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MDS linear codes with one dimensional hull
Lin Sok

Abstract

We define the Euclidean hull of a linear code C as the intersection of C and its Euclidean dual C⊥. The hull with low
dimensions gets much interest due to its crucial role in determining the complexity of algorithms for computing the automorphism
group of a linear code and checking permutation equivalence of two linear codes. It has been recently proved that any q-ary [n, k]
linear code with q > 3 gives rise to a linear code with the same parameters and having zero dimensional Euclidean hull, which
is known as a linear complementary dual code. This paper aims to explore explicit constructions of families of MDS linear codes
with one dimensional Euclidean hull. We obtain several classes of such codes.

Keywords: Hull, MDS code, generalized Reed-Solomon code, algebraic geometry code, differential algebraic geometry code

I. INTRODUCTION

MDS codes form an optimal family of classical codes. They are closely related to combinatorial designs [23, p. 328], and

finite geometries [23, p. 326]. Due to their largest error correcting capability for given length and dimension, MDS codes are

of great interest in both theory and practice. The most well-known family of MDS linear codes is that of Reed-Solomon codes.

MDS linear codes exist in a very restrict condition on their lengths as the famous MDS conjecture states: for every linear

[n, k, n− k + 1] MDS code over Fq, if 1 < k < q, then n ≤ q + 1, except when q is even and k = 3 or k = q − 1, in which

cases n ≤ q+ 2. The conjecture was proved by Ball [2] for q a prime. However, for some special classes of linear codes, the

conjecture may not be true.

The hull of a linear code was studied by Assmus et al. [1] to classify finite projective planes. In coding theory, the hull

of a linear code plays a crucial role in determining the complexity of algorithms for computing the automorphism group of

a linear code [18] and for checking permutation equivalence of two linear codes [19], [28]. In general, the algorithms have

been proved to be very effective if the size of the hull is small. We can summarize the work on the hulls of linear codes as

follows. Sendrier [27] determined the expected dimension of the hull of a random [n, k] code when n and k go to infinity.

Skersys [30] gave the average dimension of the hulls of cyclic codes. Sangwisut et al. [26] gave enumerations of cyclic codes

and negacyclic codes of length n with hulls of a given dimension.

There have been a lot of research on constructions of two types of hulls: the one with dimension zero known as linear

complementary dual (LCD) code and that with dimension half of the code length known as self-dual code. We refer to [14],

[13], [17], [35], [12], [34] for the work on families of MDS self-dual codes and [4], [5], [7], [8], [9], [10], [11], [15], [16],

[20], [21], [24], [25], [29], [36] for the LCD codes.

However, there have been very little work on constructing linear codes with other hull dimensions mentioned above except

[6], [22]. In this work, we will consider the constructions of MDS linear codes with one dimensional hull. We use tools from

algbraic function fields in one variable to study such codes. Sufficient conditions for a code to have one dimensional hull are

given, and we explicitly construct many families of MDS linear codes with one dimensional hull. Those families are contained

in the following theorem.

Theorem 1. Assume that q = pm,m ≥ 1, is a prime power.

I. If q is even and n ≤ q − 2, then there exists a 1-d-hull MDS code with parameters [n, n− s− 1] for any 1 ≤ s ≤ n− 3
(see Corollary 1).

II. If q > 5 is odd,

i. N ≤ q − 2, and set

K =

{

N − 2s− 1 if N is even and 1 ≤ s ≤ N
2 − 2,

N − 2s− 2 if N is odd and 0 ≤ s ≤ N+1
2 − 3,

then there exist 1-d-hull MDS codes with parameters [N,K] and [N,N − K] with the following conditions (see

Corollary 4):

(1) p|N , (N − 1)|(q − 1), N even,

(2) q square, (N − 1)|(q − 1), N even,

(3) N | (q−1)
2 ,

a) N even,
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b) q ≡ 1 (mod 4), N odd,

(4) 1 ≤ r < m,
n(pr+1)
2(pr−1) odd, N = (t+ 1)n, n = q−1

pr+1 a square, t odd, 1 ≤ t ≤ ⌊ q−2
n

⌋ − 1,

(5) 1 ≤ r < m,
n(pr+1)
2(pr−1) even, N = (t+ 1)n, n = q−1

pr+1 a square, 1 ≤ t ≤ ⌊ q−2
n

⌋ − 1,

(6) 1 ≤ r < m, N = (t+ 1)n, n = q−1
pr−1 a square, r|m2 , 1 ≤ t ≤ pr − 2,

(7) m = 2m0, q0 = pm0 , t even, 1 ≤ t < q0, N = q0t,
(8) m = 2m0, q0 = pm0 , t odd, 1 ≤ t < q0 and 1 ≤ t ≤ q0 − 1 for q = 9, N = q0t+ 1,
(9) m even, r = pm0 ,m0|

m
2 , N = 2trℓ, 0 ≤ ℓ < m/m0, 1 ≤ t ≤ min((r − 1)/2, ⌊ q−2

2rℓ
⌋),

(10) q ≡ 1 (mod 4), N = 2pℓ, 0 < ℓ < m,

(11) m even, r = pm0 ,m0|
m
2 , N = (2t+ 1)rℓ + 1, 0 ≤ ℓ < m/m0, 0 ≤ t ≤ min((r − 1)/2, ⌊ q−2−rℓ

2rℓ ⌋),

(12) q ≡ 1 (mod 4), N = pℓ + 1, 0 < ℓ < m,

ii. n ≤ q−1, p|n and (n−1)|(q−1), then there exist 1-d-hull MDS codes with parameters [n, n−2s+1] and [n, 2s−1]
for 1 ≤ s ≤ ⌊n

2 ⌋ (see Corollary 5),

iii. 1 ≤ r < m and r|m, then there exist 1-d-hull MDS codes with parameters [pr, pr − 2s + 1] and [pr, 2s − 1] for

1 ≤ s ≤ pr−1
2 (see Corollary 6),

iv. n ≤ (q − 2), then there exist 1-d-hull MDS codes with parameters as follows (see Corollary 7):

i) [n, n− 2s+ 1] and [n, 2s− 1] for 1 ≤ s ≤ ⌊(n− 1)/2⌋,
ii) [n, n− 2s] and [n, 2s] for n even and 1 ≤ s ≤ n/2− 1,

v. m ≥ 2, r ≤ m − 1, r|m, and set N = (t + 1)pr with gcd(p, t + 1) = 1 and 1 ≤ t ≤ ⌊ q−1−pr

2pr ⌋, then there exist

1-d-hull MDS codes with parameters [N,N − 2s+ 1] and [N, 2s− 1] for 1 ≤ s ≤ ⌊pr/2⌋ (see Corollary 8),

vi. n|(q − 1), and set N = (t + 1)n with 1 ≤ t ≤ ⌊ q−n−2
2n ⌋, then there exist 1-d-hull MDS codes with parameters as

follows (see Corollary 9):

(1) [N,n− 2s+ 1] and [N, tn+ 2s− 1] for 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
(2) [N, 2n− 2s+ 1] and [N, (t− 1)n+ 2s− 1] for 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1),
(3) [N,n− 2s] and [N, tn+ 2s] for n even, 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
(4) [N, 2n− 2s] and [N, (t− 1)n+ 2s] for n even, 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1),
(5) [N,N − 2s+ 1] and [N, 2s− 1] for 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
(6) [N,N − 2s+ 1] and [N, 2s− 1] for 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1),
(7) [N,N − 2s] and [N, 2s] for n even, 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
(8) [N,N − 2s] and [N, 2s] for n even, 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1).

The paper is organized as follows: Section II gives preliminaries and background on algebraic geometry (AG) codes. Section

III provides a characterization of a genus zero AG code to have one dimensional hull. Section IV gives some methods to

construct MDS linear codes with one dimensional hull. We give a concluding remark in Section V.

II. PRELIMINARIES

Let Fq be the finite field with q elements. A linear code of length n and dimension k over Fq, denoted as q-ary [n, k] code,

is a k-dimensional subspace of F
n
q . The (Hamming) weight wt(x) of a vector x = (x1, . . . , xn) is the number of nonzero

coordinates in it. The minimum distance (or minimum weight) d(C) of C is d(C) := min{wt(x) | x ∈ C,x 6= 0}. The

parameters of an [n, k] code with minimum distance d are written [n, k, d]. If C is an [n, k, d] code, then from the Singleton

bound, its minimum distance is bounded above by

d ≤ n− k + 1.

A code meeting the above bound is called Maximum Distance Separable (MDS). The Euclidean inner product of x =
(x1, . . . , xn) and y = (y1, . . . , yn) in F

n
q is x ·y =

∑n
i=1 xiyi. The dual of C, denoted by C⊥, is the set of vectors orthogonal

to every codeword of C under the Euclidean inner product. The (Euclidean) hull of a linear code C is defined as

hull(C) = C ∩ C⊥.

If the hull of a linear code C has dimension s, then we call C an s-d-hull code. With this definition, a linear complementary

dual (LCD) code is a 0-d-hull code and a self-dual code of length n is a n
2 -d-hull code.

We refer to Stichtenoth [33] for undefined terms related to algebraic function fields. We denote the rational function field of

one variable Fq(x) by F and the set of places of Fq(x) by X . For an element α ∈ Fq, let Pα denote the zero place of x− α
and P∞ its pole place. A divisor G of F is a formal sum

∑

P∈X

nPP with only finitely many nonzeros nP ∈ Z. The support
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of G is defined as supp(G) := {P |nP 6= 0}. The degree of G is defined by deg(G) :=
∑

P∈X

nP deg(P ). For two divisors

G =
∑

P∈X

nPP and H =
∑

P∈X

mPP , we say that G ≥ H if nP ≥ mP for all places P ∈ X .

It is well-known that a nonzero polynomial f(x) ∈ Fq(x) can be factorized into irreducible factors as f(x) = α
s
∏

i=1

pi(x)
ei ,

with α ∈ F
∗
q . Moreover, any irreducible polynomial pi(x) corresponds to a place, say Pi. We define the valuation of f at Pi

as vPi
(f) := t if pi(x)

t|f(x) but pi(x)
(t+1) 6 |f(x).

For f ∈ Fq(x), we define
(f)0 :=

∑

P∈Z(f)

vP (f)P, the zero divisor of f,

(f)∞ :=
∑

P∈N(f)

−vP (f)P, the pole divisor of f,

(f) := (f)0 − (f)∞, the principal divisor of f,

where Z(f) and N(f) denotes the set of zeros and poles of f , respectively. Hence,

(f) =
∑

P∈X

vP (f)P.

It is well known that the principal divisor has degree 0.
We say that two divisors G and H are equivalent if G = H + (y) for some rational function y ∈ Fq(x). For a divisor G,

we define

L(G) := {f ∈ Fq(x) \ {0}|(f) +G ≥ 0} ∪ {0},

and

Ω(G) := {ω ∈ ΩF \ {0}|(ω)−G ≥ 0} ∪ {0},

where ΩF := {fdx|f ∈ F}, the set of differential forms.

The dimension of L(G) is denoted by ℓ(G), and is determined by Riemann-Roch’s theorem as follows.

Theorem 2. [33, Theorem 1.5.15 (Riemann-Roch)] Let W be a canonical divisor. Then, for each divisor G, the following

holds:

ℓ(G) = degG+ 1− g + ℓ(W −G),

where g is the genus of the smooth algebraic curve.

For a special divisor G, we can determine the dimension of the space L(G) as follows.

Lemma 1. [33, Corollary 1.4.12] Assume that a divisor G has degree zero. Then G is principal if and only if ℓ(G) = 1.

For any place P 6= P∞, let vP (fdx) := vP (f) and vP∞
(fdx) := vP∞

(f) − 2. For an element α ∈ Fq and f ∈ F with

vPα
(f) ≥ −1, it is well known that f(x) can be expanded in the neighborhood of α as follows

f(x) = · · ·+
a−1

x− α
+ a0 + a1(x− α) + · · · .

If f(x) is in the above form, the residue ResPα
(fdx) of fdx at Pα is defined to be ResPα

(fdx) := a−1.

Over Fq(x), there are q + 1 places of degree one, that is, the zero places P1, . . . , Pq and the pole place P∞ (see [33,

Proposition 1.2.1]).

Through out the paper, we let D = P1 + · · ·+Pn, called the rational divisor, where Pi := Pαi
, αi ∈ Fq, for 1 ≤ i ≤ n, are

places of degree one.

For G a divisor with supp(D) ∩ supp(G) = ∅, define the algebraic geometry code by

CL(D,G) := {(f(P1), . . . , f(Pn))|f ∈ L(G)},

and the differential algebraic geometry code as

CΩ(D,G) := {(ResP1
(ω), . . . , ResPn

(ω))|ω ∈ Ω(G−D)}.

The parameters of an algebraic geometry code CL(D,G) is given as follows.

Theorem 3. [33, Corollary 2.2.3] Assume that 2g − 2 < deg(G) < n. Then the code CL(D,G) has parameters [n, k, d]
satisfying

k = deg(G) − g + 1 and d ≥ n− deg(G). (1)

For g = 0, from (1), we get k = deg(G) + 1 and d ≥ n− deg(G) and thus the Singleton bound holds with equality and

the code CL(D,G) is MDS.
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For a = (α1, . . . , αn),v = (v1, . . . , vn) ∈ F
n
q such that α1, . . . , αn are all distinct, and v1, . . . , vn are all nonzero, it is well

known that the generalized Reed-Solomon code defined by

GRSk(a,v) := {(v1f(α1), . . . , vnf(αn))|f(x) ∈ Fq(x), deg f ≤ k − 1}

is an MDS code. Furthermore, it is shown in [33, Proposition 2.3.3], that any algebraic geometry code CL(D,G) with

deg(G) = k − 1 is equal to the generalized Reed-Solomon code GRSk(a,v) defined above.

Moreover, their parameters are related as follows. For all 1 ≤ i ≤ n,











αi = x(Pi),

vi = u(Pi) for some u(x) ∈ Fq(x) satisfying

(u) = (k − 1)P∞ −G.

For 0 ≤ j ≤ k − 1, the vectors

(uxj(P1), . . . , ux
j(Pn)) = (v1α

j
1, . . . , vnα

j
n)

constitute a basis of CL(D,G), and thus, a generator matrix of CL(D,G) can be expressed as















v1 v2 . . . vn
v1α1 v2α2 · · · vnαn

...
... · · ·

...

v1α
k−2
1 v2α

k−2
2 · · · vnα

k−2
n

v1α
k−1
1 v2α

k−1
2 · · · vnα

k−1
n















.

Equivalence of two algebraic geometry codes is characterized through the associated divisors as follows.

Lemma 2. [33, Proposition 2.2.14] Assume that two divisors G and H are equivalent. Then L(G) and L(H) are isomorphic

as vector spaces. Moreover, the codes CL(D,G) and CL(D,H) are equivalent.

The dual of the algebraic geometry code CL(D,G) can be described as follows.

Lemma 3. [33, Theorem 2.2.8] With the above notation, the two codes CL(D,G) and CΩ(D,G) are dual to each other.

Moreover, the differential code CΩ(D,G) is determined as follows.

Lemma 4. [33, Proposition 2.2.10] With the above notation, CΩ(D,G) = CL(D,D−G+(ω)) for some differential function

ω satisfying vPi
(ω) = −1 and ResPi

(ω) = 1 for 1 ≤ i ≤ n.

For simplicity, we let, in the sequel, h(x) =
n
∏

i=1

(x− αi) and h′(x) = dh
dx
, the derivative of h with respect to x. Then

h′(x) =

n
∑

i=1

n
∏

j=1,j 6=i

(x − αj).

A simple calculation gives

ωh′ :=
h′

h
dx =

(

1

x− α1
+ · · ·+

1

x− αn

)

dx,

and hence, the divisor (ωh′) of ωh′

(ωh′) = (h′)−D + (n− 2)P∞

satisfies

vPi
(ωh′) = −1, ResPi

(ωh′) = 1, ∀1 ≤ i ≤ n.

III. CHARACTERIZATION OF ONE DIMENSIONAL HULL

The following lemma gives sufficient conditions for two algebraic geometry codes to have one dimensional intersection

subcode.

Lemma 5. With the same notation as above, assume that

(i) A,B,G are divisors such that A ≥ 0, B ≥ 0 and supp(A), supp(B), supp(D) and supp(G) are pairwise disjoint,

(ii) degG < n,

(iii) G−A−B is a principal divisor.

Then CL(D,G−A+ (z)) ∩CL(D,G−B + (z)) is a one-dimensional code for any z ∈ Fq(x) satisfying vPi
(z) = 0 for all

1 ≤ i ≤ n.
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Proof. Let z ∈ Fq(x) satisfying vPi
(z) = 0 for all 1 ≤ i ≤ n. Let c ∈ CL(D,G − A + (z)) ∩ CL(D,G − B + (z)). Then

c = (f1(P1) . . . , f1(Pn)) = (f2(P1) . . . , f2(Pn)) for some f1 ∈ L(G−A+(z)), f2 ∈ L(G−B+(z)) with (f1)+G−A+(z) ≥ 0
and (f2) +G − B + (z) ≥ 0. Since A,B are positive divisors, (f1z) +G ≥ 0 and (f2z) +G ≥ 0. Thus f1z − f2z ∈ L(G)
and (f1z − f2z) + G ≥ 0. Since (Pi)1≤i≤n are zeros of f1 − f2 but not of z and supp(G) ∩ supp(D) are disjoint, we get

(f1z−f2z)+G−D ≥ 0. Hence f1z−f2z ∈ L(G−D) = {0}. We now have f1 = f2 ∈ L(G−A)∩L(G−B) = L(G−A−B),
and by Lemma 1, ℓ(G−A−B) = 1. We conclude that dim(CL(D,G−A+ (z)) ∩ CL(D,G−B + (z))) = 1.

The following lemma gives sufficient conditions for an algebraic geometry code to have one dimensional hull.

Lemma 6. With the same notation as above, assume that

(i) A,B,G are divisors such that A ≥ 0, B ≥ 0 and supp(A), supp(B), supp(D) and supp(G) are pairwise disjoint,

(ii) degG < n,

(iii) G−A−B is a principal divisor,

(iv) the following condition

2G−A−B − (h′)− (n− 2)P∞ = (y) (2)

holds for some rational function y such that y(Pi), ∀1 ≤ i ≤ n, are squares in F
∗
q .

Then CL(D,G−A+ (z)) is a 1-d-hull code for any z ∈ Fq(x) satisfying (z2y)(Pi) = 1 for all 1 ≤ i ≤ n.

Proof. Under Condition (i) and the assumption (z2y)(Pi) = 1, the code CL(D,G−A+(z)) is well defined. From the fact that

C⊥
L (D,G−A+(z)) = CΩ(D,G−A+(z)) = CL(D,D−G+A−(z)+(ωh′)) = CL(D,D−G+A−(z)+(h′)−D+(n−2)P∞) =

CL(D,−G+A− (z)+ (h′)+ (n− 2)P∞). The condition iii) implies that G−B− (y)− (z) = −G+A+(h′) + (n− 2)P∞.

Thus C⊥
L (D,G−A+ (z)) = CL(D,G−B − (y)− (z)) = CL(G−B + (z)− (z2y))

From Lemma 2, L(G−B + (z)) and L(G−B + (z)− (z2y)) are isomorphic vector spaces. Define

φ : CL(D,G−B + (z)− (z2y)) → CL(D,G−B + (z))

such that φ(f(P1), . . . , f(Pn)) = ( f
z2y

(P1), . . . ,
f

z2y
(Pn)). Under the condition (z2y)(Pi) = 1 for 1 ≤ i ≤ n, we get

φ(f(P1), . . . , f(Pn)) = (f(P1), . . . , f(Pn)), and thus CL(D,G−B+(z)−(z2y)) = CL(D,G−B+(z)) = C⊥
L (D,G−A+(z)).

The rest follows from Lemma 5.

IV. CONSTRUCTION OF ONE DIMENSIONAL HULL

By fixing the divisor G, we get the following result.

Theorem 4. Set G = (n− 2)P∞. Let a, b be in Fq[x] such that gcd(a, b) = 1. With the same notation as above, assume that

(i) supp((a)0) ∩ supp(D) = supp((b)0) ∩ supp(D) = ∅,

(ii) deg a+ deg b = n− 2,
(iii) (abh′)(Pi), 1 ≤ i ≤ n, are nonzero squares in Fq.

Then CL(D, (n−2)P∞− (a)0+(z)) is a 1-d-hull code for any z ∈ Fq(x) satisfying z(Pi)
2 = (abh′)(Pi) for all 1 ≤ i ≤ n.

Proof. Under the above assumption, we have 2G−A−B−(h′)−(n−2)P∞ = G−A−B−(h′) = G−(a)0−(b)0−(h′) = 1
(abh′) ,

where A = (a)0, B = (b)0, and G−A−B = 1
(ab) is obviously a principal divisor.

Remark 1. If C is an [n, 1] code, then C is a 1-d-hull code if and only if C is self-orthogonal (C ⊂ C⊥).

From now on, we only consider 1-d-hull code with parameters [n, k], where k > 1.

Corollary 1. Assume that q > 4 is even, n ≤ q − 2. Then there exists a 1-d-hull MDS code with parameters [n, n− s − 1]
for any 1 ≤ s ≤ n− 3.

Proof. Let α, β ∈ Fq such that α 6= β and the corresponding places Pα, Pβ /∈ supp(D). Set a(x) = (x − α)s, b(x) =
(x− β)n−2−s. Since any element in Fq is a square, we get that ((abh′)(αi))1≤i≤n are nonzero square elements in Fq.

Example 1. For q = 23, n = 4, 5, 6, and s = 1, using Magma [3], we give three 1-d-hull MDS codes C1, C2, C3 with

parameters [4, 2, 3], [5, 3, 3] and [6, 4, 3], respectively as follows.

C1 =

(

1 0 w3 w3

0 1 w4 w3

)

, C2 =





1 0 0 w4 w6

0 1 0 w w5

0 0 1 w3 w6



 , C3 =









1 0 0 0 w3 w2

0 1 0 0 1 w
0 0 1 0 w6 w2

0 0 0 1 1 w2









.

Corollary 2. Assume that q > 5 is odd, n ≤ q − 2 and (h′(Pi))1≤i≤n are nonzero square elements in Fq.

1) If n is even, then there exists a 1-d-hull MDS code with parameters [n, n− 2s− 1] for any 1 ≤ s ≤ n
2 − 2.
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2) If n is odd, n−1
2 ≤ q − 1 and supp((x)0) ∩ supp(D) = ∅, then there exists a 1-d-hull MDS code with parameters

[n, n− 2s− 2] for any 0 ≤ s ≤ n+1
2 − 3.

Proof. Let α, β ∈ Fq such that α 6= β and the corresponding places Pα, Pβ /∈ supp(D).

1) Set a(x) = (x− α)2s, b(x) = (x− β)n−2−2s. It is easy to check that ((abh′)(αi))1≤i≤n are nonzero square elements in

Fq.
2) Set a(x) = x(x− α)2s, b(x) = (x− β)n−3−2s. For 1 ≤ i ≤ n, take αi from the set of square elements in Fq.

Since the dual of an MDS code is again an MDS code, we derive the following

Corollary 3. Assume that q > 5 is odd, n ≤ q − 2 and (h′(Pi))1≤i≤n are nonzero square elements in Fq.

1) If n is even, then there exists a 1-d-hull MDS code with parameters [n, 2s+ 1] for any 1 ≤ s ≤ n
2 − 2.

2) If n is odd, n−1
2 ≤ q−1 and supp((x)0)∩supp(D) = ∅, then there exists a 1-d-hull MDS code with parameters [n, 2s+2]

for any 0 ≤ s ≤ n+1
2 − 3.

Corollary 4. Let q = pm > 5 be odd and N ≤ q − 2. Set

K =

{

N − 2s− 1 if N is even and 1 ≤ s ≤ N
2 − 2,

N − 2s− 2 if N is odd and 0 ≤ s ≤ N+1
2 − 3.

Then there exist 1-d-hull MDS codes with parameters [N,K] and [N,N −K] with the following conditions:

(1) p|N , (N − 1)|(q − 1), N even,

(2) q square, (N − 1)|(q − 1), N even,

(3) N | (q−1)
2 ,

a) N even,

b) q ≡ 1 (mod 4), N odd,

(4) 1 ≤ r < m,
n(pr+1)
2(pr−1) odd, N = (t+ 1)n, n = q−1

pr+1 a square, t odd, 1 ≤ t ≤ ⌊ q−2
n

⌋ − 1,

(5) 1 ≤ r < m,
n(pr+1)
2(pr−1) even, N = (t+ 1)n, n = q−1

pr+1 a square, 1 ≤ t ≤ ⌊ q−2
n

⌋ − 1,

(6) 1 ≤ r < m, N = (t+ 1)n, n = q−1
pr−1 a square, r|m2 , 1 ≤ t ≤ pr − 2,

(7) m = 2m0, q0 = pm0 , t even, 1 ≤ t < q0, N = q0t,
(8) m = 2m0, q0 = pm0 , t odd, 1 ≤ t < q0 and 1 ≤ t ≤ q0 − 1 for q = 9, N = q0t+ 1,
(9) m even, r = pm0 ,m0|

m
2 , N = 2trℓ, 0 ≤ ℓ < m/m0, 1 ≤ t ≤ min((r − 1)/2, ⌊ q−2

2rℓ
⌋),

(10) q ≡ 1 (mod 4), N = 2pℓ, 0 < ℓ < m,

(11) m even, r = pm0 ,m0|
m
2 , N = (2t+ 1)rℓ + 1, 0 ≤ ℓ < m/m0, 0 ≤ t ≤ min((r − 1)/2, ⌊ q−2−rℓ

2rℓ
⌋),

(12) q ≡ 1 (mod 4), N = pℓ + 1, 0 < ℓ < m.

Proof. Put

h(x) =
∏

α∈U

(x− α).

For each case, it is enough to prove that, for any α ∈ U , h′(α) is a nonzero square in Fq . Take U as follows.

• for 1), U = {α ∈ Fq|αN = α},
• for 2), U = UN = {α ∈ Fq|αN = α},
• for 3), U = UN = {α ∈ Fq|αN = 1},
• for 4)–6), take U = Un ∪ α1Un ∪ · · · ∪ αtUn, Un = {α ∈ Fq|α

n = 1} and α1, . . . , αt ∈ Fq \ Un.

• for 7)–8), label the elements of Fq0 as a1, . . . , aq0 . For some fixed element β ∈ Fq \Fq0 , take U = {akβ+ aj|1 ≤ k, j ≤
q0},

• for 9)–12), label the element of Fr as a0, . . . , ar−1, take H as an Fr-subspace and set Hi = H + aiβ for some fixed

element β ∈ Fq \ Fr. Put U = H0 ∪ · · · ∪H2t−1 or U = H0 ∪ · · · ∪H2t.

For 1)–3), it can be easily checked that h′(α) is a square for any α ∈ U. See also [31, Theorem 2 and Theorem 4].

For 4)–6), it was already checked, in [32, Theorem 3 and Theorem 4], that h′(α) is a square for any α ∈ U . Moreover, in

[32], t ≤ pr for 4)–5) and t ≤ pr − 2 for 6). Since N = (t+ 1)n ≤ q − 2, we take t = min(⌊ q−2
n

⌋ − 1, pr) = ⌊ q−2
n

⌋ − 1 for

4)–5) and t = min(⌊ q−2
n

⌋ − 1, pr − 2) = pr − 2 for 6).

For 7)–8), it was proved in [35, Theorem 2] that h′(α) is a square for any α ∈ U.
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For 9)–12), it was proved in [12, Theorem 4] that h′(α) is a square for any α ∈ U. Moreover, in [12, Theorem 4],

t ≤ (r− 1)/2 for 9). Since N = 2trℓ ≤ q− 2, we take min((r− 1)/2, ⌊ q−2
2rℓ ⌋). The range of t and ℓ for 10)–12) follow from

[12, Theorem 4] with similar reasoning as 9).

Example 2. From Corollary 4 (3) a), for q = 34, n = 8, s = 1, we give a 1-d-hull MDS code C5 with parameters [8, 5, 4] as

follows.

C5 =













1 0 0 0 0 w49 w57 w35

0 1 0 0 0 w79 w77 w75

0 0 1 0 0 w24 w52 2
0 0 0 1 0 w28 w46 w64

0 0 0 0 1 w34 w72 1













.

Example 3. From Corollary 4 (3) b), for q = 19, n = 9, s = 1, we give a 1-d-hull MDS code C4 with parameters [9, 5, 5] as

follows.

C4 =













1 0 0 0 0 2 13 10 5
0 1 0 0 0 15 8 1 4
0 0 1 0 0 1 7 6 8
0 0 0 1 0 16 2 7 8
0 0 0 0 1 5 12 12 5













.

However when (h′(Pi)1≤i≤n are not all nonzero square elements in Fq , we have the following.

Theorem 5. Let q > 5 be an odd prime power. With the same notation as above, assume that (h′)0 = 2(f)0 + (g1)0 + (g2)0
for some f, g1, g2 ∈ Fq[x] such that supp((g1)0)∩ supp((g2)0) = ∅. Assume further that n+deg(g1)+deg(g2) ≤ q− 1. Then

for any 1 ≤ s ≤ ⌊ (n−deg(g1)−deg(g2)
2 ⌋, there exists a 1-d-hull MDS code with parameters [n, n− 2s− deg((g1)0) + 1].

Proof. If we take G = (n−2)P∞, A = 2E+(g1)0 for some divisor E and B = (g2)0+(n−2(s−1)−deg(g1)−deg(g2))P∞,

then plugging G,A,B, (h′) into (2), we get

2G−A−B − (h′)− (n− 2)P∞

= 2(n− 2)P∞ − 2E − (g1)0 − (g2)0 − (n− 2(s− 1)− deg(g1)− deg(g2))P∞

− 2(f)0 − (g1)0 − (g2)0 + (2 deg(f) + deg(g1) + deg(g2))P∞ − (n− 2)P∞

= 2 (−E − (g1)0 − (g2)0 − (f)0 + (s− 1 + deg(g1) + deg(g2) + deg(f))P∞)
= 1

(efg1g2)2
.

We now prove the existence of a place E of degree s − 1 ≥ 0 such that E /∈ S := {P∞} ∪ supp(D) ∪ supp((g1)0) ∪
supp((g2)0). For s = 1, we take E = 0. Then obviously E /∈ S. Under the condition n+ deg(g1) + deg(g2) ≤ q − 1, there

exists a zero place F of degree one such that F /∈ S. Take E = (s− 1)F with s ≥ 2.
A simple calculation gives

G−A−B = ((2s− 2)P∞ − 2E) + (deg(g1) + deg(g2)P∞ − (g1)0 − (g2)0) =
1

(e2g1g2)
,

which is obviously a principal divisor. The rest follows from Lemma 6.

Corollary 5. Let q = pm > 5 be odd, n ≤ q−1, p|n and (n−1)|(q−1). Then there exist 1-d-hull MDS codes with parameters

[n, n− 2s+ 1] and [n, 2s− 1] for 1 ≤ s ≤ ⌊n
2 ⌋.

Proof. Set h(x) = xn−x. The derivative of h(x) is h′(x) = −1. Clearly, h(x) has n simple roots and it gives rise to n distinct

places of degree one. Set (f)0 = (g1)0 = (g2)0 = 0. Then n + deg(g1) + deg(g2) = n ≤ (q − 1). By applying Theorem 5,

the result follows.

Corollary 6. Let q = pm > 5 be odd with 1 ≤ r < m and r|m. Then there exist 1-d-hull MDS codes with parameters

[pr, pr − 2s+ 1] and [pr, 2s− 1] for 1 ≤ s ≤ pr−1
2 .

Proof. Set h(x) = xpr

− x. The derivative of h(x) is h′(x) = −1. Clearly, h(x) has n = pr simple roots and it gives rise to

n distinct places of degree one. Set (f)0 = (g1)0 = (g2)0 = 0. Then n + deg(g1) + deg(g2) = pr ≤ (q − 1). By applying

Theorem 5, the result follows.

Corollary 7. Let q = pm > 5 be odd with m ≥ 1 and n ≤ (q − 2). Then

1) there exist 1-d-hull MDS codes with parameters [n, n− 2s+ 1] and [n, 2s− 1] for 1 ≤ s ≤ ⌊(n− 1)/2⌋,
2) there exist 1-d-hull MDS codes with parameters [n, n− 2s] and [n, 2s] for n even and 1 ≤ s ≤ n/2− 1.

Proof. Set h(x) = xn − 1. The derivative of h(x) is h′(x) = nxn−1. Clearly, h(x) has n simple roots and it gives rise to n
distinct places of degree one.
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Consider the following setting.

1) For n odd, take (f)0 = n−1
2 (x)0, (g1)0 = (g2)0 = 0 and 1 ≤ s ≤ ⌊n/2⌋. For n even, take (f)0 = n−2

2 (x)0, (g1)0 =
0, (g2)0 = (x)0 and 1 ≤ s ≤ ⌊(n− 1)/2⌋. Hence for both cases, 1 ≤ s ≤ ⌊(n− 1)/2⌋.

2) For n even, take (f)0 = n−2
2 (x)0, (g1)0 = (x)0, (g2)0 = 0.

With the above setting, we get n+ deg(g1) + deg(g2) ≤ n+ 1 ≤ (q − 1). By applying Theorem 5, the result follows.

By considering additive cosets of some Fp-subspaces of Fq , we get the following construction.

Corollary 8. Let q = pm > 5 be odd with m ≥ 2, r ≤ m − 1 and r|m. Set N = (t + 1)pr with gcd(p, t + 1) = 1 and

1 ≤ t ≤ ⌊ q−1−pr

2pr ⌋. Then there exist 1-d-hull MDS codes with parameters [N,N − 2s+1] and [N, 2s− 1] for 1 ≤ s ≤ ⌊pr/2⌋.

Proof. Let U0 = Fpr and Ui = (βi + U0)1≤i≤t be t nonzero distinct additive cosets of U0. Put U = U0 ∪

(

t
⋃

i=1

βi + U0

)

.

Write

a(x) = (xpr

− x), b(x) =

t
∏

i=0

(x− a(βi)), h(x) = b(a(x)),

where β0 = 0. The derivative of h(x) is h′(x) = b′(a(x))a′(x), and thus deg(h′) = (deg(b)−1) deg(a) = tpr if gcd(t+1, p) =
1. It is not difficult to check that h(x) has all its N simple roots in U , and it gives rise to N distinct places of degree one.

Setting (f)0 = 0, (g1) = 0 and (g2)0 = (h′)0, we get N +deg(g1) +deg(g2) = (t+1)pr + tpr ≤ q− 1 if 1 ≤ t ≤ ⌊ q−pr−1
2pr ⌋.

By applying Theorem 5, the result follows.

By considering cosets of the multiplicative subgroup of F∗
q of order n, we get the following construction.

Corollary 9. Let q = pm > 5 be odd with m ≥ 1 and n|(q − 1). Set N = (t+ 1)n with 1 ≤ t ≤ ⌊ q−n−2
2n ⌋. Then there exist

1-d-hull MDS codes with parameters as follows:

1) [N,n− 2s+ 1] and [N, tn+ 2s− 1] for 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
2) [N, 2n− 2s+ 1] and [N, (t− 1)n+ 2s− 1] for 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1),
3) [N,n− 2s] and [N, tn+ 2s] for n even, 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
4) [N, 2n− 2s] and [N, (t− 1)n+ 2s] for n even, 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1),
5) [N,N − 2s+ 1] and [N, 2s− 1] for 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
6) [N,N − 2s+ 1] and [N, 2s− 1] for 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1),
7) [N,N − 2s] and [N, 2s] for n even, 1 ≤ s ≤ ⌊(n− 1)/2⌋, p 6 |(t+ 1),
8) [N,N − 2s] and [N, 2s] for n even, 1 ≤ s ≤ ⌊(2n− 1)/2⌋, p|(t+ 1).

Proof. Let Un be a multiplicative subgroup of F∗
q of order n. Let β1Un, . . . , βtUn be t nonzero cosets of Un. Write

h(x) = (xn − 1)
∏

λ1∈β1Un

(x− λ1) · · ·
∏

λt∈βtUn

(x− λt).

The derivative of h(x) is given by

h′(x) = nxn−1





t
∑

i=0

t
∏

j=0,j 6=i

(xn − βn
j )



 ,

where β0 = 1. Clearly, h(x) has N = (t + 1)n simple roots, and it gives rise to N distinct places of degree one. Moreover,

we have (h′)0 = (n− 1)(x)0 + (g)0 for some g ∈ Fq[x] with the degree of g equal to tn if p 6 |(t+ 1) and equal to (t− 1)n
if p|(t+ 1).

For the proof of points 1) and 2), we have the following setting.

(a) If n is odd, then we set (f)0 = n−1
2 (x)0, (g1)0 = (g)0, (g2)0 = 0.

(b) If n is even, then we set (f)0 = n−2
2 (x)0, (g1)0 = (g)0, (g2)0 = (x)0.

For the proof of points 3) and 4), we set, for n even, (f)0 = n−2
2 (x)0, (g1)0 = (x)0 + (g)0, (g2)0 = 0.

For the proof of points 5) and 6) we have the following setting.

(a) If n is odd, then we set (f)0 = n−1
2 (x)0, (g1)0 = 0, (g2)0 = (g)0.

(b) If n is even, then we set, (f)0 = n−2
2 (x)0, (g1)0 = 0, (g2)0 = (x)0 + (g)0.

For the proof of points 7) and 8), we set, for n even, (f)0 = n−2
2 (x)0, (g1)0 = (x)0, (g2)0 = (g)0.

With the above setting, we get N +deg(g1)+ deg(g2) ≤ N +deg(g)+ 1 ≤ (t+1)n+ tn+1 ≤ q− 1 if 1 ≤ t ≤ ⌊ q−n−2
2n ⌋.

By applying Theorem 5, the result follows.

Example 4. Take q = 34, n = 8 and t = 1. By applying Corollary 9 7) with s = 3, we obtain a 1-d-hull MDS code C6 with

parameters [16, 10, 7], where its generator matrix is given by
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C6 =

































w28 w5 w33 w50 w23 w75

w41 w35 w47 w44 w18 w75

w9 w35 w78 w45 w35 w57

w68 w31 w12 w4 w30 w8

I10 w66 w39 w73 w67 w8 w46

w32 w55 2 w66 w34 w42

w53 w w17 w74 w33 w72

w24 w70 w11 w38 w24 w15

w11 w25 w9 w16 w77 w70

w25 w28 w77 2 w57 w75

































.

Example 5. Take q = 34, n = 8 and t = 2. By applying Corollary 9 8) with s = 2, we obtain a 1-d-hull MDS code C7 with

parameters [24, 20, 5], where its generator matrix is given by

C7 =









































































w2 w28 w44 w77

w38 w35 w7 w45

w64 w62 w76 w79

2 w31 w49 w29

w8 w59 w65 w36

w48 w5 w6 w45

w23 w44 w68 w69

w22 w35 w22 w41

w29 w49 w28 w17

I20 w34 w41 w w21

w10 w76 w39 w11

w46 w11 w34 w8

w77 w28 w41 w41

w w2 w7 w14

w37 w56 w24 w23

w65 w46 w37 w20

w64 w33 w19 w68

w37 w77 w51 1
w37 w11 w55 w47

w27 w2 w28 w68









































































.

Remark 2. From Corollary 9, one may get longer 1-d-hull MDS codes by considering larger t, that is, t ≥ ⌊ q−n−2
2n ⌋ + 1.

In this situation, the existence of such codes depends on the existence of a zero place F of degree one such that F /∈
supp(D) ∪ supp((h′)0), which depends on the number of zeros of the derivative h′(x). For example, applying q = 34, n = 8
to Corollary 9 7)–8), the value of t lies between 0 and 4, and we get 1-d-hull MDS codes of lengths N = (t+ 1)n. However,

for t = 5, using Magma [3], we can find a zero place F of degree one such that F /∈ supp(D) ∪ supp((h′)0), and thus we

obtain 1-d-hull MDS codes with parameters [48, 46, 3], [48, 44, 5], [48, 42, 7], [48, 40, 9], [48, 38, 11], [48, 36, 13], [48, 34, 15].

V. CONCLUSION

In this paper, we deal with linear codes having one dimensional hull. The hull is defined with respect to Euclidean inner

product, and we construct families of 1-d-hull MDS codes from algebraic geometry codes of genus zero. For the future work,

with the same spirit, it is worth considering the hull with respect to Hermitian inner product on the one hand, and consider

codes from higher genus and with higher dimensional hull on the other hand.
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