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Abstract Z-complementary pairs (ZCPs) are well-known, but few work has
dedicated to their aperiodic cross-correlation. One objective of this paper is
to propose a novel class of sequence pairs, called “preferred Z-complementary
pairs (PZCPs)”, where each sequence pair has Z-complementary property, and
the aperiodic cross-correlation between the two sequences in each pair are zeros
within a certain region. Some constructions of PZCPs from Golay complemen-
tary pairs (GCPs) are presented. Another objective of this paper is to apply
PZCPs to design Doppler resilient waveforms combined with equal sums of
powers (ESPs). Simulation results show that the proposed waveform has good
Doppler tolerance.

Keywords Preferred Z-complementary pair, Golay complementary pair,
Doppler resilient waveform, equal sums of power.
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1 Introduction

In 1950’s, when Golay studied multislit spectrometry, he first introduced the
concept of Golay complementary pairs (GCPs). Subsequently, binary GCPs
are introduced in detail in [1]. Due to its good aperiodic auto-correlation,
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researchers have done a lot of work in studying the properties and systematic
constructions of GCPs [2–5]. Especially in [4], Davis and Jedwab proposed
a direct construction of GCPs with length 2m based on generalized Boolean
functions (GBFs). This is a pioneering work. Later, their construction was
extended to GCPs over QAM constellations by using weighted sum of several
QPSK GCPs [6]. However, the length of GCPs is very limited. For example,
binary GCPs are available only for lengths of form 2α10β26γ (where α, β and
γ are non-negative integers) [5].

Z-complementary pair (ZCP) is a natural extension of GCPs [7]. It requires
the sums of aperiodic auto-correlation functions to be zero for each time shifts
within a certain region around the in-phase position, called the zero correlation
zone (ZCZ). A lot of systematic constructions of ZCPs can be found in [8–18].
Another extension of GCPs is the complementary sequence set (CSS), which
contains multiple sequences and the sum of their aperiodic auto-correlation
functions is a Dirac delta function [19]. For more information CSS, please
refer to the survey papers [20, 21]. ZCPs and CSSs have a wider lengths as
compared to GCPs, and they have all been widely used in communications
and radar.

For a long time, research related to complementary pairs has studied the
complementarity of their aperiodic auto-correlation, and few people have stud-
ied the correlation of a single complementary sequence. Until 2013, Gong et
al. considered the periodic auto-correlation of a single Golay complementary
sequence, and gave a systematic construction such that each of sequences has
a zero auto correlation zone [22]. In 2021, Hu et al. extended this result to
odd periodic auto-correlation [23]. This property plays a very important role
in the synchronization and channel estimation.

It should be noted that each GCP, ZCP or CSS, is defined by their aperi-
odic auto-correlation sums only. Within each GCP, ZCP or CSS, it is assumed
that separate non-interfering channels are used for the transmission of the con-
stituent sequences. In complementary sequence, concerning the consideration
of cross-correlation, there are very few at present, only mentioned in the lit-
erature [24, 25]. Liu et al. [24] considered that the aperiodic cross-correlation
sums of ZCPs (a,b) has a ZCZ at the end, i.e., Ra,b(τ) + Rb,a(τ) = 0 for
N − Z + 1 ≤ τ ≤ N − 1. Wang et al. [25] directly considered the aperiodic
cross-correlation of (a,b) at the front end, i.e., |Ra,b(τ)| < ϵ for 0 ≤ τ ≤ Z−1,
where ϵ is a very small number. However, due to the direct consideration of
cross-correlation, it is very difficult to construct such sequence pairs via math-
ematical tools when ϵ is very small. Therefore, they used the majorization
minimization (MM) algorithm to search for sequence pairs with such proper-
ties in [25]. So far, no one considered the aperiodic cross-correlation sums of
ZCPs at the front end. In this paper, we will propose the concept of PZCPs,
which will be introduced later.

GCPs have been widely used in various fields, and radar waveform design
is one of the important application scenarios. In the non-coherent radar pulse
compression system without considering Doppler, GCPs can achieve very low
range sidelobe [26]. However, once Doppler is considered, GCPs will also have
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high range sidelobes. In order to solve this problem, Pezeshki et al. combined
GCPs and Prouhet-Thue-Morse (PTM) sequence to design a Doppler resilient
waveform and combined with the Alamouti matrix, the designed waveform is
also applicable to the fully polarimetric radar systems [27]. In 2014, Tang et
al. extended this idea to the MIMO radar system based on complete comple-
mentary codes (CCC) and generalized PTM sequences [28]. The use of PTM
sequence requires that the number of transmitted pulses must be the power
of two [27]. To solve this problem, in [29, 30], they designed Doppler toler-
ant waveforms based on equal sums of power (ESP) sequence and GCPs (or
ZCPs), the number of transmitted pulses on each antenna is small and may
not be limited to power of two. Note that these two papers did not consider the
cross ambiguity function in multi antenna transmission, in this paper we will
propose a new concept of sequences, give some systematic constructions, and
use them to design doppler resilient waveform combined with ESP sequences.
Simulation results show that the proposed waveform is feasible.

The rest of the paper is organised as follows. In Section 2, along with the
preliminaries the definition of the PZCP is proposed. In Section 3, some con-
structions of PZCPs are proposed, and the PZCP is used in Doppler resilient
waveform design in Section 4. Finally, we give some concluding remarks in
Section 5.

2 Preliminaries

Throughout this paper, x∗ denotes the conjugate of complex number x. ξq =

e
√
−1 2π

q denotes the q-th root of unity. A sequence a = (a0, a1, · · · , aL−1) is
called a q-ary sequence if ai ∈ {ξ

k
q : k = 0, 1, · · · q − 1} for all i. ⊗ denotes

the Kronecker product of the sequences. ←−a denotes the conjugate reverse of
sequence a. a|b denotes the horizontal concatenation of sequences a and b.

Definition 1 Let a = (a0, a1, · · · , aL−1) and b = (b0, b1, · · · , bL−1) be two
q-ary sequences of equal length L. Their aperiodic cross-correlation function
(ACCF) is defined as follows

Ra,b(τ) =























L−1−τ
∑

i=0

aib
∗
i+τ , 0 ≤ τ < L,

L−1+τ
∑

i=0

ai−τ b∗i , −L < τ < 0,

0, otherwise,

(1)

and Ra(τ) = Ra,a(τ) is the called aperiodic auto-correlation function (AACF).

Definition 2 ( [27]) Let P = {p0,p1, · · · ,pK−1}, Q = {q0,q1, · · · ,qK−1}
be two pulse trains, where pk,qk are complex-valued sequences of length L.
The cross ambiguity function (CAF) is defined as follows

AP,Q(τ, θ) =

K−1
∑

k=0

Rpk,qk
(τ)ejkθ, (2)
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and AP(τ, θ) = AP,P(τ, θ) is called auto ambiguity function (AAF).

Let X = {x0,x1, · · · ,xK−1} be a train of pulses, then the Taylor expansion
of its AAF at θ = 0 is

AX(τ, θ) =

∞
∑

m=0

cm(τ)(jθ)m

m!
(3)

where the Taylor coefficients cm(τ) is given by

cm(τ) =

K−1
∑

k=0

kmRxk
(τ). (4)

If the Taylor coefficients vanish at all nonzero delays, then a doppler resilient
waveform can be realized.

Definition 3 A pair of length-L sequences (x,y) is called an (L,Z)-PZCP,
if

C1: Rx(τ) +Ry(τ) = 0, for any 0 < |τ | < Z, (5)

C2: Rx,y(τ) +Ry,x(τ) = 0, for any 0 ≤ |τ | < Z. (6)

Remark 1 Compared with the definition in [7,24], we have

– PZCPs in this paper are a special class of ZCPs 2007 [7], and Z is the
width of the ZCZ of ZCPs. A ZCP is called a GCP if Z = L.

– The cross-correlation sums at shift τ of a PZCP in this paper equals to
zero for τ ∈ [0, Z), while the cross-correlation sums at shift τ of a CZCP
in [24] equals to zero for τ ∈ [N − Z + 1, N − 1].

According to the definition of PZCPs, binary PZCPs have the following
property.

Property 1 Binary PZCPs of odd length does not exist.

Proof Suppose that there is a binary PZCP (a,b) with odd length L, then we
have

Ra,b(0) =

L−1
∑

i=0

aibi

= L− 2|{0 ≤ i ≤ L− 1 : aibi = −1}|

≡ 1 (mod 2)

(7)

which illustrates thatRa,b(0) is an odd integer. Furthermore,Ra,b(0)+Rb,a(0) =
2Ra,b(0) ̸= 0, which is a contradiction with the definition of PZCP. Therefore,
there is no binary PZCP of odd length.
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2.1 Generalized Boolean function

A GBF f(x) of m variables x = (x1, x2, · · · , xm) is defined as a mapping form
Z
m
2 to Zq, where xi ∈ Z2, Zq = {0, 1, · · · , q − 1}. The f(x) can determine a

sequence f = (f0, f1, · · · , f2m−1) of length 2m, where fi = f(i1, i2, · · · , im) and
(i1, i2, · · · , im) is the binary representation of integer i =

∑m
j=1 ij2

j−1. Taking
q = 2 and m = 3 for example, the sequence corresponding to the generalized
Boolean function x1x2 is x1x2 := (0, 0, 0, 1, 0, 0, 0, 1).

Davis and Jedwab first gave the direct construction of GCPs based on
GBFs in 1999 [4].

Lemma 1 ( [4]) Let

f(x) =
q

2

m−1
∑

k=1

xπ(k)xπ(k+1) +

m
∑

k=1

ckxk + c′, (8)

g(x) = f(x) +
q

2
xπ(1), (9)

where q is an even integer, π is a permutation of {1, 2, · · · ,m}, ck, c
′ ∈ Zq.

Then the sequence pair (ψ(f), ψ(g)) = (ξfq , ξ
g
q ) is a GCP of length 2m, where

ξfq = (ξf0q , ξ
f1
q , · · · , ξ

f2m−1
q ).

Later, the GCP constructed by Lemma 1 is called the standard GCP.

3 The Constructions of PZCPs

3.1 Direct Constructions

In this subsection, we propose a direct construction of PZCPs from the stan-
dard GCPs.

Theorem 1 In the context of Lemma 1, let π(m) = m, then (ψ(f), ψ(g))
forms a (2m, 2π(1)−1 + 1)-PZCP.

Proof Since (ψ(f), ψ(g)) is a GCP, it is obvious that the sequence pair satisfies
the condition C1. For 0 ≤ τ ≤ 2π(1)−1, we have to show that

s(τ) =Rψ(f),ψ(g)(τ) +Rψ(g),ψ(f)(τ)

=

2m−1−τ
∑

i=0

(

ξfi−gi+τ
q + ξgi−fi+τ

q

)

=0.

(10)

Let j = i + τ , also let (i1, i2, · · · , im) and (j1, j2, · · · , jm) be the binary
representations of i and j, respectively. For easy to describe, we divide the set
J = {i : 0 ≤ i ≤ 2m − 1− τ} into four subsets: J1(τ) = {i ∈ J : iπ(1) ̸= jπ(1)},
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J2(τ) = {i ∈ J : iπ(1) = jπ(1), im = jm = 0}, J3(τ) = {i ∈ J : iπ(1) =
jπ(1), im = jm = 1}, and J4(τ) = {i ∈ J : iπ(1) = jπ(1), im ̸= jm}. Then

s(τ) =
∑

i∈J1(τ)

(

ξfi−gjq + ξgi−fjq

)

+
∑

i∈J2(τ)

(

ξfi−gjq + ξgi−fjq

)

+
∑

i∈J3(τ)

(

ξfi−gjq + ξgi−fjq

)

+
∑

i∈J4(τ)

(

ξfi−gjq + ξgi−fjq

)

.
(11)

For the first term of s(τ), we have

∑

i∈J1(τ)

(

ξfi−gjq + ξgi−fjq

)

=
∑

i∈J1(τ)

(

ξ(fi−gj)−(gi−fj)q + 1
)

ξgi−fjq

=
∑

i∈J1(τ)

(

(−1)iπ(1)+jπ(1) + 1
)

ξgi−fjq

= 0.

(12)

For the second term of s(τ), since π(m) = m, (fi, gi) can be expressed as

fi =

m−2
∑

k=1

iπ(k)iπ(k+1) +

m−1
∑

k=1

ckik + c′, (13)

gi = fi +
q

2
iπ(1). (14)

Let t be the smallest integer such that iπ(t) ̸= jπ(t). Let i
′ and j′ be integers

that differ from i and j in only one position π(t− 1), i.e., i′
π(t−1) = 1− iπ(t−1)

and j′
π(t−1) = 1−jπ(t−1), respectively, such that j′ = i′+τ . Since im = jm = 0,

one has 0 ≤ i′, j′ ≤ 2m−1, then i′ ∈ J2(τ). As (i, i′) and (j, j′) differ in only
one position π(t− 1), we have

(fi − gj)− (fi′ − gj′)

= q
(

iπ(t−2)iπ(t−1) + iπ(t−1)iπ(t)
)

−
q

2
iπ(t−2) −

q

2
iπ(t) − cπ(t−1) + 2cπ(t−1)iπ(t−1)

− q
(

jπ(t−2)jπ(t−1) + jπ(t−1)jπ(t)
)

+
q

2
jπ(t−2) +

q

2
jπ(t) + cπ(t−1) − 2cπ(t−1)jπ(t−1)

≡
q

2
(mod q),

(15)

which implies ξ
fi−gj
q + ξ

fi′−gj′
q = 0, i.e.,

∑

i∈J2(τ) ξ
fi−gj
q = 0. Similarly, it can

be shown that
∑

i∈J2(τ) ξ
gi−fj
q = 0.

For the third term of s(τ), since im = jm = 1, we have 2m−1 ≤ i, j ≤ 2m−1.
Let t be the smallest integer such that iπ(t) ̸= jπ(t), then we have t ≤ m−1. Let
i′ and j′ be integers that differ from i and j in only one position π(t− 1), i.e.,
i′
π(t−1) = 1−iπ(t−1) and j

′
π(t−1) = 1−jπ(t−1), respectively, such that j′ = i′+τ ,
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2m−1 ≤ i′, j′ ≤ 2m−1, and i′ ∈ J3(τ). Similar to the proof of the second term,

there exist i′, j′ such that ξ
fi−gj
q + ξ

fi′−gj′
q = 0, i.e.,

∑

i∈J3(τ) ξ
fi−gj
q = 0.

Similarly, it can be shown that
∑

i∈J3(τ) ξ
gi−fj
q = 0.

For the fourth term of s(τ), since im ̸= jm and i ≤ j, we have im = 0
and jm = 1. Let t be the smallest integer such that iπ(t) ̸= jπ(t), and let i′

and j′ be integers that differ from i and j in only one position π(t − 1), i.e.,
i′
π(t−1) = 1−iπ(t−1) and j

′
π(t−1) = 1−jπ(t−1), respectively, such that j′ = i′+τ .

We can obtain π(t) < π(1). Suppose not, we assume π(t) ≥ π(1), then

τ = j − i

= 2m−1 +
m−1
∑

k=1,k ̸=π(t)
(jk − ik)2

k−1

≥ 2m−1 −
m−1
∑

k=1

2k−1 + 2π(t)−1

≥ 2m−1 − (2m−1 − 1) + 2π(1)−1

= 2π(1)−1 + 1

(16)

which contradicts the assumption that 0 ≤ τ ≤ 2π(1)−1. Thus we have π(t) <
π(1). Further, we know that i′m = 0 and j′m = 1, so i′ ∈ J4(τ). Similar
to the proof of the second term, there exist two integers i′, j′ such that

ξ
fi−gj
q + ξ

fi′−gj′
q = 0, i.e.,

∑

i∈J4(τ) ξ
fi−gj
q = 0. Similarly, it can be shown

that
∑

i∈J4(τ) ξ
gi−fj
q = 0.

Based on the above discussion, we can say that (ψ(f), ψ(g)) is a (2m, 2π(1)−1+
1)-PZCP. Now we finish the proof.

In the following, we give an example to illustrate the result of Theorem 1.

Example 1 Let m = 4, q = 4, π(1, 2, 3, 4) = (3, 1, 2, 4), (c1, c2, c3, c4) =
(1, 0, 2, 3), c′ = 0. Then we get a (16, 5)-PZCP (ψ(f), ψ(g)) from Theorem 1,
i.e.,

f = (0, 0, 2, 0, 1, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 0),

g = (0, 0, 2, 0, 3, 1, 1, 1, 3, 3, 3, 1, 2, 0, 2, 2).
(17)

Then
(

Rψ(f)(τ) +Rψ(g)(τ)
)15

τ=0
= (32,015), (18)

and

(

Rψ(f),ψ(g)(τ) +Rψ(g),ψ(f)(τ)
)15

τ=0
= (05, 4, 0, 4, 0, 12, 0, 4,04). (19)

Corollary 1 Let f(x) be as shown in Lemma 1, g(x) = f(x) + q
2xπ(m). If

π(m) = 1, then (ψ(f), ψ(g)) forms a (2m, 2π(1)−1 + 1)-PZCP.

Proof The proof is identical to Theorem 1, and is omitted here.
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In [14], Adhikary et. al. proposed a generic construction of ZCPs of length
2m−1 + 2 based on generalized Boolean functions.

Lemma 2 Let m ≥ 3 be an integer, q be an even number, π be a permutation
of {1, 2, · · · ,m− 2}. Let

f(x) =
q

2

[

xm−1xm + xm−1(1− xm)
m−3
∑

k=1

xπ(k)xπ(k+1)

+ (1− xm−1)xm

m−3
∑

k=1

(1− xπ(k))(1− xπ(k+1))
]

+
m−2
∑

k=1

ekxk, (20)

g(x) = f(x) + (1− xm−1)xmxπ(m−3), (21)

h(x) = f(x) + xm−1(1− xm)xπ(m−3) + (1− xm−1)(1− xm). (22)

Let (a,b) be a sequence pair of length 2m−1+2 by eliminating the first and last
2m−2−1 elements of sequence pair (g,h). Then the sequence pair (ψ(a), ψ(b)) =
(ξaq , ξ

b
q ) is a ZCP of length 2m−1 + 2 with ZCZ width Z = 2π(m−2) + 1.

Theorem 2 In fact, the sequence pair (a,b) of Lemma 2 is also a PZCP,
and its parameters are as follows

{

(2m−1 + 2, 2π(m−2)−1 + 1), if m ≥ 4;

(6, 4), if m = 3.
(23)

The proof of Theorem 2 is similar to Theorem 1, and we omit it here.

3.2 Indirect Constructions

In this subsection, we propose some indirect constructions of PZCPs by con-
catenation.

Theorem 3 Let (a,b) and (c,d) be two GCPs of equal length L. Define

e = (a|c|b|d) ,

f = (a| − c|b| − d) .
(24)

Then (e, f) forms a (4L,L+ 1)-PZCP.

Proof For 0 < τ ≤ L, the AACFs of e and f are as follows:

Re(τ) = Ra(τ) +Rc(τ) +Rb(τ) +Rd(τ)

+R∗c,a(L− τ) +R∗b,c(L− τ) +R∗d,b(L− τ), (25)

Rf (τ) = Ra(τ) +Rc(τ) +Rb(τ) +Rd(τ)

−R∗c,a(L− τ)−R
∗
b,c(L− τ)−R

∗
d,b(L− τ). (26)
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Thus, Re(τ) +Rf (τ) = 0 for 1 ≤ τ ≤ L. On the other hand, their ACCFs are
as follows:

Re,f (τ) = Ra(τ)−Rc(τ) +Rb(τ)−Rd(τ)

−R∗c,a(L− τ) +R∗b,c(L− τ)−R
∗
d,b(L− τ), (27)

Rf ,e(τ) = Ra(τ)−Rc(τ) +Rb(τ)−Rd(τ)

+R∗c,a(L− τ)−R
∗
b,c(L− τ) +R∗d,b(L− τ). (28)

Thus, Re,f (τ) +Rf ,e(τ) = 0 for 0 ≤ τ ≤ L. This completes the proof.

Remark 2 When π(m−2) = m−2, L = 2m, the PZCP generated by Theorem
1 and Theorem 3 have the same parameters.

Theorem 4 Let (a,b) be a GCP of length L, e = (a|b), f = (a| −b), g =
←−
f

and h = −←−e . Let

p = (x1|e|g|y1),

q = (x2|f |h|y2).
(29)

Then (p,q) is a (4L+2, L+1)-PZCP if x1 = −x2, y1 = y2, where x1, x2, y1, y2 ∈
{t ∈ C : |t| = 1}.

Before proving Theorem 4, we give the following lemma.

Lemma 3 Let (a,b) be a GCP, then (a,
←−
b ), (←−a ,b) and (←−a ,

←−
b ) are GCPs.

Proof When 0 < τ ≤ L, our calculations yield the following result

Rp(τ) = x1a
∗
τ−1 + a∗τ−1y

∗
1 +Ra(τ) +Rb(τ) +R←−

b
(τ) +R←−a (τ)

+R∗b,a(L− τ)−R
∗←−
b ,b

(L− τ)−R∗←−a ,b(L− τ), (30)

Rq(τ) = x2a
∗
τ−1 − a

∗
τ−1y

∗
2 +Ra(τ) +Rb(τ) +R←−

b
(τ) +R←−a (τ)

−R∗b,a(L− τ) +R∗←−
b ,b

(L− τ) +R∗←−a ,b(L− τ). (31)

Further, Rp(τ) + Rq(τ) = 0 for 1 ≤ τ ≤ L. On the other hand, when τ = 0,
we have

Rp,q(τ) +Rq,p(τ) = 2(Ra(0)−Rb(0) +R←−
b
(0)−R←−a (0))

+ x1x
∗
2 + y1y

∗
2 + x2x

∗
1 + y2y

∗
1

= −|x1|
2 + |y1|

2 − |x1|
2 + |y1|

2

= 0.

(32)

When 1 ≤ τ ≤ L, their ACCFs are as follows:

Rp,q(τ) = x1a
∗
τ−1 + a∗τ−1y

∗
2 +Ra(τ)−Rb(τ) +R←−

b
(τ)−R←−a (τ)

−R∗b,a(L− τ)−R←−b ,b(L− τ) +R←−a ,←−b (L− τ), (33)

Rq,p(τ) = x2a
∗
τ−1 − a

∗
τ−1y

∗
1 +Ra(τ)−Rb(τ) +R←−

b
(τ)−R←−a (τ)

+R∗b,a(L− τ) +R←−
b ,b

(L− τ)−R←−a ,←−b (L− τ). (34)

After simple calculation, we have Rp,q(τ) + Rq,p(τ) = 0 for 1 ≤ τ ≤ L. To
sum up, Rp,q(τ) +Rq,p(τ) = 0 holds for all 0 ≤ τ ≤ L.
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Fig. 1 The magnitudes of AACF sums and ACCF sums of PZCP in Example 2.

Next, we will use an example to illustrate Theorem 4.

Example 2 Step 1: Let (a,b) be a binary GCP of length 10, i.e.,

(

a
b

)

=

(

+−−+−+++++
−+−+++−−++

)

, (35)

where +,− denotes 1,−1 respectively.

Step 2: Let e = (a|b) and f = (a| − b). Therefore,

(

e
f

)

=

(

+−−+−+++++−+−+++−−++
+−−+−++++++−+−−−++−−

)

. (36)

Step 3: Let g =
←−
f and h = −←−e . Therefore,

(

g
h

)

=

(

−−++−−−+−++++++−+−−+
−−++−−−+−+−−−−−+−++−

)

. (37)

Step 4: Let x1 = −1, y1 = −1, x2 = 1, y2 = −1, and p = (x1|e|g|y1),
q = (x2|f |h|y2).

Then, the magnitudes of Rp(τ) +Rq(τ) and Rp,q(τ) +Rp,q(τ) are shown
in Fig. 1. We can see that (p,q) is a (42, 11)-PZCP, which is consistent with
the result of Theorem 4.

3.3 Comparison

The parameters of PZCPs proposed in this paper are listed in Table 1. In
addition, we show whether known ZCP is a PZCP or not. If it is a PZCP, we
will give its parameters. At present, most of the ZCPs with odd lengths are
binary, such as [8, 15], we do not consider them, because they naturally do
not satisfy the condition C2 in the definition of PZCP. In Table 2, we listed
specific results.
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Table 1 Parameters of the constructed PZCPs in this paper

Source PZCP Length L ZCZ Width Z Z/L

Theorem 1 2m 2π(1)−1 + 1 ≤ 1
4

Theorem 3 4L L+ 1 ≈ 1
4

Theorem 4 4L+ 2 L+ 1 ≈ 1
4

Where L is the length of GCPs.

Table 2 Known ZCPs to PZCPs conversion

Source Parameters
Does PZCP

Exist?
Maximum ZCZ of PZCP Zmax/L

[9] (2m−1 + 2m−2, 2m−1) Yes
Zmax = 2m−4 + 1 if m ≥ 4;

Zmax = 4 if m = 3

{

1/12, if m > 3

2/3, if m = 3.

[10] (2m−1 + 2v , 2π(v+1)−1 + 2v) Yes
Zmax = 4 if v = 1;
Zmax = 2 if v ≥ 2

0, m → ∞

[11] (2m+1 + 2m+2 + 2m+3, 2m+3) Yes Zmax = 2m−1 + 1 1/28

[12] (2a+210b26c + 2, 3× 2a10b26c + 1) Yes Zmax = 2a10b26c + 1 1/4

[14] (2m−1 + 2, 2π(m−2) + 1) Yes
Zmax = 2m−3 − 1 if m ≥ 4;

Zmax = 4 if m = 3

{

1/4, if m > 3

2/3, if m = 3.

[16] (2m−1 +
∑

m−1
α=k+1 aα2

α−1 + 2v , 2k−1 + 2v) Yes Zmax = 4 0, m → ∞

[17] (8× 2a10b26c + 4, 5× 2a10b26c + 2) No – –

[18]
(3N, 2N),(5N, 3N),(7N, 4N),(9N, 5N),

(11N, 6N),(12N, 10N),(13N, 7N),(14N, 12N)
Yes Uncertain1 –

1 We use many GCPs to try the constructions in [18], but the results show that although PZCP exists, the width of its ZCZ
is very small, and the ratio of Z to L is much less than 1/4.

3.4 Enumeration

In this subsection, we enumerate the results of some short-length binary PZCPs
with maximum ZCZ. The parameters obtained by enumeration are as Table
3. An interesting fact is that for the short-length binary PZCPs we searched,
the ratio of Zmax to L did not exceed 1/2 except for the length of 6.

4 Application

4.1 Application of PZCPs in doppler resilient waveform design

In this subsection, we propose a pulse train based on PZCPs and ESPs, which
provide better Doppler resilient than PTM pulse train. However, it is necessary
to use multiple antennas to transmit continuous pulse trains. We begin with
definitions of delayed pulse trains and ESPs.

Definition 4 Define a delayed pulse train T (d) = {x0,x1, · · · ,xK−1} as one
having a delay of d pulses in the sense, which AAF as follows

AT (τ, θ, d) =

K−1
∑

k=0

Rxk
(τ)ej(k+d)θ (38)

In the following, we will introduce the definition of ESP sequences which
can be found in [29].
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Table 3 A list of binary (L,Z)-PZCPs (with maximum Zmax) of length up to 20

L

(

a

b

)

Zmax Zmax/L

4

(

++++
−+−+

)

2 1/2

6

(

−−++++
+−−+−+

)

4 2/3

8

(

−+−+++++
+−−+−−++

)

3 3/8

10

(

++−−++++++
−++−−+−+−+

)

4 2/5

12

(

−++−−−++++++
+−+−+−−+−−++

)

6 1/2

14

(

+++−++−+++−+−+
−++++−−+−−−−++

)

6 3/7

16

(

++−+−−+++−++++++
−+++−−−+−++−−+−+

)

6 3/8

18

(

−−−−+−+−−++−+−++++
+−−−+−−++++−−+−−−+

)

7 7/18

20

(

−+++−++−+−−−++−+++++
+++−−++++−+−−−+−+−−+

)

8 2/5

Definition 5 Let P = {P0, P1} be a 2-bolck partition of non-negative integer
set S. P has equal sums of power (ESP) of degree M if

∑

n∈P0

nm =
∑

n∈P1

nm (39)

for m = 0, 1, · · · ,M .

Many introductions of ESP can be found in [32]. Next, we illustrate ESP
with an example.

Example 3 Let P0 = {0, 4, 7, 11} and P1 = {1, 2, 9, 10} be a 2-block partition
of S = {0, 1, 2, 4, 7, 9, 10, 11}, then P = {P0, P1} has ESP of degree 3, since

0m + 4m + 7m + 11m = 1m + 2m + 9m + 10m

for m = 0, 1, 2, 3.

In Example 3, due to the lack of numbers 3, 5, 6, 8 in S, this may cause
gaps in the pulse train that are not allowed by radar [29]. Based on this fact,
we can add these numbers to P0, P1, i.e.,

P0 = {0, 3, 4, 5, 6, 7, 8, 11},

P1 = {1, 2, 3, 5, 6, 8, 9, 10}.

Obviously, P still has ESP of degree 3. Let (x,y) be a sequence pair, {x0,x1, · · · ,
xK−1} be pulse train with











xk = x, if k ∈ P0, k /∈ P1,

xk = y, if k ∈ P1, k /∈ P0,

xk = x+ y, if k ∈ P0 ∩ P1.

(40)
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Tx 0

Tx 1

Tx 2

Tx 3

x y y x

y x x x

y y x x

y y y x

PRI 0 1 2 3 4 5 6 7 8 9 10 11

Fig. 2 Explanation of the pulse trains transmitted on the four antennas and the time of
transmission

Then the pulse train is

{x,y,y,x+ y,x,x+ y,x+ y,x,x+ y,y,y,x} (41)

Because P0 and P1 are no longer two disjoint sets, this leads to the need to
send both x and y at certain times, i.e., x+y. This is not allowed because the
transmitted signal is not unimodular. Therefore, multi antenna transmission
is used in [29], [30]. In this example, 4 pulse trains T0(0), T1(3), T2(5), T3(8)
need to be transmitted1, i.e.,

T0(0) = {x,y,y,x},

T1(3) = {y,x,x,y},

T2(5) = {y,x,x,y},

T3(8) = {x,y,y,x}.

(42)

The pulse trains transmitted and time on these four antennas are more
intuitively represented in Fig. 2. Within the PRI that transmits x+y simulta-
neously, two filters with filter coefficients of x and y are required. It is assumed
that each antenna has the same channel response and the scattering coefficient
of the target remains unchanged. If we sum the composite ambiguity functions
of four pulse trains, we obtain

A(τ, θ) = B(τ, θ) + C(τ, θ) (43)

where

B(τ, θ) =AT0
(τ, θ, 0) +AT1

(τ, θ, 3) +AT2
(τ, θ, 5) +AT3

(τ, θ, 8), (44)

C(τ, θ) =
∑

k∈{3,5,6,8}
[Rx,y(τ) +Ry,x(τ)] e

jkθ. (45)

We compute Taylor coefficients of B(τ, θ)

cm(τ) =
∑

k∈P0

kmRx(τ) +
∑

k∈P1

kmRy(τ)

= Sm [Rx(τ) +Ry(τ)]

(46)

1 The pulse trains transmitted on each antenna are not unique, as long as the order of
transmission conforms to {P0, P1}, it is feasible.
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(a) (b) (c)

Fig. 3 Ambiguity function for different waveforms: (a) Waveform based on GCP and ESP
[29]. (b) Waveform based on GCP and PTM [27]. (c) Waveform based on PZCP and ESP.

for m = 0, 1, 2, 3, where Sm =
∑

k∈P0
km =

∑

k∈P1
km.

In fact, in [29], [30], only the influence of the AAF, i.e., B(τ, θ), is consid-
ered, and the influence of the CAF, i.e., C(τ, θ), is not considered, which is
actually not desirable. Since the receiver is equipped with two matched filters,
the CAF must be considered. In this case, PZCP is obviously more practical.

4.2 Numerical experiments

In this simulation, we use a GCP (not PZCP) and a PZCP of length L = 64
of ZCZ width Z = 17 for simulation experiments, the total number of pulses is
K = 16. In Fig. 3, we show the ambiguity function values of different schemes.
Fig. 3(a) is the scheme in [29]. Because the influence of CAF is not considered,
the performance becomes very poor when CAF is considered. Fig. 3(c) is a
scheme based on PZCP and ESP. In the zero correlation zone, it can be seen
that due to a more comprehensive consideration, the performance is better
than the scheme based on GCP and PTM in the literature [27]. In Fig. 4,
we compare the ambiguity function values of our proposed scheme with the
scheme proposed in [27] at Doppler shift θ = 0.15. Obviously, our scheme has
a lower range sidelobe when the Doppler shift θ = 0.15 and delay interval
[−Z + 1, Z − 1].

5 Conclusion

In this paper, we proposed a new class of PZCPs, which requires zero aperiodic
auto-correlation sums and zero aperiodic cross-correlation sums for front-end
time shifts. We also gave a construction of PZCPs from the standard GCPs
and extended it to the general construction through general GCPs. In addi-
tion, combined with ESPs, PZCPs can be used for Doppler resilient waveform
design. Finally, the simulation shows that the waveform based on PZCP and
ESP has better performance than the waveform based on GCP and PTM.

There is still a great potential for the application of PZCPs in doppler
resilient waveform design. For example, when the pulse signal power is allowed
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Fig. 4 Comparison of the ambiguity functions at Doppler shift θ = 0.15 and delay interval
[−Z + 1, Z − 1]

to be unbalanced, it is assumed that the pulse train X = {x0,x1, · · · ,xK−1},
set xi = x + y, since Rx+y(τ) = Rx(τ) + Ry(τ) + Rx,y(τ) + Ry,x(τ), the
pulse train X can achieve zero range sidelobes for any doppler shift θ in delay
interval [−Z + 1, Z − 1] if (x,y) is a (L,Z)-PZCP.
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