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Symbolic dynamics and rotation symmetric Boolean functions

Alexandru Chirvasitu and Thomas Cusick

Abstract

We identify the weights wt(fn) of a family {fn} of rotation symmetric Boolean functions
with the cardinalities of the sets of n-periodic points of a finite-type shift, recovering the second
author’s result that said weights satisfy a linear recurrence. Similarly, the weights of idempotent
functions fn defined on finite fields can be recovered as the cardinalities of curves over those
fields and hence satisfy a linear recurrence as a consequence of the rationality of curves’ zeta
functions. Weil’s Riemann hypothesis for curves then provides additional information about
wt(fn). We apply our results to the case of quadratic functions and considerably extend the
results in an earlier paper of ours.

Key words: shift, subshift, finite type, Weil conjectures, Riemann hypothesis for algebraic varieties,
Boolean function, weight, finite field, cyclotomic polynomial, cyclotomic field, Galois group
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Introduction

Boolean functions f : {0, 1}n → {0, 1} have long held the interest of the cryptographic community
due to their many applications to that field; see e.g. [23, 15, 4, 22, 25, 1] (to give just a few examples
that could not possibly do the subject justice) or the discussion and numerous references cited in
[12].

Among all Boolean functions, the ones with the best cryptographic properties tend to be bal-
anced, i.e. take the values 0, 1 equally many times. For that reason, one is more generally interested
in the weight wt(f) of a Boolean function, meaning the cardinality of the preimage f−1(1).

We are concerned here with Boolean functions that are rotation symmetric in the sense of [24]:
those f as above that are invariant under permuting the n variables cyclically. Such a function is
expressible as

fn(x0, · · · , xn−1) =
∑

i mod n

xixi+a1 · · · xi+ad−1
, xi ∈ {0, 1}. (0-1)

In fact, having fixed the aj, the formula (0-1) gives rise to a family of rotation symmetric functions
fn in n variables respectively (see §1.1 below). The starting point for the current paper is the
phenomenon constituting the main theorem of [10] (which in turn builds on earlier work in the
same direction [11, 6, 3]) whereby the weights wt(fn) attached to a family of rotation symmetric
Boolean functions satisfy a linear recurrence of the form

wt(fn+N ) = aN−1wt(fn+N−1) + · · · + a1wt(fn), ∀ sufficiently large n.

The motivation here was a desire to understand that recurrence phenomenon in light of other
analogous results in the literature to the effect that sequences tracking the sizes of various mean-
ingful sets are linearly recurrent. The general paradigm is that said sequences Nn are collected into
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a single mathematical object

ζ(s) := exp


∑

n≥1

Nn

n
sn


 .

called a zeta function and the desired recurrence follows from the rationality of that power series
since said rationality, in fact, will say even more:

Nn =
∑

i

αn
i −

∑

j

βn
j

for algebraic integers αi and βj known as the characteristic values of the zeta function.
We consider two instances of this setup, both shedding light on Boolean functions in slightly

different ways:

• zeta functions of dynamical systems [5], where Nn is the number of n-periodic points under
the iterations of a continuous self-map of a compact space, and

• zeta functions of algebraic varieties [14], with Nn being the number of points of a fixed
algebraic variety over the field GF (qn) with qn elements for a fixed prime power q.

Section 1 gathers the needed background material on Boolean functions, symbolic dynamics
and algebraic geometry. We also describe the irreducible factors of polynomials of the form x2t−2t

(Proposition 1.8) for later use in Section 4.
In Section 2 we recast rotation symmetric Boolean functions as particular instances of well

behaved dynamical systems known as finite-type shifts: closed subsets of a Cartesian power AZ of
a finite alphabet, invariant under the leftward shift of bi-infinite sequences. These are well studied
objects with a rich theory, and in particular it is a fact that their zeta functions are rational. Our
main result in that section (Theorem 2.7) can be paraphrased as

Theorem 0.1 For every family of rotation symmetric Boolean functions fn as in (0-1) there is a
finite-type shift with 2n+1 − 2wt(fn) n-periodic points for each n.

In particular, wt(fn) satisfies a linear recurrence. �

Section 3 revolves around close cousins of rotation symmetric Boolean functions, definable in
Galois-theoretic terms: having fixed a polynomial P with coefficients in the field GF (2), one can
consider the family of functions

fn : GF (2n) → GF (2), fn(x) = Tr(P (x)). (0-2)

These are introduced in [7] and studied there as Boolean functions (which is what they are, having
identified GF (2n) with GF (2)n). The analogue of Theorem 0.1 in this case is almost immediate
(Corollary 3.3):

Theorem 0.2 For a family (0-2) of trace functions there is a plane curve X defined over GF (2)
such that 2n+1 − 2wt(fn) is the number of points of X over GF (2n).

In particular, since zeta functions of algebraic varieties are rational [14], wt(fn) again satisfies
a linear recurrence. �

We give more precise information on the weights wt(fn) and the general shape of the recurrence
they satisfy in Corollaries 3.6 and 3.7 by computing the genus of the curve X of Theorem 0.2
through successive blowups.
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Finally, in Section 4 we go back to the quadratic case analyzed closely in [8]. In that setup
Theorem 4.2 gives a close connection between the Boolean and trace sides of the picture. Further-
more, for monomial (quadratic, rotation symmetric) functions

fn,t(xi) =
∑

i mod n

xixi+t

we show in Theorem 4.4 that the characteristic values resulting as in Section 2 from the general
theory of finite-type shifts precisely coincide with the eigenvalues (including multiplicities) of the
recurrence matrix R(t) for wt(fn,t) constructed in [10]. This is a curious instance of consilience,
given how different the methods of [10] and Section 2 are.

We hope that the methods of the present paper will not only provide a conceptual explanation
for the weight recurrence phenomena so prevalent in the Boolean function literature, but also
highlight connections to different areas (symbolic dynamics, algebraic geometry) by bringing to
bear tools specific to those fields.
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1 Preliminaries

Throughout, GF (q) denotes the finite field with q elements. We focus primarily on characteristic-
two fields, i.e. q = 2n.

1.1 Boolean functions

We will work with functions defined on either

• tuples of Boolean variables. i.e. elements of Vn = GF (2)n, or

• single finite fields GF (2n).

We will see that there are strong analogies between these two setups. Specifically, we will
construct (following [7]) infinite families of functions fn of the two types (indexed by the respective
n).

To that end, consider a finite collection C of tuples

0 < a1 < · · · < ad−1. (1-1)

of positive integers for various d.
We then write fC as a collective label for the functions fC,n defined in either of the two following

ways (to be distinguished contextually in the sequel):

Definition 1.1 In rotation symmetric (or RS) context fC,n is the rotation symmetric Boolean
function fC,n : Vn → GF (2) obtained as the sum of the monomial RS (or MRS) functions

(0, a1, · · · , ad−1) :=
∑

i mod n

xixi+a1 · · · xi+ad−1
(1-2)

as the tuples (1-1) range over C.
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Similarly, in trace context fC,n is the function fC,n : GF (2n) → GF (2) obtained as the sum of
the monomial trace functions

GF (2n) ∋ x 7→ Tr
(
x1+2a1+···+2ad−1

)

where once more the tuples (1-1) range over C and Tr denotes the trace Trn : GF (2n) → GF (2).�

Having fixed C, there is a close relationship between fC in RS and trace context: if fn = fC,n in
RS context then the trace context counterpart gn = gC,n is denoted in [7, Definition 4.1] by f ′

n and
can be obtained from f by

GF (2n) ∋ x 7→ fn(x, x
2, · · · , x2n−1

) ∈ GF (2).

1.2 Symbolic dynamics

For background on the topic we refer to [21, Chapters 1-3,6]. The central notion is

Definition 1.2 Let A be a finite set (the alphabet) and equip the space AZ of bi-infinite A-valued
sequences

· · · , x−1, x0, x1, · · · ∈ A
with its compact Hausdorff product topology. A shift over A is a closed subset X ⊆ AZ preserved
by the shift operator

σ : AZ → AZ

defined by σ(x)i = xi+1, where

x = (· · · , x−1, x0, x1, · · · ) ∈ AZ.

We often write (X,σ) for a shift, to indicate that we are equipping X with the restriction of
the shift map σ.

A subshift (Y, σ) ⊆ (X,σ) is a closed subset Y ⊆ X invariant under σ. �

This is equivalent to [21, Definition 1.2.1]. One particular class of shifts we will be interested in is
described in [5, Introduction] or [21, Definition 2.1.1].

Before recalling the definition we introduce the following piece of notation: for a finite word

w ∈ A∗ := possibly-empty words with letters in A

we write Xw for the set of elements in AZ that do not contain w as a subword. More generally, for
a set S of words we write

XS :=
⋂

w∈S
Xw = sequences containing no element of S as a subword.

It is clear that XS is invariant under σ and is thus the underlying space of a shift. With this in
hand we have

Definition 1.3 A shift (X,σ) over A is of finite type if there is a finite set S such that X = XS .�

In other words, the finite-type shifts are those describable by requiring that the sequences in
question avoid finitely many patterns (or words) over A.

We also need the following concept (see [5, Introduction] or [21, Definition 6.4.1]).
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Definition 1.4 Let (X,σ) be a shift over the alphabet A. For each n ≥ 1 denote by

Nn = Nn(X,σ)

the number of elements of X left invariant by σn (i.e. the sequences in X that are n-periodic).
The zeta function of (X,σ) is

ζ(s) = ζX,σ(s) := exp


∑

n≥1

Nn

n
sn


 . �

One of the important results on zeta functions is [5, Theorem 1] (see also [21, Theorem 6.4.6]):

Theorem 1.5 The zeta function of a finite-type shift is of the form

ζ(s) =
1

det(1− sA)

for some square integer-entry matrix A.

1.3 The Weil conjectures

A good introduction for this is [17, Appendix C].
LetX be an algebraic variety (typically affine or projective) defined over a finite field F = GF (q)

for some prime power q. We write Nn = Nn(X) for the number of points of X defined over GF (qn).
Recall ([17, Appendix C.1]):

Definition 1.6 The zeta function of X is

ζ(s) = ζX(s) := exp


∑

n≥1

Nn

n
sn


 . �

Note the analogy to Definition 1.4. The Weil conjectures are a series of statements regarding
ζX(s) for smooth projective varietiesX (which thus provide information about the numbersNn(X)).
The ‘conjecture’ moniker is preserved for historical reasons: posed in [28] and resolved for curves
in [27], the most difficult of the statements was settled completely in [13], so the “conjectures” are,
in fact, theorems. We refer to [17, Appendix C.2] for a more complete historical account.

Since we are concerned primarily with possibly-singular curves X, we phrase the results in the
more complete form covered in [2]. Moreover, we focus on the numbers Nn(X) themselves (rather
than the zeta function). With this in mind, the relevant statement is [2, Corollary 2.4]:

Theorem 1.7 Let X be a projective curve over a finite field GF (q), X̃ → X the normalization of
X, g the genus of X̃ and ∆ the number

∣∣∣X̃(GF (q))−X(GF (q))
∣∣∣ .

Then, there are Galois-invariant multisets of algebraic integers

• αi, 1 ≤ i ≤ 2g with |αi| =
√
q;

• βj , 1 ≤ j ≤ ∆ with |βj | = 1

such that

Nn(X) = qn + 1−
2g∑

i=1

αn
i −

∆∑

j=1

βn
j . (1-3)

5



1.4 A remark on scaled roots of unity

In the discussion below we will need to analyze the spectrum of a unitary matrix with minimal
polynomial x2t − 2t for t ≥ 2. To that end, we have to understand the factorization of that
polynomial over the integers.

It will be convenient to work with the following polynomials: for a positive integer d, Θd(x) is
obtained from the dth cyclotomic polynomial Φd by

• substituting x2 for x: Φd(x) 7→ Φd(x
2);

• scaling all of the resulting roots by
√
2, i.e. applying the transformation

P (x) 7→ 2
degP

2 P

(
x√
2

)

to P (x) = Φd(x
2).

More generally, we denote the procedure applied here to Φd (i.e. the two steps above, in succession)
by α. In other words,

(αP )(x) = 2deg PP

(
x2

2

)
(1-4)

and αΦd = Θd.
Since x2t − 2t is nothing but α(xt − 1), it decomposes as

x2t − 2t =
∏

d|t
Θd(x).

This makes the following result relevant.

Proposition 1.8 The polynomial Θd is irreducible except when the exact power of 2 dividing d is
4, in which case its irreducible factor decomposition is

Θd(x) = P (x)P (−x)

for some irreducible polynomial P .

Proof Let ∆d be the set of primitive dth roots of unity and ∆−2
d its preimage through squaring

(i.e. ∆−2
d is the set of roots of Φd(x

2)). Let also G be the absolute Galois group Gal(Q/Q). We
have to argue that

√
2∆−2

d

• breaks up into two G-orbits when d = 4(2e + 1);

• is a single G-orbit otherwise.

The situation is qualitatively different depending on the parity of d:
Case 1: odd d. We then have the following disjoint unions

∆−2
d = ∆d ⊔∆2d = ∆d ⊔ −∆d

and the conclusion follows from the fact that the fields Q(
√
2) and Q(∆d∪−∆d) are linearly disjoint

and hence the Galois group of their compositum is simply the product of their respective Galois
groups. This affords us the choice to send a fixed primitive dth root of unity to any other such root
and

√
2 to ±

√
2.
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Case 2: even d. This time around
∆−2

d = ∆2d.

We have
√
2 ∈ Q(∆8). Since Q(∆e) and Q(∆f ) are linearly disjoint when e and f are coprime (e.g.

[20, §IV.1, Theorem 2]), we have
√
2 6∈ Q(∆2d) unless d is divisible by 4 and we can then repeat

the argument used in Case 1.
It thus remains to treat the case 4|d. The linear disjointness of cyclotomic fields generated by

roots of unity of coprime orders allows us to restrict our attention to the case when d = 2u for some
u ≥ 2 (and hence the field whose Galois group we are interested in is Q(∆2u+1)).

When u = 2 (corresponding to the case when the exact power of 2 dividing the original d was 4)
one checks immediately that the four-element set

√
2∆8 decomposes into two Galois orbits, namely

{1± i} and {−1± i}.

When u ≥ 3 (and hence 8 divides d = 2u) the difference from the preceding discussion is that
now

√
2 is a sum of even powers of a fixed primitive dth root of unity ζ, so the image of

√
2 through

a Galois group element ζ 7→ ±ζb depends only on b (and not on the sign). If ζ 7→ ζb fixes
√
2 then

that same Galois group element maps
√
2ζ 7→

√
2ζb. If, on the other hand, we have

ζ 7→ ζb,
√
2 7→ −

√
2

then the other Galois group element ζ 7→ −ζb will map
√
2ζ 7→

√
2ζb. (1-5)

Either way, the two arbitrary elements of
√
2∆2d appearing in (1-5) are in the same Galois orbit.�

2 Rotation-symmetric functions as dynamical systems

Let f = fC be a family of Boolean RS functions associated to a collection C of tuples (1-1) as in
Definition 1.1. As before, we write fn for f specialized to the n-dimensional vector space Vn

∼=
GF (2)n over GF (2).

To f we can also associate polynomial functions Pf,n : Vn → Vn defined for f = (0, a1, · · · , ad−1)
by

Vn ∋ (x0, · · · , xn−1) 7→ (x0xa1 · · · xad−1
, x1xa1+1 · · · xad−1+1, · · · ) ∈ Vn (2-1)

and in general by extending this definition additively. If we now denote the coordinate-sum map

Vn ∋ (x0, · · · , xn−1) 7→
∑

xi ∈ GF (2)

by Tr = Trn then we have
fn = Trn ◦ Pf,n. (2-2)

We make note of the following elementary linear algebra fact whose proof we omit.

Lemma 2.1 Let k be a field and n a positive integer. A vector x ∈ kn has vanishing sum of
coordinates if and only if x = y − σy for some y ∈ kn, where σ is the rotation operator on kn

defined by (2-4).

Remark 2.2 Lemma 2.1 is an analogue of the celebrated Hilbert theorem 90, in its additive version:
if K ⊂ L is a Galois extension with cyclic Galois group 〈σ〉 then an element x ∈ L has vanishing
trace if and only if

x = y − σy

for some y ∈ L. �
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Lemma 2.3 For x ∈ Vn we have fn(x) = 0 if and only if

Pf,n(x) = y − σy (2-3)

for some y ∈ Vn.

Proof This is immediate from Lemma 2.1 and (2-2). �

Corollary 2.4 The number of zeros of fn (i.e. 2n−wt(fn)) is half the number of solutions (x,y) ∈
V 2
n to the equation (2-3).

Proof This is immediate from Lemma 2.3, since having fixed x, a solution y to (2-3) is uniquely
determined up to translation by the all-1 vector 1 = (1, 1 · · · ). �

Consider embeddings Vn → Vdn for all positive integers d, n defined by

ι = ιn,dn : Vn ∋ (x0, · · · , xn−1) 7→ (x0, x1, · · · , xn−1, x0, x1, · · · ) ∈ Vdn.

If we equip each Vn with its rotation operator

σ : (x0, · · · , xn−1) 7→ (x1, · · · , xn−1, x0) (2-4)

then the ι embeddings intertwine the respective rotations.
The spaces Vn with connecting maps ιn,dn form a diagram in the category of vector spaces whose

colimit (i.e. union) we denote by V∞. The latter is nothing but the space of bi-infinite periodic
sequences over GF (2). Furthermore, the rotation operators σ on the various Vn lift precisely to the
shift on V∞ in the sense of §1.2 (again denoted by σ).

Remark 2.5 The analogy noted in Remark 2.2 extends further: the ι : Vn → Vdn parallel the
inclusions GF (2n) ⊂ GF (2dn) of finite fields, the shift operator σ on V∞ is similar in spirit to the
Frobenius automorphism x 7→ x2 of the algebraic closure GF (2), etc. �

The polynomial functions Pf,n : Vn → Vn fit into commutative diagrams

Vn

Vdn

Vn

Vdn

ι

Pf,n

Pf,dn

ι

and hence give rise to a map Pf : V∞ → V∞. This is significant because it will allow us, in a sense,
to lift the zero-counting for fn from Vn to V∞ via Lemma 2.3: while the trace map Tr does not
make sense on V∞, the equation

Pf (x) = y− σy (2-5)

does. In fact, we can do more: the definition of Pf extends in the obvious fashion to a self-map
of the entire sequence space Σ := GF (2)Z by mimicking the definition in (2-1) for monomials and
then extending additively, as before. Note that Pf will then be a shift intertwiner, in the sense that

Σ

Σ

Σ

Σ

σ

Pf

Pf

σ
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commutes.
We are now in a position to associate a shift (Xf , σ) to each RS function f : define Xf to be

the subspace of
(GF (2) ×GF (2))Z ∼= GF (2)Z ×GF (2)Z

consisting of the (x,y) satisfying (2-5). The shift map σ on Xf will simply be the restriction of
diagonal (σ, σ) to

Xf ⊂ GF (2)Z ×GF (2)Z.

The following remark captures the relationship between the zeros of fn and the shift (Xf , σ).

Lemma 2.6 With the notation above we have

2n+1 − 2wt(fn) = Nn(Xf , σ)

with Nn denoting number of fixed points of σn, as in §1.2.

Proof This follows from Corollary 2.4 after noting that

• V∞ ⊂ GF (2)Z consists precisely of the periodic sequences, so the elements (x,y) contributing
to Nn belong to V∞ × V∞.

• Vn is identifiable with the fixed-point set of σn in V ∞. �

We can now analyze the shift (Xf , σ) for the purpose of extracting interesting properties for
the function n 7→ wt(fn) via Lemma 2.6.

Theorem 2.7 For any RS function f the associated shift (Xf , σ) is of finite type.

Proof Recall that by definition,

Xf ⊂ (GF (2) ×GF (2))Z

consists of those pairs of elements x, y in GF (2)Z satisfying (2-5), paraphrased here as

Pf (x)− (y − σy) = 0 ∈ GF (2)Z. (2-6)

The left hand side of (2-6) constitutes a shift-equivariant polynomial map

(GF (2) ×GF (2))Z ∋ (x,y) 7→ Q(x,y) ∈ GF (2)Z,

in the sense that

• there is some finite interval I ⊂ Z such that

Q(x,y)0 = polynomial R(xi, yj) for i, j ∈ I

(that justifies the term “polynomial”) and

• Q(σx, σy) = σQ(x,y) (i.e. “shift-equivariant”).

In other words, Xf consists precisely of those sequences of elements in GF (2) × GF (2) which do
not contain, as subwords, the finitely many non-solutions to

R(xi, yj) = 0, i, j ∈ I.

This makes it clear that the shift is indeed of finite type. �
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In particular, Theorem 1.5 and Lemma 2.6 then proves

Corollary 2.8 Let f be an RS Boolean function and set

Nn = 2n+1 − 2wt(fn) = 2n +Wf (0).

Then, we have

exp


∑

n≥1

Nn

n
sn


 =

1

det(1− sA)

for some integer square matrix A.

Or again:

Corollary 2.9 For any RS Boolean function f there are algebraic integers αi, 1 ≤ i ≤ r such that

(a) the multiset {αi} is closed under Galois conjugation over Q, and

(b) we have

wt(fn) = 2n − αn
1 + · · ·+ αn

r

2
.

Proof Let αi, 1 ≤ i ≤ r be the eigenvalues (with multiplicity) of the integer matrix A. We have

1

det(1− sA)
= exp


∑

n≥1

αn
1 + · · ·+ αn

r

n
sn


 ,

so
2n+1 − 2wt(fn) = Nn = αn

1 + · · ·+ αn
r

for Nn as in Corollary 2.8. This completes the proof. �

Finally, as an immediate consequence of Corollary 2.9 we obtain

Corollary 2.10 The weights wt(fn) of an RS Boolean function f satisfy a linear recurrence with
integer coefficients.

This provides a new proof for the existence of the linear recurrences, which can be computed using
the results in [9, 10].

3 Trace representations and the Weil conjectures

We now give a parallel treatment for trace-context functions fn = fC,n : GF (2n) → GF (2) as
in Definition 1.1. One is again interested in the weights wt(fn), i.e. the cardinalities of the sets
f−1
n (1) ⊂ GF (2n).

The analogue of Lemma 2.1 in the present setting is precisely the Hilbert theorem 90 recalled
in Remark 2.2:

Lemma 3.1 Let n be a positive integer. An element x ∈ GF (2n) has vanishing trace if and only
if x = y − σy, where σ is the Frobenius automorphism y 7→ y2 on GF (2n).

10



As in Section 2, we introduce the polynomials

Pf,n : GF (2n) → GF (2n)

defined for monomials (1-1) by

Pf,n(x) = x · x2a1 · · · x2
ad−1

and extended additively from this in general. These are restrictions toGF (2n) of a single polynomial
Pf defined on the entire algebraic closure GF (2). We now have fn = Trn ◦Pf,n (as in the RS case),
hence the following versions of Lemma 2.3 and Corollary 2.4.

Lemma 3.2 For x ∈ GF (2n) we have fn(x) = 0 if and only if

Pf,n(x) = y − y2 (3-1)

for some y ∈ GF (2n).

Corollary 3.3 The number of zeros of fn (i.e. 2n−wt(fn)) is half the number of solutions (x, y) ∈
GF (2n)2 to the equation (3-1).

We will now repurpose the notation from Section 2: Xf will denote the affine plane algebraic
curve

Xf = {(x, y) ∈ GF (2)
2 | Pf (x) = y − y2}. (3-2)

With this notation, Corollary 3.3 says that we have

2n+1 − 2wt(fn) = Nn(Xf ). (3-3)

We would now like to apply the point count in Theorem 1.7 to the curve Xf with q = 2. The
only slight obstacle is that theorem applies to projective curves, whereas Xf is affine. Its closure

X ′
f in the projective plane P2 over the algebraic closure GF (2) is given by the homogenization of

the defining equation
Pf (x) = y − y2

in (3-2):
X ′

f = {[x : y : z] ∈ P2 | P f (x, z) = yze−1 − y2ze−2} (3-4)

where

• e is the largest degree of a monomial in Pf , and

• P f is the homogeneous degree-e polynomial in x, z obtained by multiplying each monomial
of Pf (x) by the appropriate power of z.

Remark 3.4 e is of the form
1 + 2a0 + · · · + 2ad−1

for a tuple (1-1) and is thus odd and ≥ 3. �

Now, note that the original affine curve Xf consists precisely of those points in its projective
completion (3-4) with z = 0. Since exactly one of the monomials in P f (x, z) is a power of x, we
have

[x : y : z] ∈ X ′
f , z = 0 ⇒ x = 0 ⇒ [x : y : z] = [0, 1, 0] =: p0.

In other words, the affine curve is missing exactly one point of its completion:

|X ′
f (GF (2n))| − |Xf (GF (2n))| = 1, ∀n ≥ 1.

In other words, the version of Theorem 1.7 applicable to Xf simply omits the ‘+1’ summand in
that statement:

11



Theorem 3.5 Let fn, n ≥ 1 be a family of trace functions GF (2n) → GF (2) attached to a finite
set of tuples (1-1). Then, there are Galois-invariant multisets of algebraic integers

• αi, 1 ≤ i ≤ 2g with |αi| =
√
2;

• βj , 1 ≤ j ≤ ∆ with |βj | = 1

such that

wt(fn) = 2n−1 +

∑2g
i=1 α

n
i

2
+

∑∆
j=1 β

n
j

2
. (3-5)

Proof Simply apply Theorem 1.7 to the projective curve X ′
f , omit the ‘+1’ term in (1-3) as ex-

plained above, and use (3-3) to identify Nn(Xf ) with 2n+1−2wt(fn). The rest is simple arithmetic.�

Theorem 1.7 makes it clear that the size ∆ of the set of βj depends on “how singular” the
projective curve in question is. For that reason, it will be of interest to understand the singularities
of our curve X ′

f defined in (3-4). Writing

Q(x, y, z) = Qf (x, y, z) := P f (x, z) − yze−1 + y2ze−2

for the homogeneous degree-e polynomial whose vanishing defines X ′
f . The singularities of the

latter are the points where
∂Q

∂x
=

∂Q

∂y
=

∂Q

∂z
= 0.

The partial derivative ∂Q
∂y

is nothing but ze−1 (because we are in characteristic 2 and hence the

derivative of y 7→ y2 vanishes), so the singular set of X ′
f is either empty or precisely

{p0} = {[0 : 1 : 0]} = X ′
f \Xf .

As for whether or not p0 is indeed singular, we first observe that the x and y partial derivatives
do indeed vanish, leaving the question of whether ∂Q

∂z
does. Recall from Remark 3.4 that e is odd

and hence all powers of z appearing in P f (x, z) are even. It follows that the z-partial derivative of
P f (x, z) vanishes, so

∂Q

∂z
(p0) = y2ze−3.

This is zero (and hence the point is singular) when e > 3 and non-zero when e = 3. We thus have
two possibilities:

(a) e = 3, in which case X ′
f is an elliptic curve;

(b) e > 3, in which case X ′
f is a projective plane curve with a single singularity at [0 : 1 : 0].

We now focus on case (b), seeking to determine the discrepancy between X ′ = X ′
f and its

desingularization. First, we focus attention on the affine portion C of X ′ corresponding to y 6= 0.
Making the variable change

u =
x

y
, v =

z

y
,

we can describe C as the curve in the u, v plane defined by the equation

P f (u, v) + ve−1 + ve−2 = 0 (3-6)
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(where we have dropped minus signs, since we are working in characteristic two). We now proceed
to resolve the singularity p0 = (0, 0) (in u, v coordinates) of C by the procedure described in [17,
Theorem V.3.9 and surrounding discussion], of successive blowup.

The initial blowup of the curve C ∈ A2 (the affine plane) defined by (3-6) centered at the
singularity (0, 0) is achieved as described on [17, pp.29-30]:

• Introduce coordinates α, β for the projective line P1 over GF (2).

• Consider the subvariety V of A2 × P1 cut out by (3-6) and the equation

uβ = vα.

V is the union of the distinguished projective line E := {(0, 0)} × P1 and the blowup C1 of
the original curve C = C0.

• As in [17, Example I.4.9.1], we now cover E with the open affine patches α 6= 0 and β 6= 0 and
determine the intersection of C1 with each open patch in order to determine the preimage of
the singularity (0, 0) through the rational map C1 → C.

In this last step, assume first that α 6= 0. By rescaling we can thus assume v = uβ. Making
this substitution in (3-6) we obtain

ueQ(β) = ue−1βe−1 + ue−2βe−2 (3-7)

for some polynomial in β with free term 1, so that Q = 1 +R with R(0) = 0.
When u = 0 we have v = 0 as well, and the equations describe E. In order to determine its

intersection with C1 assume u 6= 0 in (3-7) and divide through by ue−2 to obtain

u2(1 +R(β)) = uβe−1 + βe−2 = βe−2(1 + uβ). (3-8)

The only solution to this equation with u = 0 is the point [α : β] = [1 : 0] on E ∼= P1.
A similarly simple calculation shows that C1∩E contains no points in the open patch β 6= 0. In

conclusion, the partial desingularization C1 → C0 of (0, 0) provides a single singular point, obtained
as (0, 0) on curve defined by (3-8) in the u, β plane.

Let A be the localization of the ring

GF (2)[u, β]/(equation (3− 8))

at the ideal (u, β) and Â its completion with respect to its maximal ideal. In other words, Â is the
formal power series ring

GF (2)[[u, β]]

modulo the equation (3-8).
Since we are in characteristic 2 and e − 2 is odd, 1 + uβ and 1 + R(β) are both (invertible)

(e− 2)nd powers in Â. This means that we can make a change of variables

u 7→ u, β 7→ γ = g(β)

in Â so as to transform (3-8) into
u2 = γe−2. (3-9)
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In the language of [17, §I.5], the (0, 0) singularity of (3-8) is analytically isomorphic to the (0, 0)
singularity of (3-9). But the singularities of the form (3-9) are analyzed in [17, Example V.3.9.5]:
they are resolved through a sequence of blowups

C e−1
2

→ · · · → C2 → C1, (3-10)

with each Ci having a single singular point.
This analysis will allow us to sharpen Theorem 3.5 in two ways. First, since we have just

established that the desingularization X̃ ′
f → X ′

f has a unique point mapping to the singularity of
X ′

f , Theorem 1.7 says that in fact ∆ = 0, i.e. there are no βs in (3-5):

Corollary 3.6 Let fn, n ≥ 1 be a family of trace functions GF (2n) → GF (2) attached to a finite
set of tuples (1-1). Then, there is a Galois-invariant multiset of algebraic integers

αi, 1 ≤ i ≤ 2g with |αi| =
√
2

such that

wt(fn) = 2n−1 +

∑2g
i=1 α

n
i

2
. (3-11)

Secondly, we can determine the genus g of the desingularization X̃ ′
f → X ′

f (i.e. the g appearing
in (3-11)). This will require stepping through the desingularization procedure by successive blowup
sketched above, using the numerical information provided by [17, Example V.3.9.2].

The latter says that the genus g of the smooth curve X̃ ′
f is obtained from the arithmetic genus

pa(X
′
f ) by subtracting

∑

p

rp(rp − 1)

2

for all singular points appearing during the successive blowups, where rp is the multiplicity of the
singular point p.

We now assemble the ingredients:

• The arithmetic genus pa(X
′
f ) is

(e− 1)(e − 2)

2
,

since e is the degree of the plane curve X ′
f ⊂ P2 ([17, Exercise I.7.2]).

• The multiplicity of the singularity (0, 0) on a plane curve is the smallest degree appearing in
an expansion of its defining equation. It is thus e − 2 for the initial singularity (3-6) and 2
for each of the subsequent e−3

2 desingularization steps in (3-10).

• In conclusion, the genus g is

(e− 1)(e − 2)

2
− (e− 2)(e − 3)

2
− e− 3

2
=

e− 1

2
.

In short:

Corollary 3.7 The number 2g of summands in (3-11) is e− 1, where e is the degree

1 + 2a0 + · · · + 2ad−1

of Pf .
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4 Quadratic functions

By ‘quadratic’ we mean functions fC,n (in either the trace or RS setup) associated to collections C
of tuples (1-1) with d = 2. In that case we refer to C itself (or to its members) as being quadratic.
The functions fC,n for quadratic C form the focus of the present section.

First, it is well known that quadratic Boolean functions are plateaued: the weight of a quadratic

Boolean function fn either vanishes or is of the form 2n−1 ± 2
n+v
2

−1 for some integer v of the same
parity as n. the same applies in trace context, since trace functions as in Definition 1.1 can always
be regarded as quadratic Boolean functions after choosing an appropriate basis for GF (2n) (see [7,
Remark 3.2]).

Now let C be a finite collection of quadratic tuples (1-1) and fC , gC the RS and trace function
families attached to C respectively. With this in place, [7, Theorem 5.1] implies that fn and gn are
plateaued for the same parameter v = v(n).

We can in fact say more [8, Theorem 2.1]:

Theorem 4.1 Let C be a quadratic family of tuples (1-1) and fC,n, gC,n the RS and respectively
trace functions attached to it. Then, we either have wt(fC,n) = 0 = wt(gC,n) or

wt(fC,n) = 2n−1 ± 2
n+v
2

−1

wt(gC,n) = 2n−1 ± 2
n+v
2

−1

for the same v = v(n) (but perhaps not the same sign).

We have
v(n) = deg gcd(xn − 1, An(x))

where
An(x) =

∑

(0,t)∈C
(xt + xn−t)

and the greatest common divisor is taken in the polynomial ring GF (2)[x]. It follows that v(n) is
periodic in n, and reaches its maximal value once per period: precisely when n is divisible by

N = NC = min{n such that A(x) | xn − 1} (4-1)

where
A(x) =

∑

(0,t)∈C
(xt + x−t)

and divisibility takes place in the Laurent polynomial ring GF (2)[x±1]. For all of this we refer to
[8, Theorem 5.2].

All of this additional information available in the quadratic case allows us to recast Corollar-
ies 2.9 and 3.6 as follows.

Theorem 4.2 Let C be a finite collection of quadratic tuples (1-1) and fC,n, gC,n the RS and trace
functions associated to C respectively. Then, there are Galois-invariant multisets

|αi| =
√
2 = |γj |, 1 ≤ i, j ≤ maxn2

v(n)
2

such that

wt(fn) = 2n−1 −
∑

αn
i

2
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and

wt(gn) = 2n−1 +

∑
γni
2

.

Furthermore, the degree of the group generated by the roots of unity αi√
2
(resp.

γj√
2
) is either the

period N = NC of v(n) or 2N .

Proof To fix ideas, we focus on the trace functions gn = gC,n. The RS half of the statement will
follow from this and [7, Theorem 5.1] (which says that fC,n and gC,n have the same nonlinearity)
or Theorem 4.1.

On the one hand, we know that

wt(gn) = 2n−1 ± 2
n+v
2

−1 or 0. (4-2)

On the other hand, by Corollary 3.6 we have

wt(gn) = 2n−1 +

∑
γnj
2

(4-3)

for a Galois-invariant multiset of algebraic integers γj of absolute value
√
2. We write

χj =
γj√
2

for the phases of γj .
The fact that the number of γj is max 2

v
2 follows by comparing (4-2) and (4-3): the former says

that the maximal absolute value of
wt(gn)− 2n−1

2
n
2
−1

(4-4)

is max 2
v
2 while the latter shows it is the size of the multiset (γj)j .

We now observe that

• By (4-3), the (4-4) is maximized precisely when all γnj are positive, i.e. n is divisible by

ord(γj, j) := |group generated by the phases of γj | .

• On the other hand, (4-2) shows that (4-4) is maximized in absolute value if and only if
wt(gn) 6= 0 and v(n) is maximal, i.e. n is divisible by the period N = NC defined in (4-1).

• (4-4) can be maximized in absolute value but negative only there is some n so that χn
j = −1

for all j.

We now consider several possibilities.

(a) wt(gN ) 6= 2N−1 and (4-4) is positive for n = N . In this case the remarks above show that
(4-4) achieves its maximal value at n = N and hence ord(γj , j) = N .

(b) wt(gN ) 6= 2N−1 and (4-4) is negative for n = N . This means that (4-4) is maximal in
absolute value but negative at n = N and hence χN

j = −1 for all j. But this then implies that
ord(γj , j) = 2N .

(c) wt(gN ) = 2N−1. We know from [8, Corollary 5.19] that g2N is not balanced, i.e. wt(g2N ) 6=
22N−1. We can now reiterate the arguments in cases (a) and (b) with 2N in place of N to
conclude that

ord(γj , j) = 2N or 4N.
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This finishes the proof of the theorem. �

The following result is an offshoot of the proof of Theorem 4.2.

Theorem 4.3 Under the hypotheses of Theorem 4.2 the weights wt(fn) and wt(gn) satisfy linear
recurrences of orders ≤ 2N + 1, where N is the period of the sequence v(n) of plateau parameters.

Proof In the language of Theorem 4.2, consider the various possible values for ord(γj , j):
If it is ≤ 2N then we are done. Indeed, by (4-3) the weight w(gn) is a linear combination of nth

powers of algebraic integers satisfying the polynomial equation

(x− 2)(x2N − 2N ) = 0.

On the other hand, it follows from the proof of Theorem 4.2 that the case

ord(γj , j) = 4N

occurs only when γ2Nj = −2N for all j. This means we have recursion polynomial

(x− 2)(x2N + 2N ) = 0.

instead.
Either way, the minimal recursion polynomial will have degree ≤ 2N . �

It turns out that, for the quadratic MRS function (0, t)n = ht,n, say, in the RS context, the
algebraic integers α1, . . . , α2t from Corollary 2.9 and Theorem 3.5 can be taken to be the roots of
the characteristic polynomial of the square matrix R(t) associated with ht,n in [8, Section 3]. The
next theorem proves this. Note that this count of the numbers αi agrees with the count given in
(3-11) and Corollary 3.7. The matrix R(t) has 2t rows and is given explicitly in [8, Theorem 3.1].

To describe the matrix we need the cyclic permutation µ which acts on vectors (b1, b2, . . . , bk)
of any length k by placing the last entry to the front, e.g.

µ2((0, 1, 0, 1, 0, 0)) = (0, 0, 0, 1, 0, 1).

We use 0j to stand for a string of j consecutive entries equal to 0 and similarly for 1j . Now R(t) is
the square matrix whose rows are the 2t−1 pairs

µi((1, 02t−1−1, 1, 02t−1−1)), µi((1, 02t−1−1,−1, 02t−1−1))

for i = 0, 1, . . . , 2t−1 − 1 taken in order.
The minimal polynomial for R(t) has degree 2t and is [8, Theorem 3.4]

x2t − 2t. (4-5)

We let δ1, . . . , δ2t denote the roots of (4-5). These roots are obviously distinct. The characteristic
polynomial, say ct(x), for R(t) has degree 2t and has the same roots δi, but in general some of these
roots will occur multiple times. Thus the multiset of roots of ct(x), counted with multiplicities, will
have size 2t but only 2t distinct elements.
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Theorem 4.4 The recursion for the weights of (0, t)n = ht,n, extended backwards from n = 2t+ 1
to n = 1, generates a sequence w1, w2, . . . (with wi = wt(ht,i) for i ≥ 2t+ 1) such that

wn = 2n−1 − 1

2
(δn1 + . . .+ δn2t), n = 1, 2, . . . . (4-6)

Here δ1, . . . , δ2t is the list of the 2t roots of the characteristic polynomial ct(x) for the matrix R(t),
with the distinct roots δ1, . . . , δ2t of the minimal polynomial mt(x) = x2t − 2t for R(t) listed first.
The remaining roots are various duplicates of the first 2t roots.

For monomial functions (0, t)n we have the following consequence of [19, Theorem 8]. Recall
that the Möbius function [16, §16.3] is defined by

µ(n) =





1 if n = 1

(−1)k if n is a product of k distinct prime factors

0 otherwise

Theorem 4.5 Let t = 2νm for an odd number m and ν ≥ 0. The weight wn of (0, t)n is expressible
as

wn = 2n−1 − 1

2
(δn1 + . . . + δn2t), n = 1, 2, . . .

where the multiset (δi) is the union
√
2∆ of the multisets

√
2∆d indexed by divisors d|m, where ∆d

is the collection of 2ν+1dth roots of unity, each with multiplicity.
∑

d′|d µ
(
d
d′

)
22

νd′

2ν+1d
(4-7)

where µ is the Möbius function.

Implicit in the statement of Theorem 4.5 is the remark that the numerator of (4-7) is divisible
by its denominator. Since every summand ±22

νd′ of the numerator is a multiple of 2ν+1, so is the
numerator as a whole. On the other hand, divisibility by d follows from

Lemma 4.6 Let q, d > 1 be coprime positive integers. Then,

D(d, q) :=
∑

d′|d
µ

(
d

d′

)
qd

′

is divisible by d.

Proof If q is a prime power then D(d,q)
d

is known to be the number of monic irreducible degree-d
polynomials over the field GF (q) with q elements [18, §4.13, Corollary 2]. In general, since q and d
are assumed coprime Dirichlet’s theorem on primes in arithmetic progressions ([26, §VI.4, Theorem
2]) ensures that there is some prime congruent to q modulo d, reducing the problem to the prime-q
case. �

We will also need the following remark.

Lemma 4.7 Let {γi} and {δj} be two finite sets of complex numbers and si, tj ∈ C. If
∑

i

siγ
n
i =

∑

j

tjδ
n
j (4-8)

for all non-negative integers n then the sets {γi} and {δj} and, having identified their respective
elements, the corresponding coefficients si and tj also coincide.
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Proof Suppose the conclusion does not hold. Rewriting (4-8) as

∑

i

siγ
n
i =

∑

j

tjδ
n
j

and aggregating the terms where some γ equals some δ, the failure of the conclusion means that
we obtain equations ∑

k

ukη
n
k = 0, ∀n

for some non-empty set of (distinct) ηk’s (and non-zero uk). But this means that the vector with
components uk is annihilated by the Vandermonde matrix with entries

ukl := ηℓ−1
k .

This contradicts the fact that said matrix has non-zero determinant
∏

k>k′(ηk − ηk′) and is thus
invertible. �

Proof of Theorem 4.5 According to Lemma 4.7, it will be enough to show that

wn = 2n−1 − 2
n
2
−1

∑

δ∈∆
δn.

Equivalently, by [19, Theorem 8] this amounts to

∑

δ∈∆
δn =

{
2gcd(n,t) if n

gcd(n,t) is even

0 otherwise.
(4-9)

The second branch is easily dispatched: n
gcd(n,t) being odd is equivalent to n not being divisible by

2ν+1. Since each ∆d consists of the 2ν+1dth roots of unity all with the same multiplicity, we have

∑

δ∈∆d

δn = 0, ∀d|m.

It thus remains to treat the case when 2ν+1 divides n, when the target equality (4-9) becomes

∑

δ∈∆
δn = 2gcd(n,t) = 22

νgcd(n,m). (4-10)

Set D = gcd(n,m) for brevity. All ∑

δ∈∆d

δn, d 6 | D

vanish, so we need only consider divisors d|D. Keeping this in mind (4-10) reads

∑

d′|d|D
µ

(
d

d′

)
22

νd′ = 22
νD.

This, however, is nothing but an instance of the Möbius inversion formula [16, §16.4]. �

19



By (4-9), proving Theorem 4.4 amounts to showing that for every n, we have

tr R(t)n =

{
2

n
2
+gcd(n,t) if n

gcd(n,t) is even

0 otherwise.
(4-11)

Since by (4-5) the eigenvalues of R(t) are 2tth roots of unity rescaled by
√
2, it is enough to prove

(4-11) for 1 ≤ n ≤ 2t− 1. It will thus be useful to describe R(t)n explicitly. To that end, we follow
[8, §3] in denoting by M(n) the 2n × 2n matrix

(
1 1
1 −1

)⊗n

.

For 1 ≤ n ≤ t we also write M(n, t) for the 2n × 2t matrix obtained by inserting 2t−n − 1
zero columns after each original column of M(n). For a matrix M we write µ(M) (or µM) for
the matrix obtained by rotating the rows of M rightward (this extends the above definition of the
cyclic permutation µ on the individual rows). With all of this in place, the following is a simple
computation achievable inductively by partitioning R(t) into four 2t−1 × 2t−1 block matrices.

Lemma 4.8 Let 1 ≤ n ≤ 2t− 1. The power R(t)n can then be described as follows.

(a) If 1 ≤ n ≤ t then

R(t)n =




M(n, t)
µM(n, t)

...

µ2t−n−1M(n, t)


 .

(b) On the other hand, if t ≤ n ≤ 2t− 1 then

R(t)n = 2n−t
(
R(t)2t−n

)T
,

where the T superscript denotes transposition. �

In particular, part (b) of Lemma 4.8 proves (4-11) for t ≤ n ≤ 2t − 1 provided it is known for
1 ≤ n ≤ t. Even more robustly, it recovers (4-11) for a specific t ≤ n ≤ 2t − 1 provided we know
the analogue for the reflection 2t− n of n across t. In conclusion, it suffices to focus on the range
1 ≤ n ≤ t. In turn, in those cases the trace of interest is computable as follows, numbering the
rows and columns of all matrices starting at 0:

Lemma 4.9 For 1 ≤ n ≤ t the trace tr R(t)n is the sum of the following elements of M(n):

• the lower right hand corner M(n)2n−1,2n−1;

• for each 0 ≤ k ≤ 2n − 2 the entry with index 2t−nk modulo 2n − 1 in the kth column. �

Note that 2dn − 1 is divisible by 2n − 1 for all d ≥ 0, so in Lemma 4.9 is is enough to replace
2t−n with the residue t(mod n). We can now rephrase Lemma 4.9 as follows.

Lemma 4.10 Let 1 ≤ n < t and set a = t(mod n) and b = n− a. Then, the trace tr R(t)n is the
sum of the entries

(q + r2a, q2b + r) (4-12)

where 0 ≤ q ≤ 2a − 1 and 0 ≤ r ≤ 2b − 1. �
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We make note of the following “central symmetry” property of the Hadamard matrix M(n).

Lemma 4.11 Let a+ b = n be positive integers and denote by (k, ℓ) the coordinates (4-12) of an
entry in M(n) for some 0 ≤ q ≤ 2a − 1 and 0 ≤ r ≤ 2b − 1. Let also

k′ = 2n − 1− k = q′ + r′2a

ℓ′ = 2n − 1− ℓ = q′2b + r′

be the coordinates of the reflection of (k, ℓ) across the center of the matrix M(n), where

q′ + q = 2a − 1, r′ + r = 2b − 1.

Then,

M(n)k′,ℓ′ =

{
M(n)k,ℓ if n is even

−M(n)k,ℓ if n is odd.

Proof We can prove this by induction on n, using the decomposition

M(n+ 1) =

(
M(n) M(n)
M(n) −M(n)

)

and treating the separate possibilities for the placement of (k, ℓ) in one of the four quadrants. If,
say, M(n+ 1)k,ℓ is in the upper left hand M(n) corner and hence

M(n+ 1)k,ℓ = M(n)k,ℓ

then M(n+ 1)k′,ℓ′ is in the lower right hand −M(n) quadrant and hence is minus the reflection of
M(n)k,ℓ across the center of M(n). The inductive hypothesis implies the conclusion.

The argument is analogous in the other cases, and we leave it to the reader; in fact, there is
only one other case: (k, ℓ) and (k′, ℓ′) play symmetric roles, so it is enough to assume (k, ℓ) is either
in the top left or the top right quadrant. �

We can now tackle the following particular case of (4-11).

Corollary 4.12 tr R(t)n = 0 when n is odd and hence (4-11) holds in that case.

Proof Indeed, Lemmas 4.10 and 4.11 show that the trace is a sum of pairs ±1 of entries of M(n),
each pair summing to zero. �

Corollary 4.13 The matrix R(t) is conjugate to −R(t).

Proof Since the two matrices are unitary and hence diagonalizable over the complex numbers it
is enough to argue that they have the same characteristic polynomial. The coefficients of the latter
are algorithmically computable from the traces of the powers of the matrix, so it is enough to show
that we have

tr R(t)n = tr (−R(t))n = (−1)ntr R(t)n, ∀n.
The two sides are obviously equal for even n, so the conclusion follows from Corollary 4.12, which
shows that everything in sight vanishes for odd n. �

Recall the polynomials Θd discussed in §1.4.
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Lemma 4.14 The characteristic polynomial of R(t) is a product of factors Θd for divisors d|t.

Proof We already know that R(t) is annihilated by x2t − 2t, so its characteristic polynomial will
be a product of irreducible factors of the latter. By Proposition 1.8, the conclusion follows from the
fact that any two irreducible factors P , Q of the characteristic polynomial related by Q(x) = P (−x)
have equal exponents because R(t) is conjugate to −R(t) (Corollary 4.13). �

The roots of Θd are simply those of Φd(x
2) scaled by

√
2. In turn, since d divides t, the sum of

nth powers of the roots of Φd(x
2) equals the sum of gcd(n, 2t)th powers. In conclusion:

Lemma 4.15 It suffices to prove (4-11) for n|2t. �

There are thus two cases: n divides t or it doesn’t, but n
2 does. The easy half is

Proposition 4.16 If n|t then tr R(t)n = 0 and hence (4-11) holds.

Proof Indeed, in that case n divides t− n and hence

2n − 1 | 2t−n − 1.

Lemma 4.9 then says that tr R(t)n is precisely the trace of M(n), which is zero, being the nth

power of the trace of

(
1 1
1 −1

)
. �

As for the case n 6 | t, we then have gcd(n, t) = n
2 (since at any rate we are assuming that n

divides 2t) and hence the desired conclusion (4-11) reads

tr R(t)n = 2n.

Lemma 4.9 then equates this to proving

Lemma 4.17 Let 0 ≤ n ≤ t be a divisor of 2t but not t. Then, for 0 ≤ k ≤ 2n − 2, the entry with
index 2t−nk modulo 2n − 1 in the kth column of M(n) is 1.

Proof The hypothesis ensures that t− n is of the form (2s+ 1)n2 for some s ≥ 0, and hence

2t−nk = 2sn2
n
2 k = 2

n
2 k modulo 2n − 1

because 2n − 1 divides 2sn − 1. In short, it will be enough to assume that t = 3n
2 thus substituting

2
n
2 for 2t−n in the statement.
We can now partition M(n) into blocks Mij of size 2

n
2 × 2

n
2 for 0 ≤ i, j ≤ 2

n
2 − 1, each a copy

of either M(n2 ) or −M(n2 ). The entries of interest in the first 2
n
2 columns are

• the 0th entry in the 0th row of M00;

• the 1st entry in the 0th row of M10;

• · · · ;

• entry (M
2
n
2 −1,0

)
0,2

n
2 −1

.
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The pattern recurs: including the bottom right corner of M(n), the entries we are after are precisely
those of the form (Mij)ji. That these are all 1 follows from the recursive construction of M(n)
giving

M(n) = M
(n
2

)
⊗M

(n
2

)

together with the fact that M is symmetric. �

Proof of Theorem 4.4 As discussed above, the result amounts to (4-11). In turn, the latter is
taken care of by Lemma 4.15 and proposition 4.16 and Lemma 4.17. �

Theorem 4.4 states that the formula which gives the weights wn for the MRS function (0, t)n
in terms of powers of the roots of the characteristic polynomial has simple coefficients which are
all ±1

2 . We say that the recursion for the weights of (0, t)n has easy coefficients. We believe this
remains true for any quadratic RS function and so state the following conjecture:

Conjecture 4.18 (Easy Coefficients Conjecture) The recursion for the weights of any rota-
tion symmetric function has easy coefficients, attached to a multiset of algebraic integers. At least
in the quadratic case, these algebraic integers are the roots of the characteristic polynomial of a
matrix computable by the method of [10].

The first sentence of the Easy Coefficients Conjecture is proved by Corollary 2.9. The second
sentence for MRS quadratic functions is proved by Theorem 4.4. Since there is no nice formula
like (4-5) for the minimal polynomial for the square matrix R (generalization of R(t) for (0, t)n)
corresponding to a general quadratic RS function, the method of proof of Theorem 4.4 does not
apply. However, we are confident that the result is true for general quadratic RS functions. In fact,
many computations suggest that the second sentence of the Easy Coefficients Conjecture is true
for all RS functions, of any degree.

Given a recursion relation of order r for the weights wn of any RS Boolean function in n
variables, the standard way to compute the weights is to compute the needed initial r weights and
then use the recursion to find further desired weights. It is well known that the runtime to find
wn is O(n2n) (the extra n comes from the operations needed to compute each entry in the truth
table), so finding the initial conditions in this way is an exponential computation. Given a function
for which the Easy Coefficients Conjecture is true, a much quicker way to find the initial weights
is to compute the roots of the characteristic polynomial and then use the analog of (4-6). The
problem of computing all of the roots of a polynomial with integer coefficients has been studied for
a long time. The runtime for doing that is known to be O(n(logk n)) for some small integer k, so
an exponential computation in n has been replaced by one that is nearly linear in n.
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[12] Thomas W. Cusick and Pantelimon Stănică. Cryptographic Boolean functions and applications.
Elsevier/Academic Press, London, second edition, 2017.

[13] Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273–307,
1974.

[14] Bernard Dwork. On the rationality of the zeta function of an algebraic variety. Amer. J.
Math., 82:631–648, 1960.
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