
.

The integers a and b in the version from [34] (and from Theorem 2.10 above) are
obtained by setting a = 2a′− b′ and b = b′. As a result, we also have the condition
(not stated explicitly in our version of Theorem 2.10) that a ≡ b (mod 2).

Note also that [(Z/2kZ)∗ : 〈p〉] = 2. Xia and Yang have evaluated index 2 Gauss
sums over characters of order 2ℓr [34]. Their result breaks into two separate cases:
one in which ℓ ≡ 3 (mod 8) and one in which ℓ ≡ 7 (mod 8). We only make use
of the result for the case in which ℓ ≡ 7 (mod 8).

Theorem 2.11. Let k = ℓr, where ℓ > 3 is a prime congruent to 7 (mod 8) and
r is a positive integer. We supppose that [(Z/2kZ)∗ : 〈p〉] = 2 and m = φ(k)/2.
Let ǫ be a character on Fq of order 2k. Then

G(ǫ) = (−1)r
p−1
2

√
(−1)(p−1)/2

p
m
2 .
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Let us make a slight modification to our earlier hypotheses. Assume s is a
positive integer, and let m = φ(k)s/2. So, we are now considering a larger class of
prime powers pm. Let us set e = φ(k)/2, so that m = es. Let ℓ ≡ 7 (mod 8). We
consider two cases.

Case 1: p ≡ 1 (mod 4). By Theorems 2.6, 2.7, and 2.11, we have that

K(χ) =
(−1)es−1pes/2(−1)s−1p(e−h)s/2

(

a+b
√
−ℓ

2

)s

(−1)s−1+r(p−1)s/2+(p−1)s/4pes/2
.

Since e is odd and (p− 1)/2 is even, we deduce that

K(χ) = (−1)s−1−(p−1)s/4p(e−h)s/2

(

a + b
√
−ℓ

2

)s

.

Case 2: p ≡ 3 (mod 4). By Theorems 2.6, 2.7, and 2.11, we have that

K(χ) =
(−1)es−1+es/2pes/2(−1)s−1p(e−h)s/2

(

a+b
√
−ℓ

2

)s

(−1)s−1+r(p−1)s/2+(p−1)s/4pes/2
.

Since e and (p− 1)/2 are odd, we deduce that

K(χ) = (−1)s−1−rs+(e+1)s/2p(e−h)s/2

(

a + b
√
−ℓ

2

)s

.

We collect these observations for later reference.

Corollary 2.2. Let k = ℓr, where ℓ is a prime congruent to 7 (mod 8) and r is a
positive integer. We suppose that [Z/kZ : 〈p〉] = 2 and m = φ(k)s/2, where s is a
positive integer.

If p ≡ 1 (mod 4), then

K(χ) = (−1)s−1−(p−1)s/4p(e−h)s/2

(

a + b
√
−ℓ

2

)s

.

If p ≡ 3 (mod 4), then

K(χ) = (−1)s−1−rs+(e+1)s/2p(e−h)s/2

(

a + b
√
−ℓ

2

)s

.

3. Character Values

We show that the problem of finding gcd(S2(x), x
q−1 + 1) is equivalent to de-

termining the equivalence class of K(χ) modulo a certain prime ideal. Several
authors have previously made use of complex group characters to determine the
linear complexity of various classes of sequences (see, for instance, [29] and [14]).

11



Notation 3.1. Since F∗
2f is a cyclic group of order 2f−1, it has a subgroup of order

k. Hence, the polynomial xk+1 = (1+x)(1+x+ · · ·+xk−1) splits completely over
F2f . Let β ∈ F2f be an element of order k, so that β is a root of 1+x+ · · ·+xk−1.
Let Iβ(x) be the minimal polynomial of β over F2.

Note that Iβ(x)|1+x+· · ·+xk−1; indeed, 1+x+· · ·+xk−1 is a product of distinct
minimal polynomials of elements of F2f of order dividing k. Since k|q−1, β is a root
of xq−1+1, and so Iβ(x) is a factor of x

q−1+1 (and, indeed, 1+x+···+xk−1|xq−1+1).
We want to determine whether or not Iβ(x) and/or 1+x+ · · ·+xk−1 divide S2(x).
Note that Iβ(x)|S2(x) if and only if S2(β) = 0, where S2(β) is an element of F2f .

By Theorem 2.2 we have F2f ≃ Z[ζk]/P. Let φ : F2f → Z[ζk]/P be an isomor-
phism. Of course, φ(0) = 0 + P and φ(1) = 1 + P. Since β has order k, there

exists η ∈ F2f such that β = η(2
f−1)/k, so that φ(β) = φ(η)(2

f−1)/k. Consequently,
by Theorem 2.3, there exists a unique (in this case, primitive) kth root of unity
congruent to φ(β) (mod P).

Notation 3.2. Let ζ denote the unique primitive kth root of unity congruent to
φ(β) (mod P). Let χ denote the unique group character mapping α to ζ. Let Sz(x)
be the polynomial in Z[x] obtained by replacing each coefficient of S2(x) with its
counterpart (0 or 1) from Z.

We note that φ(S2(β)) is the equivalence class modulo P containing Sz(ζ), and

χ(D) + P = χ(SG(α)) + P = Sz(ζ) + P = φ(S2(β)).

Hence,
Iβ(x)|S2(x) ⇐⇒ χ(D) ≡ 0 (mod P).

Since χ is nontrivial, we have χ(D) = χ(G−Dc) = −χ(Dc), so that

χ(D) ≡ 0 (mod P) ⇐⇒ χ(Dc) ≡ 0 (mod P).

Hence,

(3.1) Iβ(x)|S2(x) ⇐⇒ χ(Dc) ≡ 0 (mod P).

Thus, it suffices to consider χ(Dc) instead of χ(D).
We now prove the result mentioned at the beginning of this section. As we

show in the next section, this result enables us to derive several new divisibility
results for the SLCE sequences. We proceed by obtaining an expression for χ(Dc)
in terms of K(χ).

Theorem 3.1. We have

Iβ(x)|S2(x) ⇐⇒ 1

2
(K(χ) + 1) ≡ 0 (mod P).

Proof. The reasoning in the next two sentences is taken from [7, Theorem 2.14],
where it serves a different purpose. Let γ ∈ F∗

q be fixed. An element x ∈ F∗
q satisfies

the equation x(1−x) = γ if and only if it satisfies the equation (2x−1 )2 = 1−4γ.
12



Hence, the number of solutions of the equation x(1 −x) = γ in F ∗
q is 1+ρ(1 −4γ),

where ρ denotes the (unique) quadratic character on Fq. It follows that every
element of F∗

q is represented either twice or zero times in the form x(1 − x), save

for 4−1, which is represented once. This makes sense since there are q − 2 choices
of x for which x(1 −x) ∈ F∗

q, and q−2 is an odd number. Making use of Theorem
2.1, we see that

χ(−1 )K(χ) = χ(−4 )J(χ, χ) = χ(−4 )
∑

x∈F∗

q

χ(x)χ(1 − x)

= χ(−4 )
∑

x∈F∗

q

χ(x(1 − x)) = χ(−4 )χ
(

∑

x∈F∗

q

x(1 − x)
)

= χ(−4 )χ(2Y − 4−1) = χ(2Dc − (−1 )) = 2χ(Dc)− χ(−1 ).

So, we deduce that

χ(Dc) =
1

2
χ(−1 )(K(χ) + 1).

Note that, by (2.1),K(χ) ≡ 1 (mod 2), so that the value we have ascribed to χ(Dc)
is indeed an element of Z [ζk] . The result now follows by equivalence (3.1). �

4. Divisibility Results

We use Theorem 3.1, in conjunction with the evaluations of the sums K(χ) given
in Section 2, to obtain new results concerning the divisors of gcd(S2(x), x

q−1 + 1).
We first apply the evaluations of the pure Jacobi sums given in Corollary 2.1.

Lemma 4.1. Suppose that there exist positive integers x satisfying the congruence
px ≡ −1 (mod k), and let t be the least such integer. Hence, by Theorem 2.9,
m = 2ts for some positive integer s.

If p ≡ 1 (mod 4), then Iβ(x)|S2(x) ⇐⇒ s ≡ 0 (mod 2).
If p ≡ 3 (mod 4), then Iβ(x)|S2(x) ⇐⇒ either s ≡ 0 (mod 2) or ts is odd.

Proof. By Corollary 2.1, K(χ) is pure; in fact, K(χ) ∈ Z.We know that P∩Z = 2Z
(see [22]). Hence,

Iβ(x)|S2(x) ⇐⇒ 1

2
(K(χ) + 1) ≡ 0 (mod 2) ⇐⇒ K(χ) + 1 ≡ 0 (mod 4).

If p ≡ 1 (mod 4), then by Corollary 2.1, we have

Iβ(x)|S2(x) ⇐⇒ (−1)1+(pt+1)s/(2k)pm/2 + 1 ≡ 0 (mod 4)

⇐⇒ (−1)1+(pt+1)s/(2k) + 1 ≡ 0 (mod 4).

Since k is odd, we have

Iβ(x)|S2(x) ⇐⇒ (−1)1+s + 1 ≡ 0 (mod 4) ⇐⇒ s ≡ 0 (mod 2).

If p ≡ 3 (mod 4), then by Corollary 2.1, we have

Iβ(x)|S2(x) ⇐⇒ (−1)1+m/2+(pt+1)s/(2k)pm/2 + 1 ≡ 0 (mod 4).
13



We first assume that ts is even. Thus, pm/2 ≡ 1 (mod 4). Hence,

Iβ(x)|S2(x) ⇐⇒ (−1)1+(pt+1)s/(2k) + 1 ≡ 0 (mod 4).

If t is even and s is odd, then 1+ (pt +1)s/(2k) ≡ 0 (mod 2). On the other hand,
if s is even, then 1 + (pt + 1)s/(2k) ≡ 1 (mod 2). Hence, if ts is even, then

Iβ(x)|S2(x) ⇐⇒ s ≡ 0 (mod 2).

We now assume that ts is odd. Then

Iβ(x)|S2(x) ⇐⇒ (−1)ts+(pt+1)s/(2k)+1 ≡ 0 (mod 4) ⇐⇒ (−1)+1 ≡ 0 (mod 4).

So, clearly Iβ(x)|S2(x) when ts is odd. �

We use Lemma 4.1 to determine conditions under which 1+x+···+xk−1 | S2(x).

Theorem 4.1. Suppose that there exist positive integers x satisfying the congru-
ence px ≡ −1 (mod k), and let t be the least such integer. Hence, by Theorem 2.9,
m = 2ts for some positive integer s.

If p ≡ 1 (mod 4), then 1 + x+ · · ·+ xk−1|S2(x) ⇐⇒ s ≡ 0 (mod 2).
If p ≡ 3 (mod 4), then 1 + x + · · ·+ xk−1|S2(x) ⇐⇒ either s ≡ 0 (mod 2) or

ts is odd.

Proof. Let ν ∈ F∗
q be an element of order n, where n|k. Since, pt ≡ −1 (mod k),

it follows that pt ≡ −1 (mod n). Thus, the equation px ≡ −1 (mod n) has a
positive integer solution x. Let t′ be the smallest such solution. There exists
unique integers y, r ≥ 0 such that t = yt′ + r, r < t′. Furthermore,

−1 ≡ pt = pyt
′+r ≡ (−1)ypr (mod n).

Since r < t′, the above equation is only possible if r = 0. Hence, t′|t.
Now, by Theorem 2.9, there exists a positive integer s′ such that m = 2t′s′, so

that 2t′s′ = 2ts = 2yt′s, and hence s′ = ys. Consequently, we have

s ≡ 0 (mod 2) =⇒ s′ ≡ 0 (mod 2).

Further, since ts = t′s′, we have

ts ≡ 1 (mod 2) =⇒ t′s′ ≡ 1 (mod 2).

So, it follows from Lemma 4.1 that the conditions guaranteeing that Iβ(x)|S2(x)
are also sufficient to guarantee that Iν(x)|S2(x), where ν is any element of order
dividing k. Thus, these conditions are sufficient to guarantee that 1 + x + · · · +
xk−1|S2(x). And, of course, they are also necessary. The result follows. �

We now give some examples to illustrate Theorem 4.1.

Example 4.1. Let p = 19 and let s be the SLCE sequence of length 192− 1 = 360
with corresponding polynomial S2(x). Note that 5|20 = 19 + 1. Thus, we have
p ≡ 3 (mod 4) and s = t = 1. Hence, ts is odd. Thus, Theorem 4.1 guarantees
that 1 + x+ x2 + x3 + x4|gcd(S2(x), x

360 + 1).

We use Theorem 4.1 to interpret some of the numerical results from [24].
14



Example 4.2. Let q = 52. The authors of [24] found (via computer computations)
that gcd(S2(x), x

q−1 + 1) = (x + 1)4. Hence, even though 3|5 + 1, 1 + x + x2 ∤
gcd(S2(x), x

q−1+1). Of course, this follows from Theorem 4.1 since p ≡ 1 (mod 4),
but s = 1 ≡ 1 (mod 2).

Let q = 34. Note that 5|32 + 1 but 5 ∤ 3 + 1. So, p ≡ 3 (mod 4), t = 2 and
s = 1. Hence, s ≡ 1 (mod 2) and ts is even, so that 1 + x + x2 + x3 + x4 ∤
gcd(S2(x), x

q−1 + 1). This agrees with the calculations in [24], where it was found
that gcd(S2(x), x

q−1 + 1) = (x+ 1)10.
Let q = 54. Note that 13|52+1 but 13 ∤ 5+1. So, t = 2, s = 1, and p ≡ 1 (mod 4).

Since s 6≡ 0 (mod 2), Theorem 4.1 guarantees that 1 + x+ · · ·+ x13 ∤ S2(x). This
agrees with the calculations in [24], where it was shown that gcd(S2(x), x

q−1+1) =
(x+ 1)12(x2 + x+ 1)10.

Let q = 74. Note that 5|72 + 1. So, t = 2, s = 1, and p ≡ 3 (mod 4). By
Theorem 4.1, since s 6≡ 0 (mod 2) and ts is even, 1+x+x2+x3+x4 ∤ S2(x). This
agrees with the calculations in [24], where it was found that gcd(S2(x), x

q−1 +1) =
(x+ 1)22(x2 + x+ 1)18(x4 + x+ 1)2(x4 + x3 + 1)2.

Let q = 36. Note that 7|33 + 1. So, t = 3, s = 1, and p ≡ 3 (mod 4). Thus, ts is
odd, and so Theorem 4.1 guarantees that 1+ x+ · · ·+ x6 | S2(x). This agrees with
the calculations in [24], where it was shown that

gcd(S2(x), x
q−1 + 1)

= (x+ 1)2(x3 + x+ 1)4(x3 + x2 + 1)4(x12 + x11 + · · ·+ x+ 1)2

= (x+ 1)2(1 + x+ · · ·+ x6)4(x12 + · · ·+ x+ 1)2.

Let q = 56. Now 3|5 + 1. In this case, t = 1, s = 3, and p ≡ 1 (mod 4). So, by
Theorem 4.1, 1 + x + x2 ∤ S2(x). Also, 3

2|53 + 1. Here, t = 3 and s = 1. So, by
Theorem 4.1, 1 + x + · · ·+ x8 ∤ S2(x). Finally, 7|53 + 1. Here, t = 3, and s = 1.
So, by Theorem 4.1, 1 + x + · · ·+ x6 ∤ S2(x). This agrees with the calculations in
[24], where it was found that

gcd(S2(x), x
q−1 + 1) = (x5 + x3 + x2 + x+ 1)4(x5 + x4 + x3 + x2 + 1)4

×(x5 + x4 + x3 + x+ 1)4(x5 + x4 + x3 + x2 + 1)4.

Let q = 38. Now, 5|32 + 1. Here, t = 2, s = 2, and p ≡ 3 (mod 4). Hence, since
s ≡ 0 (mod 2), Theorem 4.1 guarantees that 1 + x + x2 + x3 + x4|S2(x). Also,
41|34 + 1. Here, t = 4, and s = 1. Hence, since s 6≡ 0 (mod 2) and since ts is
even, Theorem 4.1 guarantees that 1 + x + · · ·+ x40 ∤ S2(x). This agrees with the
calculations in [24], where it was shown that

gcd(S2(x), x
q−1 + 1) = (x+ 1)26(x4 + x3 + x2 + x+ 1)18.

We now apply the evaluations of the Jacobi sums of index 2 given in Corollary 2.2
to deduce new divisibility conditions.

Lemma 4.2. Let k = ℓr, where ℓ is a prime congruent to 7 (mod 8) and r is a
positive integer. We suppose that [Z/kZ : 〈p〉] = 2 and m = φ(k)s/2, where s is a
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positive integer. Let e = φ(k)/2, so that m = es. Let a and b be determined as in
Theorem 2.10 (Langevin’s result).

If p ≡ 1 (mod 4), then

Iβ(x)|S2(x) ⇐⇒ (−1)s−1−(p−1)s/4

(

a+ b

2

)s

≡ 3 (mod 4).

If p ≡ 3 (mod 4), then

Iβ(x)|S2(x) ⇐⇒ (−1)s−1−rs+es+(1−h)s/2

(

a+ b

2

)s

≡ 3 (mod 4).

Proof. Since ℓ ≡ 3 (mod 4), Theorem 2.6 implies that K(χ) ∈ Q(
√
−ℓ). Since P

is a prime ideal lying over 2, P ∩ Q(
√
−ℓ) is a prime ideal of Q(

√
−ℓ) lying over

2 (and conversely, for every prime ideal P ′ of Q(
√
−ℓ) lying above 2, there is a

prime ideal Q of Q(ζk) lying above 2 for which Q ∩ Q(
√
−ℓ) = P ′). Also, note

that the procedure we have outlined in this paper allows us free choice as to which
prime ideal of Q(ζk) lying above 2 we choose as P. Finally, recall that an explicit
description of the prime ideals lying above 2 in Q(

√
−ℓ) is given in Theorem 2.5.

Without loss of generality, let us choose P so that

P ∩Q(
√
−ℓ) = 〈2, −1 +

√
−ℓ

2
〉.

In what follows, we will use the fact, mentioned above under Theorem 2.10, that
a ≡ b (mod 2) (where a and b are determined as in Theorem 2.10) as well as the
simple facts that

1

2
(K(χ) + 1) ≡ 0 (mod P) ⇐⇒ K(χ) + 1 ≡ 0 (mod 2P)

and that the squares mod 8 are congruent to either 0, 1, or 4.
Since p ≡ 1, 3 (mod 4), it follows that ph ≡ 1, 3 (mod 4). Hence, 4ph ≡ 4

(mod 8). If a and b are both odd, then a2, b2 ≡ 1 (mod 8). So, if we assume that
this is the case, then by Theorem 2.10,

4 ≡ 4ph = a2 + ℓb2 ≡ 1 + 7 · 1 ≡ 0 (mod 8),

which is clearly impossible. Consequently, a, b ≡ 0 (mod 2).
Case 1: p ≡ 1 (mod 4). By Corollary 2.2, we have

K(χ) + 1 = 1 + (−1)s−1−(p−1)s/4p(e−h)s/2

(

a + b
√
−ℓ

2

)s

= 1 + (−1)s−1−(p−1)s/4p(e−h)s/2

(

a + b

2
+ b

(−1 +
√
−ℓ

2

))s

.

Now, since 2P|〈4〉, it follows that p(e−h)s/2 ≡ 1 (mod 2P). Further, since b ≡ 0

(mod 2) and since, by Theorem 2.4, −1+
√
−ℓ

2
∈ Z[

√
n], we have that b

(

−1+
√
−ℓ

2

)

≡ 0
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(mod 2P). Hence,

K(χ) + 1 ≡ 1 + (−1)s−1−(p−1)s/4

(

a+ b

2

)s

(mod 2P).

But 1 + (−1)s−1−(p−1)s/4
(

a+b
2

)s ∈ Z, and 2P ∩ Z = 〈4〉. Consequently,

Iβ(x)|S2(x) ⇐⇒ (−1)s−1−(p−1)s/4

(

a+ b

2

)s

≡ 3 (mod 4).

Case 2: p ≡ 3 (mod 4). By Corollary 2.2, we have

K(χ) + 1 = 1 + (−1)s−1−rs+(e+1)s/2p(e−h)s/2

(

a+ b
√
−ℓ

2

)s

= 1 + (−1)s−1−rs+(e+1)s/2p(e−h)s/2

(

a+ b

2
+ b

(−1 +
√
−ℓ

2

))s

.

Now, since 2P|〈4〉, it follows that p(e−h)s/2 ≡ (−1)(e−h)s/2 (mod 2P). Further,

since b ≡ 0 (mod 2) and since, by Theorem 2.4, −1+
√
−ℓ

2
∈ Z[

√
n], we have that

b
(

−1+
√
−ℓ

2

)

≡ 0 (mod 2P). Hence,

K(χ) + 1 ≡ 1 + (−1)s−1−rs+es+(1−h)s/2

(

a + b

2

)s

(mod 2P).

But 1 + (−1)s−1−rs+es+(1−h)s/2
(

a+b
2

)s
(mod 2P) ∈ Z, and 2P ∩ Z = 〈4〉. Conse-

quently,

Iβ(x)|S2(x) ⇐⇒ (−1)s−1−rs+es+(1−h)s/2

(

a+ b

2

)s

≡ 3 (mod 4). �

Let us now focus on the special case in which r = 1, so that k = ℓ.

Theorem 4.2. Let ℓ ≡ 7 (mod 8) be a prime, and let k = l. We suppose that
[Z/kZ : 〈p〉] = 2 and m = φ(k)s/2, where s is a positive integer. Let e = φ(k)/2,
so that m = es. Let a and b be determined as in Theorem 2.10 (Langevin’s result).

If p ≡ 1 (mod 4) and b ≡ 0 (mod 4), then

1 + x+ · · ·+ xℓ−1|S2(x) ⇐⇒ (−1)s−1−(p−1)s/4

(

a + b

2

)s

≡ 3 (mod 4).

If p ≡ 3 (mod 4) and b ≡ 0 (mod 4), then

1 + x+ · · ·+ xℓ−1|S2(x) ⇐⇒ (−1)s−1−rs+es+(1−h)s/2

(

a+ b

2

)s

≡ 3 (mod 4).

Proof. Note that 1 + x+ · · ·+ xℓ−1 is the product of the minimal polynomials of
the elements of F2f of order ℓ. So, if we can guarantee that the relevant condition
from Lemme 4.2 is the same for each element β of order ℓ, then we can deduce
conditions under which 1 + x+ · · ·+ xℓ−1|S2(x).
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The explicit conditions given in Theorem 2.10 are sufficient to determine a
completely and to determine b up to sign. In order to determine the sign of b,
one must use Stickleberger’s congruence [15, Lemma 3.5]. However, we cannot
guarantee that the sign of b will be same for Gauss/Jacobi sums corresponding
to different characters of order k [7, Section 11.2]. But, if we assume that b ≡ 0
(mod 4), then the residue class mod 4 of a+b

2
is unaffected by the sign of b. �

We now give an example to illustrate Theorem 4.2.

Example 4.3. Let ℓ = 23 ≡ 7 (mod 8), let p = 13 ≡ 1 (mod 4), and let s = 1.
It is easy to check that [(Z/23Z)∗ : 〈13〉] = 2. In this case, m = φ(23)/2 = 11,
so that q = 1311. Referring to the class number table on [2, p. 325], we see that
h = h(Q(

√
−23)) = 3. Further, 4ph = 4 · 133 = (74)2 + 23 · (12)2, so that a = ±74

and b = ±12, and since a ≡ −2p
1
2
(m+h) (mod ℓ), we have that a = 74. By Theorem

4.2, we have

1 + x+ · · ·+ x22|S2(x) ⇐⇒ (−1)1−1−(13−1)·1/4

(

74± 12

2

)

≡ 3 (mod 4)

⇐⇒ −37 ≡ 3 (mod 4).

But −37 ≡ 3 (mod 4), and so 1 + x+ · · ·+ x22|S2(x).

We conclude with a few remarks regarding the applicability of Theorem 4.2.
The fastest way to compute the class number of Q(

√
−ℓ) is via an algorithm due

to Shanks, which requires at most O(ℓ1/4+ǫ) operations, where ǫ is any positive
number; see [13, Section 5.4]. The class number of Q(

√
−ℓ) can be used to ob-

tain divisibility results whenever p satisfies [(Z/ℓZ) : 〈p〉] = 2, and it follows
by Dirichlet’s Theorem on primes in an arithmetic progression that there are in-
finitely many primes p for which this is true. When the class number h = 1,
there exists a probabilistic polynomial time algorithm, known as the modified
Cornacchia algorithm, that can be used to find the integers a and b satisfying
4ph = 4p = a2 + ℓb2; see [13, Section 1.5.2]. In the general case, Hardy, Muskat,
and Williams have given a deterministic algorithm that finds a and b (up to sign)
in at most O((4ph)1/4(log4ph)3(loglog4ph)(logloglog(4ph))) operations [21].
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