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Abstract. We study a family of primary affine variety codes defined
from the Klein quartic. The duals of these codes have previously been
treated in [12, Ex. 3.2]. Among the codes that we construct almost all
have parameters as good as the best known codes according to [9] and in
the remaining few cases the parameters are almost as good. To establish
the code parameters we apply the footprint bound [10,7] from Gröbner
basis theory and for this purpose we develop a new method where we
inspired by Buchbergers algorithm perform a series of symbolic compu-
tations.

1 Introduction

Affine variety codes [5] are codes defined by evaluating multivariate poly-
nomials at the points of an affine variety. Despite having a simple descrip-
tion such codes constitute the entire class of linear codes [5, Pro. 1]. Given
a description of a code as an affine variety code it is easy to determine
the length n and dimension k, but no simple general method is known
which easily estimates the minimum distance d. Of course such meth-
ods exists for particular classes of affine variety codes. For instance the
Goppa bound for one-point algebraic geometric codes extends to an im-
proved bound on the more general class of order domain codes [11,6], and
in larger generality the Feng-Rao bounds and their variants can be suc-
cessfully applied to many different types of codes[2,3,4,12,13,6,8]. In this
paper we consider a particular family of primary affine variety codes for
which none of the above mentioned bounds provide accurate information.
More precisely we consider primary codes defined from the Klein quartic
using the same weighted degree lexicographic ordering as in [12, Ex. 3.2]
where they studied the corresponding dual codes. A common property of
the Feng-Rao bound for primary codes and its variants are that they can
be viewed[6,8] as consequences of the footprint bound [10,7] from Gröbner
basis theory. To establish more accurate information for the codes under
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consideration it is therefore natural to try to apply the footprint bound
in a more direct way, which is exactly what we do in the present pa-
per using ingredients from Buchberger’s algorithm and by considering an
exhaustive number of special cases. Our analysis reveals that the codes
under consideration are in most cases as good as the best known codes
according to [9] and for the remaining few cases the minimum distance is
only one less than the best known codes of the same dimension.

The paper is organized as follows. In Section 2 we introduce the foot-
print of an ideal and define affine variety codes. We then describe how
the footprint bound can be applied to determine the Hamming weight of
a code word. Then in Section 3 we apply symbolic computations leading
to estimates on the minimum distance on each of the considered codes
the information of which we collect in Section 4.

2 Affine variety codes and the footprint bound

The footprint (also called the delta-set) is defined as follows:

Definition 1. Given a field k, a monomial ordering ≺ and an ideal J ⊆
k[X1, . . . ,Xm] the footprint of J is

∆≺(J) = {M | M is a monomial which is not leading monomial

of any polynomial in J}

From [1, Prop. 7, Sec. 5.3] we have the following well-known result.

Theorem 1. Let the notation be as in the above definition. The set

{M + J | M ∈ ∆≺(J)}

is a basis for k[X1, . . . ,Xm]/J as a vector space over k.

Recall that by definition a Gröbner basis is a finite basis for the ideal J
from which one can easily determine the footprint. Concretely a monomial
is a leading monomial of some polynomial in the ideal if and only if it
is divisible by a leading monomial of some polynomial in the Gröbner
basis. The following corollary is an instance of the more general footprint
bound [10].

Corollary 1. Let I ⊆ Fq[X1, . . . ,Xm] be an ideal and Iq = I + 〈Xq
1 −

X1, . . . ,X
q
m−Xm〉. The variety of Iq is of size #∆≺(Iq) for any monomial

ordering ≺.
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Proof. Let the variety of Iq be {P1, . . . , Pn} with Pi 6= Pj for i 6= j. The
field Fq being perfect, the ideal Iq is radical because it contains a uni-
variate square-free polynomial in each variable and by the ideal-variety
correspondence therefore Iq is in fact the vanishing ideal of {P1, . . . , Pn}.
Therefore the evaluation map ev : Fq[X1, . . . ,Xm]/Iq → F

n
q given by

ev(F + Iq) = (F (P1), . . . , F (Pn)) is injective. On the other hand the eval-
uation map is also surjective which is seen by applying Lagrange inter-
polation. We have demonstrated that ev is a bijection and the corollary
follows from Theorem 1. ⊓⊔

We are now ready to define primary affine variety codes formally.

Definition 2. Let the notation be as in the proof of Corollary 1. Given an

ideal I ⊆ Fq[X1, . . . ,Xm] and a monomial ordering ≺ choose L ⊆ ∆≺(Iq).
Then

C(I, L) = SpanFq
{ev(M + Iq) | M ∈ L}

is called a primary affine variety code.

From the above discussion it is clear that C(I, L) is a code of length
n = #∆≺(Iq) and dimension k = #L. Given a code word c = ev(F + Iq)
then by Corollary 1 we have

wH(c) = n−#∆≺w
(〈F 〉+ Iq) = #∆≺w

(Iq) ∩ lm(〈F 〉+ Iq) = #�≺w
(F ),

where �≺w
(F ) := ∆≺w

(Iq)∩lm(〈F 〉+Iq). Reducing a polynomial modulo
a Gröbner basis for Iq one obtains a (unique) polynomial which has sup-
port in the footprint ∆(Iq) (this is the result behind Theorem 1). Hence
we shall always assume that F is of this form. In the rest of the paper we
concentrate on estimating #�≺(F ) using only information on the lead-
ing monomial. We do this for a concrete class of codes defined from the
Klein quartic, but the method that we describe can be applied to any
affine variety code of moderate dimension. In particular it can be applied
whenever the length of the codes are moderate.

3 Code words from the Klein curve

In the remaining part of the paper I will always be the ideal

I = 〈Y 3 +X3Y +X〉 ⊆ F8[X,Y ]
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and consequently I8 = 〈Y 3 + X3Y + X,X8 + X,Y 8 + Y 〉. The corre-
sponding variety3 is of size 22, hence we write it as {P1, . . . , P22}. The
evaluation map then becomes ev(F + I8) = (F (P1), . . . , F (P22)).

As monomial ordering we choose the same ordering as in [12, Ex. 3.2],
namely the weighted degree lexicographic ordering ≺w given by the rule
that XαY β ≺w XγY δ if either (i) or (ii) below holds

(i) 2α+ 3β < 2γ + 3δ, (ii) 2α+ 3β = 2γ + 3δ but β < δ.

By inspection {Y 3+X3Y +X,X8−X,X7Y +Y } is a Gröbner basis for I8
with respect to ≺w. Hence, the footprint ∆≺w

(I8) and the corresponding
weights are as in Figure 1. We remind the reader that for L ⊆ ∆≺w

(I8)
the code C(I, L) equals ev(SpanF8

(L)+ I8) which is of length n = 22 and
dimension k = #L.

Y 2 XY 2 X2Y 2 X3Y 2 X4Y 2 X5Y 2 X6Y 2

Y XY X2Y X3Y X4Y X5Y X6Y

1 X X2 X3 X4 X5 X6 X7

6 8 10 12 14 16 18
3 5 7 9 11 13 15
0 2 4 6 8 10 12 14

Fig. 1. The footprint ∆≺w
(I8) with corresponding weights.

Our method to estimate #�≺w
(F ) (which corresponds to estimating

the Hamming weight of the corresponding code word) consists in two
parts. First we observe that all monomials in ∆≺w

(I8) divisible by the
leading monomial of F are in �≺w

(F ). In the second part we then for
a number of exhaustive special cases find more monomials in �≺w

(F )
by establishing clever combinations of polynomials that we already know
are in 〈F 〉 + Iq. To describe how such combinations are derived we will
need the following notation. Consider polynomials S(X,Y ), D(X,Y ) and

3 As we treat codes at a theoretical level we shall not need detailed information on
the variety, but we find it interesting to note that besides one point being (0, 0) the
remaining points correspond to the Fano plane by identifying each non-zero element
in F8 with a vertex. Every non-zero a now defines a line consisting of all bs such
that (a, b) is in the variety.
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R(X,Y ). By

S(X,Y )
D(X,Y )
−→ R(X,Y ) (1)

we shall indicate that R(X,Y ) = S(X,Y ) − Q(X,Y )D(X,Y ) for some
polynomial Q(X,Y ). The important fact – which we shall use frequently
throughout the paper – is that R(X,Y ) ∈ 〈S(X,Y ),D(X,Y )〉. Observe
that although we will always use the above “operation” to decrease the
leading monomial (meaning that lm(R) ≺ lm(S) ), we may still have
monomials left in the support of R(X,Y ) which are divisible by the lead-
ing monomial of D(X,Y ). Hence, (1) does not necessarily correspond to
the usual (full) division as described in [1, Sec. 2.3].

Remark 1. The Feng-Rao bound can be applied to any affine variety code;
but it works most efficiently when the ideal I and the monomial ordering
≺ under consideration satisfy the order domain conditions [6, Sec. 7].
That is,

1. The ordering ≺ must be a weighted degree lexicographic ordering (or
in larger generality a generalized weighted degree ordering [6, Def. 8]).

2. A Gröbner basis for I must exist with the property that any poly-
nomial in it contains in its support (exactly) two monomials of the
highest weight.

3. No two different monomials in ∆≺(I) are of the same weight.

In such cases the method often establishes many more monomials in
�≺(F ) than those divisible by the leading monomial of F . In [8] an im-
proved Feng-Rao bound was presented which treats in addition efficiently
certain families of cases where the conditions 1. and 2. are satisfied, but
3. is not. Even though the ideal and monomial ordering studied in the
present section exactly satisfy conditions 1. and 2., but not 3, the im-
proved Feng-Rao bound produces the same information as the Feng-Rao
bound in this case. By inspection both methods only “detect” monomials
divisible by the leading monomial of F as being members of �≺w

(F ).

Below we treat the 22 different possible leading monomials – corre-
sponding to the different members of∆≺w

(I8) – one by one. For simplicity,
we shall in our calculations always assume that the leading coefficient of
F is 1 which is not really a restriction as our goal is to estimate Hamming
weights.
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3.1 Leading monomial equal to Y

Consider c = ev(F + I8) where F (X,Y ) = Y + a1X + a2. Clearly

{Y, Y 2,XY,XY 2, . . . ,X6Y,X6Y 2} ⊂ �≺w
(F ).

We next establish more monomials in �≺w
(F ) under different conditions

on the coefficients a1, a2. Consider

Y 2F (X,Y )

Y 3+X3Y+X
−→ X3Y + a1XY 2 + a2Y

2 +X
F (X,Y )
−→ a1X

4 + (a31 + a2)X
3 + a21a2X

2 + (a1a
2
2 + 1)X + a32.

If a1 6= 0 then we have

{X4,X5,X6,X7} ⊂ �≺w
(F ).

Next assume a1 = 0. If a2 6= 0 then we obtain

{X3,X4,X5,X6,X7} ⊂ �≺w
(F ).

Finally, assume a1 = a2 = 0 in which case we have

{X,X2,X3X4,X5,X6,X7} ⊂ �≺w
(F ).

In conclusion we have shown that �≺w
(F ) contains at least 14 + 4 = 18

elements which implies wH(c) ≥ 18.

3.2 Leading monomial equal to Y
2

Consider a codeword c = ev(F + I8) where

F (X,Y ) = Y 2 + a1X
3 + a2XY + a3X

2 + a4Y + a5X + a6.

Independently of the coefficients a1, . . . , a6 we see that

{Y 2,XY 2, . . . ,X6Y 2} ⊂ �≺w
(F ). (2)

We next consider an exhaustive series of conditions under which we es-
tablish more monomials in �≺w

(F ). We have

Y F (X,Y )

Y 3+X3Y+X
−→ (a1 + 1)X3Y + a2XY 2 + a3X

2Y

+a4Y
2 + a5XY + a6Y +X. (3)
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If a1 6= 1 then the leading monomial of the last polynomial becomes X3Y
and consequently

{X3Y,X4Y,X5Y,X6Y } ∈ �≺w
(F ). (4)

Continuing the calculations for this case we obtain:

Y ((a1 + 1)X3Y + a2XY 2 + a3X
2Y + a4Y

2 + a5XY + a6Y +X)

F (X,Y )
−→ (a1 + 1)(a1X

6 + a2X
4Y + a3X

5 + a4X
3Y + a5X

4 + a6X
3)

+a2XY 3 + a3X
2Y 2 + a4Y

3 + a5XY 2 + a6Y
2 +XY.

If a1 6= 0 then we also have

{X6,X7} ⊂ �≺w
(F ).

Assuming next that a1 = 0 the above expression becomes

a2X
4Y + a3X

5 + a4X
3Y + a5X

4 + a6X
3 + a2XY 3

+a3X
2Y 2 + a4Y

3 + a5XY 2 + a6Y
2 +XY

Y 3+X3Y+X
−→ a3X

5 + a4X
3Y + a5X

4 + a6X
3 + a3X

2Y 2 + a4Y
3

+a5XY 2 + a6Y
2 +XY + a2X

2

F (X,Y )
−→ a3X

5 + a5X
4 + a6X

3 + a3a2X
3Y + a23X

4 + a3a4X
2Y

+a3a5X
3 + a3a6X

2 + a5XY 2 + a6Y
2 +XY + a2X

2.

If a3 6= 0 then

{X5,X6,X7} ⊂ �≺w
(F ).

Hence, continuing under the assumption a3 = 0 we are left with

a5X
4 + a6X

3 + a5XY 2 + a6Y
2 +XY + a2X

2

F (X,Y )
−→ a5X

4 + a6X
3 + a5a2X

2Y + a5a4XY + a25X
2 + a5a6X + a6Y

2

+XY + a2X
2.

if a5 6= 0 then

{X4,X5,X6,X7} ⊂ �≺w
(F ).

Hence, assume a5 = 0 and we are left with

a6X
3 + a6Y

2 +XY + a2X
2

F (X,Y )
−→ a6X

3 + a6a2XY + a6a4Y + a26 +XY + a2X
2.
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If a6 6= 0 then
{X3,X4,X5,X6,X7} ⊂ �≺w

(F ).

If on the other hand a6 = 0 then we are left with XY + a2X
2 in which

case we obtain
{XY,X2Y } ⊂ �≺w

(F ).

In conclusion, for the case a1 6= 1 we obtained in addition to the elements
in (2) the elements in (4) and at least 2 more. That is, in addition to the
elements in (2) at least 6 more.
Assume in the following that a1 = 1 and continue the reduction from (3)

F (X,Y )
−→ a2X

4 + (a3 + a22)X
2Y + (a2a3 + a4)X

3 + a5XY

+(a2a5 + a3a4)X
2 + (a6 + a24)Y + (1 + a4a5)X + a4a6. (5)

If a2 6= 0 then

{X4,X5,X7,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Next assume a2 = 0. If a3 6= 0 then

{X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ). (6)

Continuing the reduction under the assumption a3 6= 0 we multiply (5)
by Y and continue the reduction:

a3X
2Y 2 + a4X

3Y + a5XY 2 + a3a4X
2Y + (a6 + a24)Y

+(1 + a4a5)X + a4a6
F (X,Y )
−→ a3X

5 + a23X
4 + a3a4X

2Y + a3a5X
3 + a3a6X

2 + a4X
3Y + a5XY 2

+a3a4X
2Y + (a6 + a24)Y + (1 + a4a5)X + a4a6.

As a3 6= 0 we obtain in addition to (2) and (6) that

{X5,X6,X7} ⊂ �≺w
(F ).

That is, in addition to (2) we found in total 8 more elements in �≺w
(F ).

Next assume a3 = 0 and continue from (5). If a4 6= 0 then

{X3,X4,X5,X6,X7,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Next assume a4 = 0. if a5 6= 0 then

{XY,X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).
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Hence, assume a5 = 0. If a6 6= 0 then

{Y,XY,X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Finally, assume a6 = 0. But then

{X,X2,X3,X4,X5,X6,X7,XY,X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

In conclusion, we have at least 7+min{6, 6, 8, 9, 6, 7, 13} = 13 monomials
in �≺w

(F ) and therefore wH(c) ≥ 13.

3.3 Leading monomial equal to XY

Consider c = ev(F + I8) where

F (X,Y ) = XY + a1X
2 + a2Y + a3X + a4.

For sure

{XY,X2Y,X3Y,X4Y,X5Y,X6Y,

XY 2,X2Y 2,X3Y 2,X4Y 2,X5Y 2,X6Y 2} ⊂ �≺w
(F ). (7)

We next consider an exhaustive series of conditions under which we es-
tablish more monomials in �precw(F ). We have

Y 2F (X,Y )

Y 3+X3Y+X
−→ a1X

5 + a3X
4 + a4X

3

+a1(a
2
1X

4 + a22Y
2 + a23X

2 + a24)

+a3XY 2 + a4Y
2 +X2 + a2X.

If a1 6= 0 then
{X5,X6,X7} ⊂ �≺w

(F ).

Hence, assume a1 = 0 and continue the reduction:

F (X,Y )
−→ a3a2Y

2 + a23XY + a3a4Y + a3X
4 + a4X

3 + a4Y
2 +X2 + a2X.

If a3 6= 0 then
{X4,X5,X6,X7} ⊂ �≺w

(F ).

Hence, assume a3 = 0 in which case the above becomes

a4Y
2 + a4X

3 +X2 + a2X.

9



If a4 = 0 then

{X2,X3,X4,X5,X6,X7} ⊂ �≺w
(F ).

Hence, assume a4 6= 0, in which case we have

{Y 2} ⊂ �≺w
(F ).

We continue the calculations to add more elements. We have:

X2(a4Y
2 + a4X

3 +X2 + a2X)
F (X,Y )
−→ a4X

5 + a22Y
2 + a2X + a24.

But then
{X5,X6,X7} ⊂ �≺w

(F ).

That is, for the case a4 6= 0 �≺w
(F ) contains in addition to (7) at least

1 + 3 = 4 more monomials.

In conclusion wH(c) ≥ 12 + min{3, 4, 6, 4} = 15, and if a1 = 0 then
wH(c) ≥ 16.

3.4 Leading monomial equal to X
2
Y

Consider c = ev(F + I8) where

F (X,Y ) = X2Y + a1Y
2 + a2X

3 + a3XY + a4X
2 + a5Y + a6X + a7.

For sure

{X2Y,X3Y,X4Y,X5Y,X6Y,X2Y 2,X3Y 2,X4Y 2,X5Y 2,X6Y 2}

⊂ �≺w
(F ). (8)

We next consider an exhaustive series of conditions under which we es-
tablish more monomials in �≺w

(F ). We have

Y 2F (X,Y )

= X2Y 3 + a1Y
4 + a2X

3Y 2 + a3XY 3 + a4X
2Y 2 + a5Y

3

+a6XY 2 + a7Y
2

Y 3+X3Y+X
−→ X5Y + a1X

3Y 2 + a2X
3Y 2 + a3X

4Y + a4X
2Y 2 + a5X

3Y

+a6XY 2 + a7Y
2 +X3 + a1XY + a3X

2 + a5X
F (X,Y )
−→ a2X

6 + a4X
5 + a6X

4 + a7X
3 + a2X

3Y 2 + a4X
2Y 2

+a6XY 2 + a7Y
2 +X3 + a1XY + a3X

2 + a5X.
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If a2 6= 0 then
{X6,X7} ⊂ �≺w

(F ).

Hence, assume a2 = 0, in which case we have

a4X
5 + a6X

4 + a7X
3 + a4X

2Y 2 + a6XY 2 + a7Y
2 +X3

+a1XY + a3X
2 + a5X

F (X,Y )
−→ a4X

5 + a6X
4 + a7X

3 + a4Y (a1Y
2 + a3XY + a4X

2

+a5Y + a6X + a7) + a6XY 2 + a7Y
2 +X3 + a1XY + a3X

2 + a5X.

If a4 6= 0 then
{X5,X6,X7} ⊂ �≺w

(F ).

Hence, assume a4 = 0 and continuer

X(a6X
4 + a7X

3 + a6XY 2 + a7Y
2 +X3 + a1XY + a3X

2 + a5X)

F (X,Y )
−→ a6X

5 + a7X
4 + a6Y (a1Y

2 + a3XY + a5Y + a6X + a7)

+a7XY 2 +X4 + a1X
2Y + a3X

3 + a5X
2.

If a6 6= 0 then
{X5,X6,X7} ⊂ �≺w

(F ).

Hence, assume a6 = 0, in which case we have

X(a7X
4 + a7XY 2 +X4 + a1X

2Y + a3X
3 + a5X

2)

F (X,Y )
−→ (a7 + 1)X5 + a7Y (a1Y

2 + a3XY + a5Y + a7)

+a1X
3Y + a3X

4 + a5X
3.

If a7 6= 1 then
{X5,X6,X7} ⊂ �≺w

(F ).

Hence, assume a7 = 1 and continue the reduction

a1Y
3 + a3XY 2 + a5Y

2 + Y + a1X
3Y + a3X

4 + a5X
3

Y 3+X3Y+X
−→ a3XY 2 + a5Y

2 + Y + a3X
4 + a5X

3 + a1X

which we multiply by X before continuing reduction

a3X
2Y 2 + a5XY 2 +XY + a3X

5 + a5X
4 + a1X

2

F (X,Y )
−→ a3Y (a1Y

2 + a3XY + a5Y + 1)

+a5XY 2 +XY + a3X
5 + a5X

4 + a1X
2.
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If a3 6= 0 then

{X5,X6,X7} ⊂ �≺w
(F ).

Hence, assume a3 = 0 and continue

X(a5XY 2 +XY + a5X
4 + a1X

2)

F (X,Y )
−→ a5(a1Y

3 + a5Y
2 + Y ) + a1Y

2 + a5Y + 1 + a5X
5 + a1X

3.

If a5 6= 0 then

{X5,X6,X7} ⊂ �≺w
(F ).

Hence, assume a5 = 0 and multiply the resulting expression by Y

Y (a1Y
2 + a1X

3 + 1)

Y 3+X3Y+X
−→ Y + a1X

and we conclude
{Y, Y 2,XY,XY 2} ⊂ �≺w

(F ).

In conclusion wH(c) ≥ 10+min{2, 3, 3, 3, 3, 3, 4} = 12, and if a2 = 0 then
wH(c) ≥ 13.

3.5 Leading monomial equal to XY
2

Consider c = ev(F + I8) where

F (X,Y ) = XY 2 + a1X
4 + a2X

2Y + a3Y
2 + a4X

3

+a5XY + a6X
2 + a7Y + a8X + a9.

For sure

{XY 2,X2Y 2,X3Y 2,X4Y 2,X5Y 2,X6Y 2} ⊂ �≺w
(F ). (9)

We next consider an exhaustive series of conditions under which we es-
tablish more monomials in �≺w

(F ). We have

Y F (X,Y )

Y 3+X3Y+X
−→ (a1 + 1)X4Y + a2X

2Y 2 + a3Y
3 + a4X

3Y + a5XY 2

+a6X
2Y + a7Y

2 + a8XY +X2 + a9Y. (10)

If a1 6= 1 then

{X4Y,X5Y,X6Y } ⊂ �≺w
(F ). (11)
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Continuing the calculations for this case we obtain

Y ((a1 + 1)X4Y + a2X
2Y 2 + a3Y

3 + a4X
3Y + a5XY 2 + a6X

2Y

+a7Y
2 + a8XY +X2 + a9Y )

F (X,Y )
−→ (a+ 1)(a1X

7 + a2X
5Y + a3X

3Y 2 + a4X
6 + a5X

4Y + a6X
5

+a7X
3Y + a8X

4 + a9X
3) + a2X

2Y 3 + a3Y
4 + a4X

3Y 2 + a5XY 3

+a6X
2Y 2 + a7Y

3 + a8XY 2 +X2Y + a9Y
2.

If a1 6= 0 then we also have

{X7} ⊂ �≺w
(F ).

Assuming next that a1 = 0 the above expression becomes

a2X
5Y + a3X

3Y 2 + a4X
6 + a5X

4Y + a6X
5 + a7X

3Y + a8X
4

+a9X
3 + a2X

2Y 3 + a3Y
4 + a4X

3Y 2

+a5XY 3 + a6X
2Y 2 + a7Y

3 + a8XY 2 +X2Y + a9Y
2

Y 3+X3Y+X
−→ a4X

6 + a6X
5 + a8X

4 + a9X
3 + a3XY + a4X

3Y 2

+a6X
2Y 2 + a8XY 2 +X2Y + a9Y

2 + a2X
3 + a5X

2 + a7X
F (X,Y )
−→ a4X

6 + a6X
5 + a8X

4 + a9X
3 + a3XY

+(a4X
2 + a6X + a8)(a2X

2Y + a3Y
2 + a4X

3 + a5XY + a6X
2

+a7Y + a8X + a9) +X2Y + a9Y
2 + a2X

3 + a5X
2 + a7X.

If a4 6= 0 then
{X6,X7} ⊂ �≺w

(F ).

Hence, we assume a4 = 0. From the above expression we see that if next
a6 6= 0 then

{X5,X6,X7} ⊂ �≺w
(F ).

Hence, assume a6 = 0. Investigating again the above expression we now
see that for a8 6= 0 it holds that

{X4,X5,X6,X7} ⊂ �≺w
.

Continuing from the same expression, but now under the assumption that
a8 = 0 we see that

{X2Y,X3Y } ⊂ �≺w
(F ).

In conclusion, for the case a1 6= 1 we have in addition to (9) and (11)
established at least one more element in �≺w

(F ). That is, in addition to

13



(9) we have at least 4 elements in �≺w
(F ). Furthermore, if a1 6= 1 and

a1 6= 0 then we have at least one more element in addition in this set.

In the following we assume a1 = 1 and continue the calculations
from (10) as follows

Y 3+X3Y+X
−→ a2X

2Y 2 + (a3 + a4)X
3Y + a5XY 2 + a6X

2Y

+a7Y
2 + a8XY +X2 + a9Y + a3X.

F (X,Y )
−→ a2X

5 + (a22 + a3 + a4)X
3Y + (a2a3 + a5)XY 2 + a2a4X

4

+(a2a5 + a6)X
2Y + a7Y

2 + a2a6X
3 + (a2a7 + a8)XY

+(a2a8 + 1)X2 + a9Y + (a2a9 + a3)X.

If a2 6= 0 then

{X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Hence, assume a2 = 0. But then if a3 6= a4 we get

{X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ). (12)

Multiplying the above polynomial by Y and continuing the reduction we
obtain:

(a3 + a4)X
3Y 2 + a5XY 3 + a6X

2Y 2 + a7Y
3

a8XY 2 +X2Y + a9Y
2 + a3XY

F (X,Y )
−→ ((a3 + a4)X

2 + a5Y + a6X + a8)

(X4a3Y
2 + a4X

3 + a5XY + a6X
2 + a7Y + a8X + a9)

+a7Y
3 + a8XY 2 +X2Y + a9Y

2 + a3XY

implying that

{X6,X7} ⊂ �≺w
(F ).

Hence, for the case a1 = 1, a2 = 0, a3 6= a4 in addition to (9) we found 6
more elements in �≺w

(F ). Namely, the above 2 and the 4 in (12).

In the following we assume a3 = a4. Continuing the reduction we
obtain

F (X,Y )
−→ a5X

4 + a6X
2Y + (a4a5 + a7)Y

2 + a4a5X
3 + (a25 + a8)XY

+(a5a6 + 1)X2 + (a5a7 + a9)Y + (a5a8 + a4)X + a5a9. (13)
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If a5 6= 0 then

{X4,X4Y,X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Hence, we next assume a5 = 0. If then a6 6= 0 we obtain

{X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ),

and we therefore now assume a6 = 0. We next multiply the considered
polynomial by X and continue the reduction

a7XY 2 + a8X
2Y +X3 + a9XY + a4X

2

F (X,Y )
−→ a7X

4 + a8X
2Y + a4a7Y

2 + (a4a7 + 1)X3

+a9XY + a4X
2 + a27Y + a7a8X + a7a9.

If a7 6= 0 then

{Y 2,X4,X4Y,X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Here – although it has no implication for what we want to prove – we
used (13) to demonstrate that Y 2 is also in the set. Hence, assume now
that a7 = 0. Then if a8 6= 0 we obtain

{X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Finally, if a8 = 0 the leading monomial becomes X3 and we therefore
have

{X3,X3Y,X4,X4Y,X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

In conclusion we have established the existence of at least 6+min{4, 5, 6, 7, 5, 8, 5} =
10 elements in �≺w

(F ), and therefore wH(c) ≥ 10. Moreover, by inspec-
tion of the results in the present section we see that wH(c) ≥ 6 + 5 = 11
holds when a1 ∈ {0, 1}.

3.6 Leading monomial equal to X
3
Y

Consider c = ev(F + I8) where

F (X,Y ) = X3Y + a1XY 2 + a2X
4 + a3X

2Y + a4Y
2

+a5X
3 + a6XY + a7X

2 + a8Y + a9X + a10.

For sure

{X3Y,X4Y,X5Y,X6Y,X3Y 2,X4Y 2,X5Y 2,X6Y 2} ⊂ �≺w
(F ).
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We next consider an exhaustive series of conditions under which we estab-
lish more monomials in �≺w

(F ). The strategy in this subsection is differ-
ent from other sections in that we here do not reduce modulo F (X,Y ) but
instead in addition to reducing modulo Y 3 +X3Y +X also reduce mod-
ulo the polynomials X8+X,X7Y +Y ∈ 〈Y 3+X3Y +X,Y 8+Y,X8+X〉.

We start by multiplying F (X,Y ) by X7 to obtain

X10Y + a1X
8Y 2 + a2X

11 + a3X
9Y + a4X

7Y 2 + a5X
10 + a6X

8Y

+a7X
9 + a8X

7Y + a9X
8 + a10X

7

X8+X
−→ X3Y + a1XY 2 + a2X

4 + a3X
2Y + a4X

7Y 2

+a5X
3 + a6XY + a7X

2 + a8X
7Y + a9X + a10X

7

X7Y+Y
−→ X3Y + a1XY 2 + a2X

4 + a3X
2Y + a4Y

2

+a5X
3 + a6XY + a7X

2 + a8Y + a5X + a10X
7.

If a10 6= 0 then
{X7} ⊂ �≺w

(F ).

Hence, assume a10 = 0 and multiply the resulting expression by Y 2 to
obtain

X3Y 3 + a1XY 4 + a2X
4Y 2 + a3X

2Y 3 + a4Y
4

+a5X
3Y 2 + a6XY 3 + a7X

2Y 2 + a8Y
3 + a9XY 2

Y 3+X3Y+X
−→ X6Y +X4 + a1X

4Y 2 + a1X
2Y + a2X

4Y 2 + a3X
5Y

+a3X
3 + a4X

3Y 2 + a4XY + a5X
3Y 2 + a6X

4Y + a6X
2

+a7X
2Y 2 + a8X

3Y + a8X + a9XY 2

which we multiply by X6 to obtain

X12Y +X10 + a1X
10Y 2 + a1X

8Y + a2X
10Y 2 + a3X

11Y + a3X
9

+a4X
9Y 2 + a4X

7Y + a5X
9Y 2 + a6X

10Y + a6X
8 + a7X

8Y 2

+a8X
9Y + a8X

7 + a9X
7Y 2

X7Y+Y
−→ · · ·

X8+X
−→ X5Y +X3 + a1X

3Y 2 + a1XY + a2X
3Y 2 + a3X

4Y + a3X
2

+a4X
2Y 2 + a4Y + a5X

2Y 2 + a6X
3Y + a6X + a7XY 2 + a8X

2Y

+a8X
7 + a9Y

2.

If a8 6= 0 then
{X7} ⊂ �≺w

(F ).
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Hence, assume a8 = 0. We next multiply F (X,Y ) by Y and obtain

X3Y 2 + a1XY 3 + a2X
4Y + a3X

2Y 2 + a4Y
3 + a5X

3Y

+a6XY 2 + a7X
2Y + a9XY

Y 3+X3Y+X
−→ X3Y 2 + a1X

4Y + a1X
2 + a2X

4Y + a3X
2Y 2

+a4X
3Y + a4X + a5X

3Y + a6XY 2 + a7X
2Y + a9XY

which we multiply by X6 to obtain

X9Y 2 + a1X
10Y + a1X

8 + a2X
10Y + a3X

8Y 2

+a4X
9Y + a4X

7 + a5X
9Y + a6X

7Y 2 + a7X
8Y + a9X

7Y
X7Y+Y
−→ X2Y 2 + a1X

3Y + a1X + a2X
3Y + a3XY 2

+a4X
2Y + a4X

7 + a5X
2Y + a6Y

2 + a7XY + a9Y.

If a4 6= 0 then
{X7} ⊂ �≺w

(F ).

Hence, assume a4 = 0. We next multiply F (X,Y ) by X6 to obtain

X9Y + a1X
7Y 2 + a2X

10 + a3X
8Y + a5X

9

+a6X
7Y + a7X

8 + a9X
7

X7Y+Y
−→ · · ·

X8+X
−→ X2Y + a1Y

2 + a2X
3 + a3XY + a5X

2 + a6Y + a7X + a9X
7.

If a9 6= 0 then
{X7} ⊂ �≺w

(F ).

Hence, assume a9 = 0 and multiply by Y 2

X2Y 3 + a1Y
4 + a2X

3Y 2 + a3XY 3 + a5X
2Y 2 + a6Y

3 + a7XY 2

Y 3+X3Y+X
−→ X5Y +X3 + a1X

3Y 2 + a1XY + a2X
3Y 2 + a3X

4Y

+a3X
2 + a5X

2Y 2 + a6X
3Y + a6X + a7XY 2

which we then multiply by X6 to obtain

X11Y +X9 + a1X
9Y 2 + a1X

7Y + a2X
9Y 2 + a3X

10Y + a3X
8

+a5X
8Y 2 + a6X

9Y + a6X
7 + a7X

7Y 2

X7Y+Y
−→ · · ·

X8+X
−→ X4Y +X2 + a1X

2Y 2 + a1Y + a2X
2Y 2 + a3X

3Y + a3X

+a5XY 2 + a6X
2Y + a6X

7 + a7Y
2.
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If a6 6= 0 then

{X7} ⊂ �≺w
(F ).

Hence, assume a6 = 0. We next multiply F (X,Y ) by Y and continue the
reductions:

X3Y 2 + a1XY 3 + a2X
4Y + a3X

2Y 2 + a5X
3Y + a7X

2Y
Y 3+X3Y+X

−→ X3Y 2 + a1X
4Y + a1X

2 + a2X
4Y + a3X

2Y 2 + a5X
3Y + a7X

2Y

which we multiply by X5

X8Y 2 + a1X
9Y + a1X

7 + a2X
9Y + a3X

7Y 2 + a5X
8Y + a7X

7Y
X7Y+Y
−→ XY 2 + a1X

2Y + a1X
7 + a2X

2Y + a3Y
2 + a5XY + a7Y.

If a1 6= 0 then

{X7} ⊂ �≺w
(F ).

Hence, assume a1 = 0. We next multiply F (X,Y ) by X5

X8Y + a2X
9 + a3X

7Y + a5X
8 + a7X

7

X7Y+Y
−→ · · ·

X8+X
−→ XY + a2X

2 + a3Y + a5X + a7X
7.

If a7 6= 0 then

{X7} ⊂ �≺w
(F ).

Hence, assume a7 = 0. Next we multiply F (X,Y ) by Y 2 and obtain

X3Y 3 + a2X
4Y 2 + a3X

2Y 3 + a5X
3Y 2

Y 3+X3Y+X
−→ X6Y +X4 + a2X

4Y 2 + a3X
5Y + a3X

3 + a5X
3Y 2

which we multiply by X4

X10Y +X8 + a2X
8Y 2 + a3X

9Y + a3X
7 + a5X

7Y 2

X7Y+Y
−→ · · ·

X8+X
−→ X3Y +X + a2XY 2 + a3X

2Y + a3X
7 + a5Y

2.

If a3 6= 0 then

{X7} ⊂ �≺w
(F ).
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Hence, assume a3 = 0. We now multiply F (X,Y ) by X4

X7Y + a2X
8 + a5X

7

X7Y+Y
−→ · · ·
X8+x
−→ Y + a2X + a5X

7.

If a5 6= 0 then
{X7} ⊂ �≺w

.

Hence, assume finally that a5 6= 0 and multiply F (X,Y ) by Y 2 to obtain

X3Y 3 + a2X
4Y 2

Y 3+X3Y+X
−→ X6Y +X4 + a2X

4Y 2.

This expression is then multiplied by X3

X9Y +X7 + a2X
7Y 2

X7Y+Y
−→ X2Y +X7 + a2Y

2

and
{X7} ⊂ �≺w

⊂ �≺w
(F ).

In conclusion wH(c) ≥ 8 + 1 = 9.

3.7 Leading monomial equal to X
2
Y

2

Consider c = ev(F + I8) where

F (X,Y ) = X2Y 2 + a1X
5 + a2X

3Y + a3XY 2 + a4X
4 + a5X

2Y

+a6Y
2 + a7X

3 + a8XY + a9X
2 + a10Y + a11X + a12.

For sure

{X2Y 2,X3Y 2,X4Y 2,X5Y 2,X6Y 2} ⊂ �≺w
(F ).

We next consider an exhaustive series of conditions under which we es-
tablish more monomials in �≺w

(F ). We have

Y F (X,Y )

Y 3+X3Y+X
−→ (1 + a1)X

5Y + a2X
3Y 2 + a3XY 3 + a4X

4Y + a5X
2Y 2

+a6Y
3 + a7X

3Y + a8XY 2 + a9X
2Y + a10Y

2 +X3

+a11XY + a12Y.
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If a1 6= 1 then

{X5Y,X6Y } ⊂ �≺w
(F ).

Hence, assume a1 = 1 and continue the reduction.

Y 3+X3Y+X
−→ a2X

3Y 2 + (a3 + a4)X
4Y + a5X

2Y 2 + (a6 + a7)X
3Y + a8XY 2

+a9X
2Y + a10Y

2 +X3 + a11XY + a3X
2 + a12Y + a6X

F (X,Y )
−→ a2X

6 + (a3 + a4 + a22)X
4Y + (a2a3 + a5)X

2Y 2 + a2a4X
5

+(a2a5 + a6 + a7)X
3Y + (a2a6 + a8)XY 2 + a2a7X

4

+(a2a8 + a9)X
2Y + a10Y

2 + (a2a9 + 1)X3 + (a2a10 + a11)XY

+(a2a11 + a3)X
2 + a12Y + (a2a12 + a6)X.

If a2 6= 0 then

{X6,X6Y,X7} ⊂ �≺w
(F ).

Hence, assume a2 = 0. If a3 6= a4 then we have

{X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Assuming a3 = a4 we continue the reduction as follows

F (X,Y )
−→ a5X

5 + (a6 + a7)X
3Y + (a4a5 + a8)XY 2 + a4a5X

4 + (a25 + a9)X
2Y

+(a5a6 + a10)Y
2 + (a5a7 + 1)X3 + (a5a8 + a11)XY + (a5a9 + a4)X

2

+(a5a10 + a12)Y + (a5a11 + a6)X + a5a12.

If a5 6= 0 then

{X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Hence, assume a5 = 0. But then if a6 6= a7

{X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ),

and we therefore next assume a6 = a7. We now multiply the above poly-
nomial by X and continue the reduction

X
(

a8XY 2 + a9X
2Y + a10Y

2 +X3 + a11XY + a4X
2 + a12Y + a6X

)

F (X,Y )
−→ a8X

5 + a9X
3Y + (a4a8 + a10)XY 2 + (a4a8 + 1)X4 + a11X

2Y

+a7a8Y
2 + (a4 + a7a8)X

3 + (a28 + a12)XY + (a6 + a8a9)X
2

+a8a10Y + a8a11X + a8a12.
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If a8 6= 8 then

{X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ),

and if a8 = 0 but a9 6= 0 then

{X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Hence, assume a8 = a9 = 0 and multiply the resulting polynomial by X
after which we continue the reduction.

X
(

a10XY 2 +X4 + a11X
2Y + a4X

3 + a12XY + a6X
2
)

F (X,Y )
−→ (a10 + 1)X5 + a11X

3Y + a4a10XY 2 + (a4 + a4a10)X
4 + a12X

2Y

+a7a10Y
2 + (a7a10 + a7)X

2 + a210Y + a10a11X + a10a12.

If a10 6= 1 then

{X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Hence, assume a10 = 1. If a11 6= 0 then

{X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Hence assume a11 = 0 and multiply the resulting polynomial by X and
continue the reduction

X
(

a4XY 2 + a12X
2Y + a7Y

2 + Y + a12
)

F (X,Y )
−→ a4X

5 + a12X
3Y + (a24 + a7)XY 2 + a24X

4 + a4a7Y
2

+a4a7X
3 +XY + a4Y + a12X + a4a12.

If a4 6= 0 then

{X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Hence, assume a4 = 0 Then if a12 6= 0 we have

{X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Hence, we assume a12 = 0. We again multiply by X and continue the
reduction

X
(

a7XY 2 +XY
) F (X,Y )

−→ a7X
5 + a27Y

2 + a27X
3 + a7Y +X2Y.
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If a7 6= 0 then

{X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

Finally, assume a7 = 0. But then we are left with X2Y and therefore

{X2Y,X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

In conclusion we can always establish at least 5+min{2, 3, 3, 5, 4, 5, 4, 5, 4, 5, 4} =
7 monomials in �≺w

(F ), and we conclude that wH(c) ≥ 7. Moreover, our
analysis reveals that if a1 = 1 then wH(c) ≥ 5 + 3 = 8.

3.8 Leading monomial equal to X
3
Y

2

Consider c = ev(F + I8) where

F (X,Y ) =X3Y 2 + a1X
6 + a2X

4Y + a3X
2Y 2 + a4X

5

+a5X
3Y + a6XY 2 + a7X

4 + a8X
2Y + a9Y

2

+a10X
3 + a11XY + a12X

2 + a13Y + a14X + a15.

For sure
{X3Y 2,X4Y 2,X5Y 2,X6Y 2} ⊂ �≺w

(F ).

We next consider an exhaustive series of conditions under which we es-
tablish more monomials in �≺w

(F ). We have

Y F (X,Y )

Y 3+X3Y+X
−→ (1 + a1)X

6Y + a2X
4Y 2 + a3X

2Y 3 + a4X
5Y + a5X

3Y 2

+a6XY 3 + a7X
4Y + a8X

2Y 2 + a9Y
3 + a10X

3Y + a11XY 2

+X4 + a12X
2Y + a13Y

2 + a14XY + a15Y.

If a1 6= 1 then
{X6Y } ⊂ �≺w

(F ).

Hence, assume a1 = 1 and continue the reduction.

Y 3+X3Y+X
−→ a2X

4Y 2 + (a3 + a4)X
5Y + a5X

3Y 2 + (a6 + a7)X
4Y

+a8X
2Y 2 + (a9 + a10)X

3Y + a11XY 2 +X4 + a12X
2Y

+a13Y
2 + a3X

3 + a14XY + a6X
2 + a15Y + a9X

F (X,Y )
−→ a2X

7 + (a22 + a3 + a4)X
5Y + (a2a3 + a5)X

3Y 2 + a2a4X
6

+(a2a5 + a6 + a7)X
4Y + (a2a6 + a8)X

2Y 2 + a2a7X
5

+(a2a8 + a9 + a10)X
3Y + (a2a9 + a11)XY 2 + (a2a10 + 1)X4

+(a2a11 + a12)X
2Y + a13Y

2 + (a2a12 + a3)X
3 + (a2a13 + a14)XY

+(a2a14 + a6)X
2 + a15Y + (a2a15 + a9)X.
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If a2 6= 0 then
{X7} ⊂ �≺w

(F ).

Hence, assume a2 = 0. If a3 6= a4 then

{X5Y,X6Y } ⊂ �≺w
(F ).

Hence, assume a3 = a4 and continue the reduction.

F (X,Y )
−→ a5X

6 + (a6 + a7)X
4Y + (a4a5 + a8)X

2Y 2 + a4a5X
5

+(a25 + a9 + a10)X
3Y + (a5a6 + a11)XY 2 + (a5a7 + 1)X4

+(a5a8 + a12)X
2Y + (a5a9 + a4)Y

2 + (a5a10 + a4)X
3

+(a5a11 + a14)XY + (a5a12 + a6)X
2 + (a5a13 + a15)Y

+(a5a14 + a9)X + a5a15.

If a5 6= 0 then
{X6,X6Y,X7} ⊂ �≺w

(F ).

Hence, assume a5 = 0. But then if a6 6= a7

{X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Hence, assume a6 = a7. But then if a8 6= 0 we obtain

{X2Y 2} ⊂ �≺w
(F ).

Actually, this result could be improved to

{X2Y 2,X6,X6Y,X7} ⊂ �≺w
(F )

if we multiply the above polynomial by X and reduce it modulo F (X,Y ).
The details are left for the reader. Next assume a8 = 0. But then if
a9 6= a10 we get

{X3Y,X4Y,X5Y,X6Y } ⊂ �≺w
(F ).

Hence, assume a9 = a10. If a11 6= 0 then

{XY 2,X2Y 2} ⊂ �≺w
(F ).

Finally, assume a11 = 0. But then X4 is the leading monomial and we
obtain

{X4,X4Y,X5,X5Y,X6,X6Y,X7} ⊂ �≺w
(F ).

In conclusion we can always establish at least 4+min{1, 1, 2, 3, 3, 4, 4, 2, 7} =
5 monomials in �≺w

(F ), and we conclude that wH(c) ≥ 5. Moreover, if
a1 = 1 and a2 = 0 then wH(c) ≥ 4 + 2 = 6.
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3.9 Leading monomial equal to X
7

Consider c = ev(F + I8) where

F (X,Y ) = X7 + a1X
5Y + a2X

3Y 2 + a3X
6 + a4X

4Y + a5X
2Y 2

+a6X
5 + a7X

3Y + a8XY 2 + a9X
4 + a10X

2Y + a11Y
2

+a12X
3 + a13XY + a14X

2 + a15Y + a16X + a17.

Observe that among the 22 affine roots over F8 of Y
3+X3Y +X the only

point having the first coordinate equal to 0 is (0, 0). Hence, ev(X7 +1) is
of Hamming weight 1 meaning that wH(c) = 1 when a1 = · · · = a16 = 0
and a17 = 1. In the following we show that for all other choices of ai the
Hamming weight becomes at least 3. We first observe, that

{X7} ⊂ �≺w
(F ).

Now consider

Y F (X,Y )

X7Y+Y
−→ a1X

5Y 2 + a2X
3Y 3 + a3X

6Y + a4X
4Y 2 + a5X

2Y 3

+a6X
5Y + a7X

3Y 2 + a8XY 3 + a9X
4Y + a10X

2Y 2

+a11Y
3 + a12X

3Y + a13XY 2 + a14X
2Y

+a15Y
2 + a16XY + (a17 + 1)Y

Y 3+X3Y+X
−→ a1X

5Y 2 + (a2 + a3)X
6Y + a4X

4Y 2 + (a5 + a6)X
5Y

+a7X
3Y 2 + (a8 + a9)X

4Y + a10X
2Y 2 + (a11 + a12)X

3Y

+a13XY 2 + a2X
4 + a14X

2Y + a15Y
2 + a5X

3 + a16XY

+a8X
2 + (a17 + 1)Y + a11X.

If the above polynomial is non-zero then going through all possible lead-
ing monomials we see that we can always establish at least two more
monomials in �≺w

(F ) in addition to X7. For instance if a1 6= 0 then
we can add {X5Y 2,X6Y 2}. If a1 = 0 and a2 6= a3 then we can add
{X6Y,X6Y 2} and so on. By inspection the above polynomial equals the
zero polynomial if and only if F (X,Y ) = X7 + 1 and we are through.

3.10 The remaining cases

For the remaining choices of leading monomial it seems impossible to
obtain better information on �≺w

(F ) than what is derived by noting
that all monomials divisible by lm(F ) must be a leading monomial in
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〈F 〉+ I8. In particular when the leading monomial is Xi, i = 0, . . . , 7 the
information we obtain in this way can be shown to be the true Hamming
weight of existing corresponding codewords. In conclusion we established
the information in Figure 2.

13 10 7 5 3 2 1
18 15 12 9 6 4 2
22 19 16 13 10 7 4 1

Fig. 2. Lower bounds on #�≺w
(F ) where lm(F ) are as in Figure 1

4 Code parameters

As code construction we use

SpanF8
{ev(M + I8) | M ∈ ∆≺w

(I8), δ(M) ≥ s},

where δ(M) are the estimates of #�≺w
(F ) as depicted in Figure 2. In this

way we obtain the best possible codes, according to our estimates. The
resulting parameters are shown in Table 1. In almost all cases, given a

[22, 1, 22]8 [22, 2, 19]8 [22, 3, 18]8
[22, 4, 16]8 [22, 5, 15]8 [22, 7, 13]8
[22, 8, 12]8 [22, 10, 10]8 [22, 11, 9]8
[22, 13, 7]8 [22, 14, 6]8 [22, 15, 5]8
[22, 17, 4]8 [22, 18, 3]8 [22, 20, 2]8

Table 1. Parameters [n, k, d]8 of codes from the Klein quartic. Here, n and k are sharp
values, whereas d represents a lower bound estimate.

dimension in the table, then the corresponding estimate on the minimum
distance equals the best value known to exist according to [9]. The only
exceptions are the dimensions 4, 14, 15 and 18 where the best minimum
distances known to exist are one more than we obtain. We finally remark
that if we evaluate in all polynomials except those who have X6Y 2 in
their support then by Subsection 3.9 we get a code of dimension 21 with
exactly 7 codewords of Hamming weight 1. Hence, this code is almost as
good as the [22, 21, 2]]8 code, known to exist by [9].

25



5 Concluding remarks

In [12, Ex. 3.2] the authors estimated the minimum distances of the du-
als of the codes studied in the present paper using the Feng-Rao bound
for dual codes. We believe that is should be possible to improve (possi-
bly even drastic) upon their estimates of the minimum distance in the
same way as we in this paper improved upon the Feng-Rao bound for pri-
mary codes. We leave this question for future research. The method of the
present paper also applies to estimate higher weights (possible relative).
We leave it for future research to establish examples where this gives im-
proved information compared to what can be derived from the Feng-Rao
bound. In the light of Remark 1 and the information established in Sec-
tion 3, evidently our new method sometimes significantly improves upon
the previous known methods. We stress that our method is very general
in that it can be applied to any primary affine variety code. In particular
it works for any monomial ordering and consequently also without any of
the order domain conditions (Remark 1). Finding more families of good
affine variety codes using our method is subject to future work.
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