Skip to main content

Advertisement

Log in

Construction of a Near-Optimal Quasi-Complementary Sequence Set from Almost Difference Set

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Compared with the perfect complementary sequence sets, quasi-complementary sequence sets (QCSSs) can support more users to work in multicarrier CDMA communications. A near-optimal periodic QCSS is constructed in this paper by using an optimal quaternary sequence set and an almost difference set. With the changes of the values of parameters in the QCSS, the number of users supported by the subcarrier channels in CDMA system has an exponential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Johansen, A., Helleseth, T., Tang, X.: The correlation distribution of quaternary sequences of period 2(2n − 1). IEEE Trans. Info. Theory 54, 3130–3139 (2008)

    Article  MATH  Google Scholar 

  2. Rathinakumar, A., Chaturvedi, A.K.: Complete mutually orthogonal Golay complementary sets from Reed-Muller codes. IEEE Trans. Info. Theory 51(3), 1339–1346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tseng, C., Liu, C.: Complementary sets of sequences. IEEE Trans. Info. Theory IT-18, 644–665 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, C., Yin, J.: Constructions of almost difference families. Elsevier Science Publishers B 308(21), 4941–495 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Hollis, E.E.: Quasi-complementary sequences. Aerospace Electronic Systems. IEEE Trans. AES 11(1), 115–118 (1975)

    Google Scholar 

  6. Lüke, H.D.: Binary odd-periodic complementary sequences. IEEE Trans. Info. Theory 43(1), 365–367 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H.H., Yeh, J.F., Suehiro, N.: A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Commun. Mag. 39(10), 126–135 (2001)

    Article  Google Scholar 

  8. Chen, H.H.: The next generation CDMA technologies. Wiley, New York (2007)

    Book  Google Scholar 

  9. Arasu, K.T., Ding, C., Helleseth, T., Kumar, P.V., Martinsen, H.M.: Almost difference sets and their sequences with optimal autocorrelation. IEEE Trans. Info. Theory 47(7), 2934–2943 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bömer, L., Hatori, M.: Periodic complementary binary sequences. IEEE Trans. Info. Theory 36(6), 1487–1494 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golay, M.J.E.: Complementary series. IRE Trans. Info. Theory IT-7, 82–87 (1961)

    Article  MathSciNet  Google Scholar 

  12. Suehiro, N., Hatori, M.: N-shift cross-orthogonal sequences. IEEE Trans. Info. Theory IT-34, 143–146 (1988)

    Article  MathSciNet  Google Scholar 

  13. Solé, P.: A quaternary cyclic code, and a family of quadriphase sequences with low correlation properties. Lect. Notes Comput. Sci. 388, 193–201 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Udaya, P., Siddiqi, M.U.: Optimal and suboptimal quadriphase sequences derived from maximal length sequences over Z4. J. Appl. Algebra Eng. Communi. 9, 161–191 (1998)

    Article  MATH  Google Scholar 

  15. Boztas, S., Hammons, R., Kumar, P.V.: 4-phase sequences with near-optimum correlation properties. IEEE Trans. Info. Theory 38, 1101–1113 (1992)

    Article  MATH  Google Scholar 

  16. Tang, X., Udaya, P.: A note on the optimal quadriphase sequence families. IEEE Trans. Info. Theory 53, 433–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cai, Y., Ding, C.: Binary sequences with optimal autocorrelation. Theor. Comput. Sci. 410(24), 2316–2322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y., Liu, T., Xu, C.: Constructions of asymptotically optimal quasi-complementary sequence sets. IEEE Commun. Lett. 22(8), 1516–1519 (2018)

    Article  Google Scholar 

  19. Liu, Z., Guan, Y.L., Mow, W.H.: Improved lower bound for quasi-complementary sequence sets. IEEE Int. Symposium Inf. Theory 19(5), 489–493 (2011)

    Google Scholar 

  20. Liu, Z., Guan, Y.L., Ng, B.C., Chen, H.H.: Correlation and set size bounds of complementary sequences with low correlation zones. IEEE Trans. Commun. 59(12), 3285–3289 (2011)

    Article  Google Scholar 

  21. Liu, Z., Parampalli, U., Guan, Y.L., Boztas, S.: Construction of optimal and near-optimal quasi-complementary sequence sets from singer difference sets. Wireless Communications Letters IEEE 2(2), 487–490 (2013)

    Article  Google Scholar 

  22. Liu, Z., Guan, Y.L., Mow, W.H.: A tighter correlation lower bound for quasi-complementary sequence sets. IEEE Trans. Inf. Theory 60(1), 388–396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Z., Guan, Y.L., Mow, W.H.: Asymptotically locally optimal weight vector design for a tighter correlation lower bound of quasi-complementary sequence sets. IEEE Trans. Signal Process. 65(12), 3107–3119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongjiang Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by Shandong Province Natural Science Foundation of China (No.ZR2017MA001, No.ZR2016FL01), the Open Research Fund from Key Laboratory of Applied Mathematics of Fujian Province University (Putian University) (No.SX201702, No.SX201806), Shandong Provincial Key Laboratory of Computer Network, Grant No.SDKLCN-2017-03, the Fundamental Research Funds for the Central Universities(No. 17CX02030A), Qingdao application research on special independent innovation plan project(No. 16-5-1-5-jch)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, T. & Lv, C. Construction of a Near-Optimal Quasi-Complementary Sequence Set from Almost Difference Set. Cryptogr. Commun. 11, 815–824 (2019). https://doi.org/10.1007/s12095-018-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0330-5

Keywords

Mathematics Subject Classification (2010)