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Some Bounds on Binary LCD Codes

Lucky Galvez ∗ Jon-Lark Kim† Nari Lee‡ Young Gun Roe§

Byung-Sun Won¶

Abstract

A linear code with a complementary dual (or LCD code) is defined to be a linear code C

whose dual code C⊥ satisfies C ∩ C⊥= {0}. Let LCD[n, k] denote the maximum of possible
values of d among [n, k, d] binary LCD codes. We give exact values of LCD[n, k] for 1 ≤ k ≤
n ≤ 12. We also show that LCD[n, n− i] = 2 for any i ≥ 2 and n ≥ 2i. Furthermore, we show
that LCD[n, k] ≤ LCD[n, k − 1] for k odd and LCD[n, k] ≤ LCD[n, k − 2] for k even.

Keywords : binary LCD codes boundslinear code

1 Introduction

A linear code with complementary dual (or LCD code) was first introduced by Massey [7] as a
reversible code in 1964. Afterwards, LCD codes were extensively studied in literature and widely
applied in data storage, communications systems, consumer electronics, and cryptography.

In [8] Massey showed that there exist asymptotically good LCD codes. Esmaeili and Yari [6]
identified a few classes of LCD quasi-cyclic codes. For bounds of LCD codes, Tzeng and Hart-
mann [12] proved that the minimum distance of a class of reversible codes is greater than that
given by the BCH bound. Sendrier [11] showed that LCD codes meet the asymptotic Gilbert-
Varshamov bound using the hull dimension spectra of linear codes. Recently, Dougherty et al. [5]
gave a linear programming bound on the largest size of an LCD[n, d]. Constructions of LCD codes
were studied by Mutto and Lal [10]. Yang and Massey [15] gave a necessary and sufficient condi-
tion for a cyclic code to have a complementary dual. It is also shown by Kandasamy et al. [13]
that maximum rank distance codes generated by the trace-orthogonal-generator matrices are LCD
codes. In 2014, Calet and Guilley [3] introduced several constructions of LCD codes and investi-
gated an application of LCD codes against side-channel attacks(SCA). Shortly after, Mesnager et
al. [9] provided a construction of algebraic geometry LCD codes which could be good candidates to
be resistant against SCA. Recently Ding et al. [4] constructed several families of reversible cyclic
codes over finite fields.

The purpose of this paper is to study exact values of LCD[n, k] (see [5]) which is the maximum of
possible values of d among [n, k, d] binary LCD codes. We give exact values of LCD[n, 2] in Section
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2. In Section 3, we investigate LCD[n, k] and show that LCD[n, n−i] = 2 for any i ≥ 2 and n ≥ 2i.
We prove that LCD[n, k] ≤ LCD[n, k − 1] for k odd and that LCD[n, k] ≤ LCD[n, k − 2] for k
even using the notion of principal submatrices. In Section 4, we give exact values for LCK[n, d].
We have included tables for LCD [n, k] for 1 ≤ k ≤ n ≤ 12 and LCK [n, d] for 1 ≤ d ≤ n ≤ 12.

2 LCD[n, 2]

Let GF (q) be the finite field with q elements. An [n, k] code C over GF (q) is a k-dimensional
subspace of GF (q)n. If C is a linear code, we let

C⊥ = {u ∈V | u ·w = 0 for all w ∈C} .

We call C⊥ the dual or orthogonal code of C.

Definition 2.1. A linear code with complementary dual (LCD code) is a linear code C satisfying
C ∩ C⊥ = {0} .

We note that if C is an LCD code, then so is C⊥ because (C⊥)⊥= C. The following proposition
will be frequently used in the later sections.

Proposition 2.2. ([8])
Let G be a generator matrix for a code over GF (q). Then det(GGT ) 6= 0 if and only if G

generates an LCD code.

Throughout the rest of the paper, we consider only binary codes. Dougherty et al. [5] introduced
LCD[n, k] which denotes the maximum of possible values of d among [n, k, d] binary LCD codes.
Formally we can define it as follows.

Definition 2.3. LCD [n, k] := max {d | there exists a binary [n, k, d] LCD code} .

Dougherty et al. [5] gave a few bounds on LCD [n, k] and exact values of LCD [n, k] for k = 1
only.

Now we obtain exact values of LCD [n, k] for k = 2 for any n.

Lemma 2.4. LCD[n, 2]≤
⌊
2n
3

⌋
for n ≥ 2.

Proof. By the Griesmer Bound [14], any binary linear [n, k, d] code satisfies

n ≥
k−1∑

i=0

⌈
d

2i

⌉

.

Letting k = 2, we have n ≥ d+ d

2 . Hence

d ≤

⌊
2n

3

⌋

.

Therefore any LCD [n, k, d] code must satisfy this inequality.

Proposition 2.5. Let n ≥ 2. Then LCD[n, 2] =
⌊
2n
3

⌋
for n ≡ 1,±2, or 3 (mod 6).
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Proof. We only need to show the existence of LCD codes with minimum distance achieving the
bound d =

⌊
2n
3

⌋
.

(i) Let n ≡ 1 (mod 6), i.e. n = 6m + 1 for some positive integer m. Consider the code with
generator matrix

G =

[
1 . . . 1 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

2m + 1

0 . . . 0
︸ ︷︷ ︸

2m − 1

1 . . . 1
︸ ︷︷ ︸

2m + 1

1 . . . 1

]

.

This code has minimum weight 4m =
⌊
2(6m+1)

3

⌋

and GGT =

[
0 1
1 0

]

, i.e., det(GGT ) = 1 6= 0.

Therefore this code is an LCD code.
(ii) Let n ≡ ±2 (mod 6), i.e., n = 6m+ 2 for some non negative integer m, or n = 6m− 2 for

some positive integer m . Consider the code with generator matrix

G =

[
1 . . . 1 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

2m + k

0 . . . 0
︸ ︷︷ ︸

2m

1 . . . 1
︸ ︷︷ ︸

2m + k

1 . . . 1

]

for k = 1,−1.

If k = 1, this code has minimum weight 4m + 1 =
⌊
2(6m+2)

3

⌋

and GGT =

[
1 0
0 1

]

, i.e.,

det(GGT ) = 1 6= 0. Therefore this code is an LCD code.

If k = −1, this code has minimum weight 4m − 2 =
⌊
2(6m−2)

3

⌋

and GGT =

[
1 0
0 1

]

, i.e.,

det(GGT ) = 1 6= 0. Therefore this code is an LCD code.
(iii) Let n ≡ 3 (mod 6), i.e., n = 3i for some positive odd integer i. Consider the code with

generator matrix

G =

[
1 . . . 1 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

i

0 . . . 0
︸ ︷︷ ︸

i

1 . . . 1
︸ ︷︷ ︸

i

1 . . . 1

]

.

This code has minimum weight 2i =
⌊
2(3i)
3

⌋

and GGT =

[
0 1
1 0

]

, i.e., det(GGT ) = 1 6= 0.

Therefore this code is an LCD code.

Proposition 2.6. Let n ≥ 2. Then LCD[n, 2] =
⌊
2n
3

⌋
− 1 for n ≡ 0,−1 (mod 6).

Proof. (i) Let n ≡ 0 (mod 6). Consider the generator matrix G in (iii) of the proof of Proposition
2.5, this time taking i to be an even integer. If the weight of any row of G is increased by one,
the weight of the sum of the two rows is decreased by one. Hence, G is the only generator matrix
for a binary code that achieves the upper bound, up to equivalence. Clearly, det(GGT ) = 0 and
so the code is not LCD. It follows that there are no LCD code with minimum distance

⌊
2n
3

⌋
for

n ≡ 0 (mod 6).
Next, consider the code with generator matrix

G =

[
1 . . . 1 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

i + 1

0 . . . 0
︸ ︷︷ ︸

i− 1

1 . . . 1
︸ ︷︷ ︸

i

1 . . . 1

]
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This code has minimum weight 2i−1 =
⌊
2(3i)
3

⌋

−1. We note that GGT =

[
0 1
1 1

]

, i.e., det(GGT ) =

1 6= 0. Therefore this code is an LCD code.
(ii) Let C be a binary code of length n ≡ −1 (mod 6), i.e., n = 3i− 1 for some positive even i.

Without loss of generality, the generator matrix for C can be expressed in the following form such
that the first row is the codeword whose weight is the minimum weight d.

G =

[
1 . . . 1 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

i1

0 . . . 0
︸ ︷︷ ︸

i2

1 . . . 1
︸ ︷︷ ︸

i3

1 . . . 1

]

Suppose d =
⌊
2(3i−1)

3

⌋

= 2i − 1, i.e., i1 + i2 = 2i − 1. This implies that i3 = i. Note that

i2+i3 ≥ 2i−1 which implies i2 ≥ i−1 and i1+i3 ≥ 2i−1 which implies i2 ≥ i−1. This leaves only two

possible cases: (i1, i2, i3) = (i− 1, i, i), (i, i− 1, i), each of which gives GGT =

[
1 0
0 0

]

,

[
1 1
1 1

]

,

respectively. In both cases, det(GGT ) = 0 and therefore they are not LCD. So there is no LCD
code with minimum distance

⌊
2n
3

⌋
for n ≡ −1 (mod 6).

Consider the case where (i1, i2, i3) = (i − 1, i− 1, i+ 1). Then G generates a code of minimum

distance 2i− 2 =
⌊
2(3i−1)

3

⌋

− 1. For this case, det(GGT ) = 1 and hence the code is LCD.

3 LCD [n, k]

We begin with a rather straightforward lemma in order to prove Proposition 4.

Lemma 3.1. If n ≥ 8, any [n, n− 3, d] binary code C satisfies d ≤ 2.

Proof. Let G be a standard generator matrix of C, i.e., G = [In−3 | A] where A is an (n − 3) × 3
matrix. By the Singleton bound, d≤4. But it is well known there is no non-trivial binary code
achieving the bound. Thus, we may say that d ≤ 3. Suppose d = 3. Then each row of A must

have weight at least 2. However there are only

(
3
2

)

+

(
3
3

)

= 4 possible choices for the rows of

A. Note that A has at least 5 rows and this contradict our assumption that d = 3. Hence d ≤2.

Motivated by the above lemma, we can consider more general dimension n− i rather than n− 3
as follows.

Proposition 3.2. Given i ≥ 2, LCD[n, n− i] = 2 for all n ≥ 2i.

Proof. Let G be a standard generator matrix of an [n, n− i, d] binary code C, i.e., G = [In−i | A]
where A is an (n− i)×i matrix. By the Singleton bound, d≤ i+1. But there is no non-trivial binary
code achieving the bound. Thus, we may say that d ≤ i. If the minimum distance of C is at least 3,

each row of A must have weight at least 2. And there are

(
i
2

)

+

(
i
3

)

+ · · ·+

(
i
i

)

= 2i− i−1

possible choices for the rows of A. Thus, if n− i (number of rows in A) > 2i− i−1, then there exists
a row of weight 1 in A. This forces the minimum distance of C to be 2, which is a contradiction.
Therefore, d ≤ 2 for all n ≥ 2i. Since this statement holds true for any linear code, it holds true for
LCD codes as well, i.e., LCD [n, n− i] ≤ 2 for all n ≥ 2i.
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Next, we show that there exists an [n, n − i, 2] LCD code for n ≥ 2i. For i even, let G =
[In−i |

︸ ︷︷ ︸

i

11 · · ·1], and for i odd, let G = [In−i |
︸ ︷︷ ︸

i

11 · · ·10] where 1

denotes the all one vector and 0 the all zero vector, both of which are of size (n − i)× 1. In both
cases, GGT = In−i. Thus, G is a generator matrix for the [n, n − i] LCD code with minimum
distance 2.

Hence LCD[n, n− i] = 2 for all n ≥ 2i.

So far we have shown the exact value of LCD[n, 2]. The relation between LCD[n, k] and
LCD[n, k− 1](or LCD[n, k− 2]) was unknown before. Using the idea of principal submatrices, we
have Proposition 3.5 below.

Definition 3.3. Let A be a k × k matrix over a field. An m × m submatrix P of A is called a
principal submatrix of A if P is obtained from A by removing all rows and columns of A indexed
by the same set {i1, i2, . . . , in−m} ⊂ {1, 2, . . . , k}.

Definition 3.4. ([1]) Let A be a k × k symmetric matrix over a field. The principal rank charac-
teristic sequence of A (simply, pr-sequence of A or pr(A)) is defined as pr(A) = r0]r1r2 . . . rk where
for 1 ≤ m ≤ k

rm =

{

1 if A has an m×m principal submatrix of rank m

0 otherwise

For convenience, define r0 = 1 if and only if A has a 0 in the diagonal.

Proposition 3.5. ([1]) For k ≥ 2 over a field with characteristic 2, a principal rank characteristic
sequence of a k×k symmetric matrix A is attainable if and only if it has one of the following forms:

(i) 0]1 1 0 (ii) 1]01 0 (iii) 1]1 1 0

where 1 = 11 . . .1 (or empty), 0 = 00 . . . 0 (or empty), 01 = 0101 . . .01 (or empty).

Proposition 3.6. We have the following:

(i) If k ≥ 3 and k is odd,
LCD[n, k] ≤ LCD[n, k − 1]

for any n ≥ k.

(ii) If k ≥ 4 and k is even,
LCD[n, k] ≤ LCD[n, k − 2]

for any n ≥ k.

Proof. (i) It suffices to show that any binary [n, k] LCD code C has an [n, k− 1] LCD subcode for
any odd k ≥ 3. Let G be a k × n generator matrix of C. Let A = GGT which is symmetric. Then
rank(A) = k. Since k is odd, case (ii) of Propostion 3.5 is not possible. Thus the only possible
cases are (i) and (iii) of Proposition 3.5, which are 0]11 . . . 1 and 1]11 . . . 1, respectively. Hence,

5



n/k 1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 1
3 3 2 1
4 3 2 1 1
5 5 2 2 2 1
6 5 3 2 2 1 1
7 7 4 3 2 2 2 1
8 7 5 3 3 2 2 1 1
9 9 6 4 4 3 2 2 2 1
10 9 6 5 4 3 3 2 2 1 1
11 11 6 5 4 4 4 3 2 2 2 1
12 11 7 6 5 4 4 3 2 2 2 1 1

Table 1: LCD[n, k] for 1 ≤ k ≤ n ≤ 12

there exists a principal submatrix P1 of rank k − 1 which is obtained from A by deleting some ith

row and column of A (1 ≤ i ≤ k).
Define G1 to be a (k − 1) × n matrix obtained from G by deleting the ith row of G. Since

G1G
T
1 = P1 and rank(P1) = k − 1 6= 0, P1 is invertible. Then the linear code C1 with generator

matrix G1 is LCD as well.

(ii) It suffices to show that any binary [n, k] LCD code C has an [n, k− 2] LCD subcode for any
even k ≥ 4. Let G be a k × n generator matrix of C and A = GGT . Then rank(A) = k since C is
LCD. By Propostion 3.5, we have the following three cases.

(i) 0]11 . . .1 (ii) 1]0101 . . .01 (iii) 1]11 . . .1

So there exists a principal submatrix P2 of rank k − 2 which is obtained from A by deleting
some ith, jth rows and columns of A (1 ≤ i 6= j ≤ k).

Define G2 to be a (k − 2) × n matrix obtained from G by deleting the ith and jth rows of G.
Since G2G

T
2 = P2 and rank(P2) = k − 2 6= 0, P2 is invertible. Then the linear [n, k − 2] code C2

with generator matrix G2 is LCD as well.
Since the minimum distance of a code is always less than or equal to the minimum distance of

a subcode, this completes the proof of (a) and (b).

In Table 1 we give exact values of LCD[n, k] for 1 ≤ k ≤ n ≤ 12. Based on Proposition 3.6 and
Table 1, we conjecture the following.

Conjecture If 2 ≤ k ≤ n, then LCD[n, k] ≤ LCD[n, k − 1].
(Note: It suffices to show that this is true when k is even.)

4 LCK [n, d]

We define another combinatorial function LCK [n, d].
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Definition 4.1. LCK[n, d] := max{k | there exists a binary [n, k, d] LCD code}

For convenience, define LCK[n, d] = 0 if and only if there is no LCD code with the given n and
d.

n/d 1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 2 0
3 3 2 1
4 4 2 1∗ 0
5 5 4 1 0 1
6 6 4 2 2 1∗ 0
7 7 6 3 2 1∗ 0 1
8 8 6 4∗ 2 2 0 1∗ 0
9 9 8 5 4 2∗ 2 1 0 1
10 10 8 6 4 3 2 1 0 1∗ 0
11 11 10 7 6 3 2 1 0 1 0 1
12 12 10 7 6 4 3 2∗ 0 1 0 1∗ 0

Table 2: LCK[n, d] for 1 ≤ d ≤ n ≤ 12

It is noticeable in Table 2 that more zeros appear as n gets larger. Dougherty et al. [5] showed
LCK[n, d] = 0 for n even and when d = n. Now we show that this is a special case of the following
general proposition.

Proposition 4.2. (i) Suppose that n is even, k ≥ 1, and i ≥ 0. If n ≥ 6i, then there is no
[n, k, n− 2i] LCD code, i.e., LCK[n, n− 2i] = 0.

(ii) Suppose that n is odd, k ≥ 1, and i ≥ 0. If n > 6i+3, then there is no [n, k, n− 2i− 1] LCD
code, i.e., LCK[n, n− 2i− 1] = 0.

Proof. (i) Suppose C is an LCD [n, k, n− 2i] code with parameters in the hypothesis. Let G be a
generator matrix of C.

If k = 1, then GGT = 0 since the minimum distance n − 2i is even. Then by Proposition 2.2,
there is no [n, 1, n− 2i] LCD code with n even.

Now suppose k ≥ 2. Then there should exist an LCD [n, 2, n−2i] subcode of C. By the Griesmer
Bound with k = 2, we obtain n ≥ n−2i+ n−2i

2 which implies n ≤ 6i. Thus we can say that there is
no [n, 2, n− 2i] code if n > 6i. When n meets the Griesmer Bound, i.e., n = 6i, there is no [6i, 2, 4i]
LCD code because by Proposition 2.6 the maximum of the possible minimum distance among any
[6i, 2] LCD codes is 4i− 1.

(ii) A similar argument to (i) shows that there is no [n, 1, n − 2i − 1] LCD code with n odd
because the minimum distance n− 2i− 1 is even.

Suppose k ≥ 2. Then there should exist an LCD [n, 2, n−2i−1] subcode of C. By the Griesmer
Bound with k = 2, we have n ≥ n − 2i − 1 + n−2i−1

2 which implies n ≤ 6i + 3. Thus we can say
that there is no [n, 2, n− 2i− 1] code if n > 6i+ 3. That is, there is no such an LCD code.
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In Table 2, the values of LCK [n, d] are given for 1 ≤ d ≤ n ≤ 12 . These values are obtained
using Table 1, Proposition 4.2, and two tables from [5]. The values with ∗ are the ones that are
corrected here as they are incorrectly reported in Table 1 of [5].

5 Appendix

Below is an exhaustive search program written by MAGMA [2] in order to compute LCD[n, k]
which run slowly for large n and k.

LCD:=function(n,k)

I:=IdentityMatrix(GF(2),k);

Max:=0;

for g in RMatrixSpace(GF(2),k,n-k) do

if Determinant(I+(g*Transpose(g))) eq 1

then if Max lt MinimumDistance

(LinearCode(HorizontalJoin(I,g)))

then Max:=MinimumDistance

(LinearCode(HorizontalJoin(I,g)));

end if;

end if;

end for;

return Max;

end function;
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