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Some Bounds on Binary LCD Codes
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Abstract
A linear code with a complementary dual (or LCD code) is defined to be a linear code C
whose dual code C* satisfies C N C+= {0}. Let LCD[n, k] denote the maximum of possible
values of d among [n, k, d] binary LCD codes. We give exact values of LCDIn, k] for 1 < k <
n < 12. We also show that LCD[n,n —i] = 2 for any ¢ > 2 and n > 20, Furthermore, we show
that LC'D[n, k] < LCD[n, k — 1] for k odd and LCD[n, k] < LCD[n, k — 2] for k even.
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1 Introduction

A linear code with complementary dual (or LCD code) was first introduced by Massey [7] as a
reversible code in 1964. Afterwards, LCD codes were extensively studied in literature and widely
applied in data storage, communications systems, consumer electronics, and cryptography.

In [8] Massey showed that there exist asymptotically good LCD codes. Esmaeili and Yari [6]
identified a few classes of LCD quasi-cyclic codes. For bounds of LCD codes, Tzeng and Hart-
mann [I2] proved that the minimum distance of a class of reversible codes is greater than that
given by the BCH bound. Sendrier [II] showed that LCD codes meet the asymptotic Gilbert-
Varshamov bound using the hull dimension spectra of linear codes. Recently, Dougherty et al. [5]
gave a linear programming bound on the largest size of an LCD[n, d]. Constructions of LCD codes
were studied by Mutto and Lal [I0]. Yang and Massey [I5] gave a necessary and sufficient condi-
tion for a cyclic code to have a complementary dual. It is also shown by Kandasamy et al.
that maximum rank distance codes generated by the trace-orthogonal-generator matrices are LCD
codes. In 2014, Calet and Guilley [3] introduced several constructions of LCD codes and investi-
gated an application of LCD codes against side-channel attacks(SCA). Shortly after, Mesnager et
al. [9] provided a construction of algebraic geometry LCD codes which could be good candidates to
be resistant against SCA. Recently Ding et al. [4] constructed several families of reversible cyclic
codes over finite fields.

The purpose of this paper is to study exact values of LC D[n, k] (see [5]) which is the maximum of
possible values of d among [n, k, d] binary LCD codes. We give exact values of LC'D[n, 2] in Section
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In Section [ we investigate LC D[n, k] and show that LCOD[n,n—i] = 2 for any i > 2 and n > 2°.
We prove that LCD[n, k] < LCDIn,k — 1] for k odd and that LCD[n, k] < LCD[n,k — 2] for k
even using the notion of principal submatrices. In Section [ we give exact values for LCK[n, d).
We have included tables for LCD [n, k] for 1 <k <n <12 and LCK [n,d] for 1 <d <n <12.

2 LCDin,?2]

Let GF(q) be the finite field with ¢ elements. An [n,k] code C over GF(q) is a k-dimensional
subspace of GF(q)". If C is a linear code, we let

Ct={ueV|u-w=0forall weC}.
We call C+ the dual or orthogonal code of C.

Definition 2.1. A linear code with complementary dual (LCD code) is a linear code C satisfying
cnCc+=1{0}.

We note that if C' is an LCD code, then so is O+ because (C*)+= C. The following proposition
will be frequently used in the later sections.

Proposition 2.2. ([§])
Let G be a generator matriz for a code over GF(q). Then det(GGT) # 0 if and only if G
generates an LCD code.

Throughout the rest of the paper, we consider only binary codes. Dougherty et al. [5] introduced
LCDIn, k] which denotes the maximum of possible values of d among [n, k, d] binary LCD codes.
Formally we can define it as follows.

Definition 2.3. LCD [n, k] := max {d | there exists a binary[n,k,d] LCD code} .

Dougherty et al. [5] gave a few bounds on LC'D [n, k] and exact values of LC'D [n, k] for k =1
only.
Now we obtain exact values of LCD [n, k] for k = 2 for any n.

Lemma 2.4. LCD[n,2]< 3| for n > 2.

Proof. By the Griesmer Bound [14], any binary linear [n, k, d] code satisfies
k—1
d
> —|.
=55

Letting k = 2, we have n > d + g. Hence
2n
d<|—|.

Therefore any LCD [n, k, d] code must satisfy this inequality.

Proposition 2.5. Let n > 2. Then LCDIn,2] = L%"J forn=1,42,0r 3 (mod 6).



Proof. We only need to show the existence of LCD codes with minimum distance achieving the
bound d = L%” .

(i) Let n = 1 (mod 6), i.e. n = 6m + 1 for some positive integer m. Consider the code with
generator matrix

2m + 1 2m — 1 2m + 1

This code has minimum weight 4m = {WJ and GGT = [ (1) (1)
Therefore this code is an LCD code.
(ii) Let n = £2 (mod 6), i.e., n = 6m + 2 for some non negative integer m, or n = 6m — 2 for

some positive integer m . Consider the code with generator matrix

} ie., det(GGT) =1 #0.

N e e Ve
for k=1.—1 2m + k 2m 2m + k
R .

If £ = 1, this code has minimum weight 4m + 1 = LWJ and GGT = { (1) (1) } ie.,
det(GGT) =1 # 0. Therefore this code is an LCD code.
If £k = —1, this code has minimum weight 4m — 2 = LMJ and GGT = [ L0 } ie.,

3 0 1
det(GGT) =1 # 0. Therefore this code is an LCD code.
(iii) Let n = 3 (mod 6), i.e., n = 3i for some positive odd integer i. Consider the code with
generator matrix

This code has minimum weight 2¢ = L@J and GGT = [
Therefore this code is an LCD code.

(1) } ie., det(GGT) = 1 # 0,

S =

O
Proposition 2.6. Let n > 2. Then LCD[n,2] = | %] —1 for n=0,—1 (mod 6).

Proof. (i) Let n =0 (mod 6). Consider the generator matrix G in (#ii) of the proof of Proposition
23] this time taking i to be an even integer. If the weight of any row of G is increased by one,
the weight of the sum of the two rows is decreased by one. Hence, G is the only generator matrix
for a binary code that achieves the upper bound, up to equivalence. Clearly, det(GGT) = 0 and
so the code is not LCD. It follows that there are no LCD code with minimum distance L%”J for
n =0 (mod 6).

Next, consider the code with generator matrix



This code has minimum weight 2i—1 = L@J —1. We note that GG = { (1) 1
1 # 0. Therefore this code is an LCD code.

(ii) Let C be a binary code of length n = —1 (mod 6), i.e., n = 3i — 1 for some positive even 1.
Without loss of generality, the generator matrix for C' can be expressed in the following form such

that the first row is the codeword whose weight is the minimum weight d.

] ,ie., det(GGT) =

’il 12 ’i3
= 2¢— 1, i.e., i1 +i2 = 2¢ — 1. This implies that i3 = 7. Note that
19413 > 2i—1 which implies i3 > ¢—1 and ¢;+¢3 > 2¢—1 which implies ¢35 > ¢—1. This leaves only two

possible cases: (i1,142,i3) = (i — 1,4,1), (i,i — 1,4), each of which gives GGT = [ 10 } , { bl ],

_ ] 2Bi-1)
Suppose d = {T

0 0 11
respectively. In both cases, det(GGT) = 0 and therefore they are not LCD. So there is no LCD
code with minimum distance L%"J for n = —1 (mod 6).

Consider the case where (i1,12,43) = (i — 1,4 — 1,i+ 1). Then G generates a code of minimum
distance 2 — 2 = L@J — 1. For this case, det(GGT) = 1 and hence the code is LCD. O

3 LCDIn,k
We begin with a rather straightforward lemma in order to prove Proposition 4.
Lemma 3.1. Ifn > 8, any [n,n — 3,d] binary code C satisfies d < 2.

Proof. Let G be a standard generator matrix of C, i.e., G = [I,,_3 | A] where A is an (n —3) x 3
matrix. By the Singleton bound, d<4. But it is well known there is no non-trivial binary code
achieving the bound. Thus, we may say that d < 3. Suppose d = 3. Then each row of A must
3
3
A. Note that A has at least 5 rows and this contradict our assumption that d = 3. Hence d <2.

have weight at least 2. However there are only 3 >+( > 4 possible choices for the rows of

O

Motivated by the above lemma, we can consider more general dimension n — ¢ rather than n — 3
as follows.

Proposition 3.2. Given i > 2, LCD[n,n —i| =2 for all n > 2¢.

Proof. Let G be a standard generator matrix of an [n,n — ¢,d] binary code C, i.e., G = [I,,—; | 4]
where A is an (n — i) x4 matrix. By the Singleton bound, d< ¢4 1. But there is no non-trivial binary
code achieving the bound. Thus, we may say that d < 4. If the minimum distance of C is at least 3,

each row of A must have weight at least 2. And there are < ; )+< ; )+-~-+< z > =2—i—1

possible choices for the rows of A. Thus, if n —i (number of rows in A) > 2 —i— 1, then there exists
a row of weight 1 in A. This forces the minimum distance of C' to be 2, which is a contradiction.

Therefore, d < 2 for all n > 2°. Since this statement holds true for any linear code, it holds true for
LCD codes as well, i.e., LCD [n,n —i] < 2 for all n > 2%,



Next, we show that there exists an [n,n — i,2] LCD code for n > 2. For i even, let G =
[I,—; | 11---1], and for i odd, let G = [I,—; | 11---10] where 1
—— ———

denotes the all one vector and 0 the all zero vector, both of which are of size (n —4) x 1. In both
cases, GGT = I,,_;. Thus, G is a generator matrix for the [n,n —i] LCOD code with minimum
distance 2.
Hence LCD[n,n —i] = 2 for all n > 2°.
O

So far we have shown the exact value of LCDIn,2]. The relation between LCDI[n,k] and
LCDin,k —1](or LCDIn,k — 2]) was unknown before. Using the idea of principal submatrices, we
have Proposition below.

Definition 3.3. Let A be a k X k matriz over a field. An m x m submatriz P of A is called a
principal submatrix of A if P is obtained from A by removing all rows and columns of A indexed
by the same set {i1,i9,...,in—m} C {1,2,...,k}.

Definition 3.4. ([1l]) Let A be a k x k symmetric matriz over a field. The principal rank charac-
teristic sequence of A (simply, pr-sequence of A or pr(A)) is defined as pr(A) = ro|rira ... 7, where
for1<m <k

{1 if A has an m x m principal submatriz of rank m
T =

0 otherwise

For convenience, define ro = 1 if and only if A has a 0 in the diagonal.

Proposition 3.5. ([1]) For k > 2 over a field with characteristic 2, a principal rank characteristic
sequence of a k X k symmetric matriz A is attainable if and only if it has one of the following forms:

(i) 0]1T0 (ii) 1J010 (iii) 1]170

where 1T =11...1 (or empty), 0 =00...0 (or empty), 01 = 0101...01 (or empty).
Proposition 3.6. We have the following:

(1) If k>3 and k is odd,
LCD[n, k] < LCD[n, k — 1]
for any n > k.
(1) If k > 4 and k is even,
LCDin,k] < LCD[n, k — 2]
for anyn > k.
Proof. (i) It suffices to show that any binary [n, k] LCD code C' has an [n,k — 1] LCD subcode for
any odd k > 3. Let G be a k x n generator matrix of C. Let A = GG” which is symmetric. Then

rank(A) = k. Since k is odd, case (ii) of Propostion is not possible. Thus the only possible
cases are (i) and (7i¢) of Proposition 5] which are 0]11...1 and 1]11...1, respectively. Hence,



[w/k [ 1 [2[3[4[5]6][7[8][0[10][11[12]

1 |1

2 |11

3 13 (21

4 |3 (12|11

5 | 512|221

6 | 5 |13]2]2]1]1

7Tl 7T 141321221

8 | 7|53 |3]2]|2|1]1

9 | 916|414 |3 ]2|2|2]|1

10 | 9 6|54 3322|111
11 |11 (6|54 |4(4|3|2|2| 2|1
12 (11|76 |5 |4|4|3 2|22 |1]1

Table 1: LCD[n,k] for1 <k <n <12

there exists a principal submatrix P; of rank k — 1 which is obtained from A by deleting some ‘"

row and column of A (1 <i < k).

Define G to be a (k — 1) x n matrix obtained from G by deleting the i** row of G. Since
G1GT = P, and rank(Py) = k — 1 # 0, P, is invertible. Then the linear code C; with generator
matrix G is LCD as well.

(49) It suffices to show that any binary [n, k] LCD code C has an [n, k — 2] LCD subcode for any

even k > 4. Let G be a k x n generator matrix of C and A = GGT. Then rank(A) = k since C is
LCD. By Propostion B.5] we have the following three cases.

(i) 0)11...1 (id) 1]0101...01 (idi) 1]11...1

So there exists a principal submatrix P of rank k& — 2 which is obtained from A by deleting
some i*", j*" rows and columns of A (1 <i # j < k).

Define G to be a (k — 2) x n matrix obtained from G by deleting the i*" and j'* rows of G.
Since GoGT = P, and rank(Py) = k — 2 # 0, P, is invertible. Then the linear [n,k — 2] code Ca
with generator matrix G is LCD as well.

Since the minimum distance of a code is always less than or equal to the minimum distance of
a subcode, this completes the proof of (a) and (b).

O

In Table 1 we give exact values of LC'D[n, k] for 1 < k < n < 12. Based on Proposition 3.6 and
Table 1, we conjecture the following.

Conjecture If 2 < k < n, then LCD[n, k] < LCDIn,k — 1].
(Note: It suffices to show that this is true when k is even.)

4 LCK [n,d]

We define another combinatorial function LCK [n, d].



Definition 4.1. LCK|[n,d] := max{k | there exists a binary [n,k,d] LCD code}

For convenience, define LCK[n,d] = 0 if and only if there is no LCD code with the given n and
d.

[w/d[ 1] 23 [4[5 6] 7[s]9]10][11]12]

1 1

2 210

3 3| 2 1

4 4 (2|10

) 514|101

6 6 |42 |2|1"]0

7 716321701

8 8 |6 |42 2 |0|1*]0

9 9 | 8|5 |412°|2|1]0]1

10 (10| 8|16 (4] 3 2] 1010

1 j11 4107 6|3 |21 |01 0 1
12 (12 (10| 7 |64 3|20 1 0 |1*] 0

Table 2: LCK|[n,d] for1<d<n <12

It is noticeable in Table 2 that more zeros appear as n gets larger. Dougherty et al. [5] showed
LCK]|n,d] =0 for n even and when d = n. Now we show that this is a special case of the following

general proposition.

Proposition 4.2. (i) Suppose that n is even, k > 1, and i > 0. If n > 6i, then there is no
[n,k,n — 2i] LCD code, i.e., LCK[n,n — 2i] = 0.

(i) Suppose that n is odd, k > 1, and i > 0. If n > 6i+ 3, then there is no [n,k,n—2i — 1] LCD
code, i.e., LCK[n,n—2i—1] = 0.

Proof. (i) Suppose C' is an LCD [n, k,n — 2i] code with parameters in the hypothesis. Let G be a
generator matrix of C.

If k = 1, then GGT = 0 since the minimum distance n — 2i is even. Then by Proposition 2]
there is no [n, 1,7 — 2¢] LCD code with n even.

Now suppose k > 2. Then there should exist an LCD [n, 2, n—2i] subcode of C'. By the Griesmer
Bound with k = 2, we obtain n > n—2i+ "‘TQZ which implies n < 6. Thus we can say that there is
no [n,2,n—2i| code if n > 6i. When n meets the Griesmer Bound, i.e., n = 64, there is no [64, 2, 41]
LCD code because by Proposition the maximum of the possible minimum distance among any
[6¢,2] LCD codes is 4i — 1.

(73) A similar argument to (¢) shows that there is no [n,1,n — 2i — 1] LCD code with n odd
because the minimum distance n — 2¢ — 1 is even.

Suppose k > 2. Then there should exist an LCD [n, 2,n — 2i — 1] subcode of C. By the Griesmer
Bound with kK = 2, we have n > n —2i — 1+ % which implies n < 67 + 3. Thus we can say
that there is no [n,2,n — 2i — 1] code if n > 6i + 3. That is, there is no such an LCD code. O



In Table 2, the values of LCK [n,d] are given for 1 < d < n < 12 . These values are obtained
using Table 1, Proposition 2] and two tables from [5]. The values with * are the ones that are
corrected here as they are incorrectly reported in Table 1 of [5].

5 Appendix

Below is an exhaustive search program written by MAGMA [2] in order to compute LCD[n, k]
which run slowly for large n and k.

LCD:=function(n,k)
I:=IdentityMatrix(GF(2),k);

Max:=0;

for g in RMatrixSpace(GF(2),k,n-k) do
if Determinant (I+(g*Transpose(g))) eq 1
then if Max 1t MinimumDistance
(LinearCode (HorizontalJoin(I,g)))
then Max:=MinimumDistance

(LinearCode (HorizontalJoin(I,g)));
end if;

end if;

end for;

return Max;

end function;
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