
ar
X

iv
:2

20
7.

13
64

2v
1 

 [
cs

.I
T

] 
 2

7 
Ju

l 2
02

2
1

A Direct Construction of Complete

Complementary Code with Zero Correlation

Zone property for Prime-Power Length

Nishant Kumar, Sudhan Majhi, Senior Member, IEEE, and A.K. Upadhyay

Abstract

In this paper, we propose a direct construction of a novel type of code set, which has combined

properties of complete complementary code (CCC) and zero-correlation zone (ZCZ) sequences and

called it complete complementary-ZCZ (CC-ZCZ) code set. The code set is constructed by using

multivariable functions. The proposed construction also provides Golay-ZCZ codes with new lengths,

i.e., prime-power lengths. The proposed Golay-ZCZ codes are optimal and asymptotically optimal for

binary and non-binary cases, respectively, by Tang-Fan-Matsufuzi bound. Furthermore, the proposed

direct construction provides novel ZCZ sequences of length pk, where k is an integer ≥ 2. We establish

a relationship between the proposed CC-ZCZ code set and the first-order generalized Reed-Muller

(GRM) code, and proved that both have the same Hamming distance. We also counted the number of

CC-ZCZ code set in first-order GRM codes. The column sequence peak-to-mean envelope power ratio

(PMEPR) of the proposed CC-ZCZ construction is derived and compared with existing works. The

proposed construction is also deduced to Golay-ZCZ and ZCZ sequences which are compared to the

existing work. The proposed construction generalizes many of the existing work.

Index Terms

Golay complementary sets (GCSs), complete complementary code (CCC), multivariable functions,

zero correlation zone (ZCZ) sequence set, Golay-ZCZ sequence set, CC-ZCZ code set, prime-power
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length, peak-to-mean envelope power ratio (PMEPR), orthogonal frequency division multiplexing (OFDM),

multi-carrier code division multiple access (MC-CDMA), generalized Reed-Muller (GRM) codes.

I. INTRODUCTION

GOLAY was the first to introduce Golay complementary pair (GCP) in 1949 but defined

formally in his article “Complementary Series” in 1960 [1]. GCPs show their applications in

many areas such as infrared multislit spectrometry, orthogonal frequency-division multiplexing

(OFDM) and many others. The idea of GCP was further extended to Golay complementary sets

(GCSs) [2]. A relationship between GCP of length in the form 2m and generalized Boolean

function (GBF) has been established in [3]. Later in [4], Paterson et al. obtained GCSs of

polyphase sequences from cosets of the first-order generalized Reed-Muller (GRM) code. Further,

an upper bound on peak-to-mean envelope power ratio (PMEPR) for second-order cosets of this

code was obtained. In [5], the idea of GCSs was further extended to complete complemen-

tary codes (CCCs) which is a collection of GCSs with some extra aperiodic cross-correlation

property. Additionally, CCC has found application in multi-carrier code division multiple access

(MC-CDMA) systems to eliminate multiple-access interference (MAI) for multiple users over

asynchronous environment [6], [7]. CCCs are also utilized in optimal channel estimation for

multiple-input multiple-output (MIMO) frequency-selective fading channels [8], MIMO radar

[9], [10], cell search in OFDM systems [11], and data hiding [12]. A detailed study on GCSs

and CCCs can be carried out in [3], [4], [13]–[19].

In OFDM systems, GCSs are widely used to control PMEPR [3], an upper bound on PMEPR

was obtained in [4]. By using the good aperiodic correlation properties of GCP and GCSs,

these can be used for asynchronous CDMA system, channel estimation [20], synchronization

[21], signal detection etc. Quasi-synchronous CDMA (QS-CDMA) system is proposed to reduce

the impact of synchronization accuracy in communication systems [22]. QS-CDMA system

can eliminate co-channel interference for multiuser environment when synchronization error is
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controlled within a specific range [22].

Zero correlation zone (ZCZ) sequences have ideal periodic correlation property inside a zone

about the origin. Therefore, they can reduce MAI and multipath interference (MPI) [23], and

hence they are used to take benefit of quasi synchronization in the QS-CDMA system. They are

also used in radar [24], channel estimation [25]–[27], pilot design [28], [29], multicode MIMO

system [30], and as a training sequence in MIMO-OFDM systems [28]. The ZCZ sequences can

achieve optimal channel estimation performance under the condition that all the received signals

are quasi-synchronous within the ZCZ [31], [32].

The relation between GCSs and ZCZ sequences was first established in [33]. Later, numerous

ZCZ sequences are constructed by using mutually orthogonal GCSs (MOGCS) [34]–[36]. While

most of the ZCZ sequence constructions need predefined sequences like perfect sequences and

use unitary matrices [36], interleaving technique [37] and Hadamard matrices [38]. The direct

constructions of ZCZ sequences based on GBFs are provided in [39]–[41]. The connection

between GRM codes and ZCZ sequences is also provided in [40], [41]. The GCSs and ZCZ

sets are characterized by their aperiodic auto-correlation and periodic correlation properties,

respectively. The authors in [42], [43], investigated the periodic auto-correlation behaviour of

individual Golay sequences in 2013. Specifically, they presented two constructions of Golay

sequences of length 2m each displaying a periodic zero auto-correlation zone (ZACZ) of 2m−2,

and 2m−3, respectively, around the in-phase position. Motivated by the work in [42], [43], the

authors in [44] studied the periodic zero cross-correlation zone (ZCCZ) of the GCSs presented

in [18] and provided a relation between ZCZ sets and GCSs and proposed a construction of a

new class of sequence sets and named it Golay-ZCZ sequence sets. Golay-ZCZ sequence set

consists of sequences having their aperiodic auto-correlation sum zero except at the zero shift

and ideal periodic cross-correlations and auto-correlations within the ZCZ. Precisely, a Golay-

ZCZ sequence set is a ZCZ sequence set which is also a GCS. Therefore, from the application

point of view, Golay-ZCZ sequence sets are used to obtain both the advantages in a single code.
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For an instant, ZCZ sequences are used as pilots or training sequences in OFDM systems [28],

[29] but it is not utilized for PMEPR reduction. Since Golay-ZCZ sequence sets are themselves

GCSs, they can be utilized as training sequences as well as for PMEPR reduction. Therefore, the

proposed code provides low PMEPR when employed in OFDM systems due to the good auto-

correlation properties of GCSs. Besides, the Golay-ZCZ sets possess zero auto-correlations and

cross-correlations within their ZCZ and hence have the potential application to synchronization.

Inspired by the Golay-ZCZ work given in [44], the authors in [22] given construction of Golay-

ZCZ sequence sets which have large ZCZ width. The length of proposed Golay-ZCZ sequence

sets in [22] and [44] is limited to power-of-two. Continuing in this chain, recently in 2021,

the authors in [45] provided a construction of Golay-ZCZ sequences of length M2N using an

CCC of length N and flock size M . Furthermore, in [46], they also constructed Golay-ZCZ

complementary pair of length 4N , where N is a positive integer and provided an open problem

to construct Golay-ZCZ sequence set of non-power-of-two length as “An interesting future work

will be to design Golay-ZCZ sequence sets, consisting sequences of length non-power-of-two,

which have periodic ZACZ* and ZCCZ† around the in-phase position”. Furthermore, they also

extended this work to two-dimension [47].

Motivated by the above works, and open problem provided in [46], in this paper, we provide

a construction of novel type of code set called CC-ZCZ code set of prime-power length in

which each code is Golay-ZCZ sequence set having non-power-of-two length sequences which

settles the open problem provided by in [46]. The proposed p-ary Golay-ZCZ sequence sets

are asymptotically optimal with respect to Tang-Fan-Matsufuji bound and optimal for binary

case. The proposed CC-ZCZ code sets are also seen as second-order cosets of first-order GRM

codes. Since first-order GRM codes enjoy high Hamming distance, we prove that the proposed

Golay-ZCZ sequence set in CC-ZCZ code set has the same Hamming distance as GRM codes.

* zero auto-correlation zone † zero cross-correlation zone
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Additionally, we also count the number of cosets of GRM codes, which is further used to count

the total number of CC-ZCZ code sets and Golay-ZCZ sequence sets. The column sequence

PMEPR of the proposed CC-ZCZ construction is reduced. The row and column sequence PMEPR

for Golay-ZCZ and CCC are also been reduced over the existing work [44] and [14], respectively.

The proposed construction can generate new ZCZ sequences of length pk, where k is a positive

integer ≥ 2. The proposed construction also contributes Golay-ZCZ sequence sets and ZCZ

sequences which are again compared to the existing state-of-the-art.

The remainder of the paper is structured as follows. We provide some basic notations and

definitions in Section II. In Section III, we provide the construction of CC-ZCZ code sets and

provide examples in support of our construction. In Section IV, a relation between proposed

CC-ZCZ code set and GRM codes is established. Moreover, the number of CC-ZCZ code set in

a second-order coset of GRM code and Hamming distance are provided. In Section V, we discuss

column sequence PMEPR of constructed CC-ZCZ code based MC-CDMA system. Section VI

provides another result that increases the number of CC-ZCZ code sets. In section VII, we

defend the work’s novelty by comparing it to existing works in the literature. Lastly, we provide

conclusion in Section VIII.

II. PRELIMINARY

A. Definition and Correlation Functions

Let a = (a0, a1, . . . , aL−1) and b = (b0, b1, . . . , bL−1) be two L-length complex-valued se-

quences. For an integer τ , define

A(a,b)(τ) =















∑L−1−τ

i=0 aib
∗
(i+τ), 0 ≤ τ < L,

∑L+τ−1
i=0 a(i−τ)b

∗
i , −L < τ < 0.

(1)

The function A(a,b) is referred to as aperiodic cross-correlation function (ACCF) of a and b.

If a = b then this function is called aperiodic auto-correlation function (AACF) and denoted as

A(a).
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Further, the periodic cross-correlation function (PCCF) of a and b is defined as

P(a,b)(τ) =















∑L−1
i=0 aib

∗
(i+τ) mod L, 0 ≤ τ < L,

∑L−1
i=0 aib

∗
(i−τ) mod L, −L < τ < 0.

(2)

When a = b, then this function is called periodic auto-correlation function (PACF) and denoted

as P(a) [48].

Definition 1: Let C = {C0,C1, . . . ,CK−1} be a collection of K matrices (codes) of order

M × L. Define

Cξ =





















a
ξ
0

a
ξ
1

...

a
ξ
M−1





















, (3)

where a
ξ
υ (0 ≤ υ ≤ M −1, 0 ≤ ξ ≤ K−1) is the υth row sequence or υth constituent sequence.

Then the ACCF of two codes Cξ1 ,Cξ2 ∈ C is defined as

γ(Cξ1 ,Cξ2)(u) =
M−1
∑

υ=0

γ(aξ1
υ , a

ξ2
υ )(u). (4)

Definition 2: Let C be a code set satisfying the following correlation properties

γ(Cξ1 ,Cξ2)(u) =































LM, ξ1 = ξ2 and u = 0,

0, ξ1 = ξ2 and 0 < |u| < L,

0, ξ1 6= ξ2 and |u| < L.

(5)

Then C is known as (K,M,L)-MOGCS. If K =M , it is referred to be CCC set and we write

it as (K,K,L)-CCC. Additionally, each code of C is known as GCS [49]. When M = 2 it is

called GCP [19].

Definition 3: Let Z = {z0, z1, . . . , zK−1} be a set of K sequences each of length L, i.e.,

zi = (zi0, zi1, . . . , ziL−1), 0 ≤ i ≤ K − 1.
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Then, Z is referred to be (K,L, Z)-ZCZ sequence set for 0 ≤ i, j ≤ K − 1, if Z satisfies the

following,

P(zi, zj)(u) =































0, i = j and 1 ≤ |u| < Z,

0, i 6= j and 0 ≤ |u| < Z,

L, i = j and u = 0,

(6)

where Z is termed as ZCZ width.

Definition 4: (Tang-Fan-Matsufuji Bound [50]) Let Z be any ZCZ sequence set with param-

eter (K,L, Z). Then, KZ ≤ L and if KZ = L, then Z is said to be optimal. If for the larger

value of K, KZ ≈ L, Z is said to be asymptotically optimal. For the binary case, it is widely

accepted that the bound is reduced to 2KZ ≤ L [51].

Definition 5: Let Z be a (K,L, Z)-ZCZ sequence set then Z is called (K,L, Z)-Golay-ZCZ

sequence set if it additionally satisfies the GCS properties.

Definition 6: Let C = {C0,C1, . . . ,CK−1} be a (K,K,L)-CCC. Then C is called (K,K,L, Z)-

CC-ZCZ code set if each Ci, ∀ i = 0, 1, . . . , k − 1 is (K,L, Z)-Golay-ZCZ sequence set.

B. Multivariable Functions and Corresponding Sequences [14]

Let x = (x1, x2, . . . , xk−1) ∈ Z
k
p , be a vector of finite length, where p is a prime number and

k is a positive integer. It is clear that xi ∈ Zp for 1 ≤ i ≤ k. Now, we take a specific collection

of monomials of degree at most r over the variables x1, x2, . . . , xk as follows

M(x, r) = {xj11 xj22 . . . xjkk : ji ∈ {0, 1} for 1 ≤ i ≤ k, j1 + j2 + · · ·+ jk ≤ r}, (7)

where 0 ≤ r ≤ k. A monomial’s degree in M is determined by the number of independent vari-

ables associated with it and this can be verified by examining the expressions of the monomials

in M. A linear combination of monomials in M with Zq-valued coefficients, where q is a positive

integer, leads to a multivariable function f(x1, x2, . . . , xk) : Z
k
p → Zq which has maximum degree

July 28, 2022 DRAFT



8

r. Let F(M(x, r), q) be the set of all multivariable functions f(x1, x2, . . . , xk) : Z
k
p → Zq, over

the monomials in M and defined as

F(M(x, r), q) =

{

∑

(j1,j2,...,jk)∈{0,1}k
cj1,j2,...,jkx

j1
1 x

j2
2 . . . x

jk
k : cj1,j2,...,jk ∈ Zq

}

, (8)

where r is the maximum degree of a multivariable function f in F(M(x, r), q). When p = 2, the

set of multivariable functions F(M(x, r), q) is reduced to a set of Zq-valued GBFs of maximum

degree r over the vector variable x .

For a multivariable function, f ∈ F(M(x, r), q), the Zq-valued sequence θ(f) and the complex-

valued sequence Θ(f) having length pk are defined as

θ(f) = (f0, f1, . . . , fpk−1), (9)

Θ(f) = (ωf0, ωf1, . . . , ωf
pk−1). (10)

where fi = f(i0, i1, . . . , ik−1), ω = exp(2π
√
−1/q), and (i0, i1, . . . , ik−1) is the p-ary vector

representation of i.

C. Generalized Reed-Muller (GRM) Code

For a prime p, let λ = pn and n ≥ 1, then codewords of λ-ary GRM codes consist of

the sequence corresponding to multivariable polynomials over the field Fλ, where λ = pn and

n ≥ 1. Let us consider a polynomial ring Fλ[x1, x2, . . . , xm] with m variables. The GRM code

with parameters m and r consists of all the sequences corresponding to polynomials with m

variables and degree no larger than r.

Definition 7: The r-th order r ≤ λ, λ-ary GRM code denoted by GRMλ(m, r), is defined by

the set of λ-ary vectors as

GRMλ(m, r) = {θ(f) : f ∈ Fλ[x1, x2, . . . , xm], deg(f) ≤ r}. (11)

It is to be noted that we always have xλ = 1 in Fλ, so we only need to consider polynomials in

which the degree of each xi is no larger than λ− 1. All such polynomials with degree no larger
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than r are linear combinations of the following set of monomials

N (r) =
{

xj11 x
j2
2 , . . . x

jm
m : ji = 0, 1, 2, . . . , λ− 1 and

m
∑

i=1

ji ≤ r
}

. (12)

Using combinatorics, we can always prove that the number of monomials in the set N (r) is,

|N (r)| = ∑r

d=0

(

m−1+d

d

)

. It is well known that Fλ[x1, x2, . . . , xm] forms a vector space over the

field Fλ, further it can be easily proved that GRMλ(m, r) is its subspace. Therefore, GRMλ(m, r)

is a linear code with code length n = λm and code dimension
∑r

d=0

(

m−1+d

d

)

. Moreover, if we

arrange sequences corresponding to monomials in N (r) as the rows of a matrix then this matrix

forms a generator matrix of GRMλ(m, r).

Lemma 1 ( [52]): For λ = pn and n ≥ 1, minimum Hamming distance of GRMλ(m, r) is

(R+1).pQ, where R is the remainder and Q is the quotient resulting from dividing m(p−1)−r

by p− 1.

D. Peak-to-Mean Envelope Power Ratio (PMEPR)

In spite of several benefits arising from the OFDM technique, its wide acceptance has been

hindered by its high PMEPR in uncoded signals. In this subsection, we define PMEPR for OFDM

signals.

One can model the OFDM signal for a complex valued word B = (B1, B2, . . . , BN) of length

N as the real part of the

SB(τ) =
N
∑

i=1

Bie
2π(i+ζ)(τ)

√
−1, (13)

where 0 ≤ τ < 1 and ζ is a positive constant. The sequence B = (B1, B2, . . . , BN) is termed

as modulating codeword of the OFDM symbol. The PMEPR of word B is defined as

PMEPR(B) =
1

N
sup

0≤τ<1
|SB(τ)|2. (14)

It is to be observed that the largest value that PMEPR can have is N . However, it is preferable

to use codewords with a lower PMEPR than N . Additionally, the PMEPR of GCS of size M is

bounded above by M [4].
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III. PROPOSED CONSTRUCTION OF CC-ZCZ CODE SET

In this section, we provide a construction of CC-ZCZ code set of prime-power length. For that

we start with a result which provides the construction of CCC of prime-power length [14]. For

the ease of representation, we present this result in a modified way without loosing the essence

of the result.

Lemma 2 ( [14]): For an integer m ≥ 2, let {1, 2, . . . , m} is divided into k partitions namely,

E1, E2, . . . , Ek where 1 ≤ k ≤ m − 1. Further, let us also assume that λ = pn and n ≥ 1 and

πβ be bijection mapping from {1, 2, . . . , nβ} to Eβ where nβ = |Eβ| ≥ 1, ∀β = 2, 3, . . . , k and

n1 = |E1| ≥ 2. Now, we define a multivariable function f : Zm
p → Zλ as

f(x1, x2, . . . , xm) =
λ

p

k
∑

β=1

nβ−1
∑

γ=1

xπβ(γ)xπβ(γ+1) +

m
∑

α=1

gαxα, (15)

where gα ∈ Zλ for α = 1, 2, . . . , m. Further, let uk = [u1, u2, . . . , uk], vk = [v1, v2, . . . , vk] be

p-ary representation for 0 ≤ uk,vk ≤ pk − 1. Define

avk

uk
= av1u1

(E1) + av2u2
(E2) + · · ·+ avkuk

(Ek), (16)

where for any 1 ≤ β ≤ k, multivariable function a
vβ
uβ(Eβ) is defined as

a
vβ
uβ(Eβ) =

λ

p

nβ−1
∑

γ=1

xπβ(γ)xπβ(γ+1) +

nβ
∑

γ=1

gπβ(γ)xπβ(γ) +
λ

p
xπβ(1)uβ +

λ

p
xπβ(nβ)vβ. (17)

Let us also define

Cuk
= [Θ(avk

uk
)]0≤vk≤pk−1 =





















Θ(a0
uk
)

Θ(a1
uk
)

...

Θ(ap
k−1

uk
)





















. (18)

Then C = {Cuk
: 0 ≤ uk ≤ pk − 1} is (pk, pk, pm)-CCC.

Theorem 1: For a fixed uk, Cuk
is GCS as defined in Lemma 2. Let C′

uk
be Cuk

together with

the permutation πβ(1) = m− β + 1 for β = 1, 2, . . . , k. Then C
′
uk

is (pk, pm, (p− 1)pπ1(2)−1)-

Golay-ZCZ sequence set and hence C
′ = {C′

uk
: 0 ≤ uk ≤ pk−1} is (pk, pk, pm, (p−1)pπ1(2)−1)-

CC-ZCZ code set.

DRAFT July 28, 2022
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Proof: Please see Appendix A.

Remark 1: If we have π1(2) = m−k, then from Theorem 1, C′
uk

, is (pk, pm, (p−1)pm−k−1)-

ZCZ ∀ 0 ≤ uk ≤ pk − 1, which implies KZ = (p − 1)pm−1 and L = pm. Now, for λ = 2,

KZ = 2L and hence C
′
uk

is optimal ZCZ sequence set. But if p 6= 2 then for larger value of p,

(p− 1) ≈ p and hence KZ ≈ L, therefore, in this case, C′
uk

is asymptotically optimal.

According to Theorem 1, we can provide a construction of (pk, pk, pm, (p− 1)pπ1(2)−1)-CC-ZCZ

code sets having variable ZCZ width π1(2). It is desirable to have a larger ZCZ width, we take

π1(2) = m − k to propose a family of (pk, pk, pm, (p − 1)pm−k−1)-CC-ZCZ code sets having

larger ZCZ width. Furthermore, each code of CC-ZCZ is (pk, pm, (p − 1)pm−k−1)-Golay-ZCZ

sequence set and it is optimal (Tang-Fan-Matsufuji Bound) for λ = 2 and asymptotically optimal

for λ 6= 2. To support our construction, we present examples below.

Example 1: (Binary Case) Taking λ = 2, p = 2, k = 2, and m = 5, we let E1 = {1, 3, 5} and

E2 = {2, 4} be a partition of {1, 2, 3, 4, 5}. Also let π1(1) = 5, π1(2) = 3, π1(3) = 1, π2(1) = 4

and π2(2) = 2. Let f : Z5
2 → Z2 be defined as

f(x1, x2, . . . , x5) = x5x3 + x3x1 + x4x2 + x1 + x3.

Further, let uk = 0, Then

C
′
0
=





















θ(a0
0
)

θ(a1
0
)

θ(a2
0
)

θ(a3
0
)





















=





















θ(f + x5.0 + x4.0 + x1.0 + x2.0)

θ(f + x5.0 + x4.0 + x1.1 + x2.0)

θ(f + x5.0 + x4.0 + x1.0 + x2.1)

θ(f + x5.0 + x4.0 + x1.1 + x2.1)





















=





















01011111011011000101000001100011

00001010001110010000010100110110

01101100010111110110001101010000

00111001000010100011011000000101





















,
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where the above matrix is phase matrix and C
′
0

is a (4, 32, 4)-Golay-ZCZ sequence set. Moreover,

we can also derive C
′
1
,C′

2
and C

′
3

and these are also (4, 32, 4)-Golay-ZCZ sequence sets. Hence

C
′ = {C′

0
,C′

1
,C′

2
,C′

3
} is a (4, 4, 32, 4)-CC-ZCZ code set. Since K = 4, L = 32, Z = 4 which

implies KZ = 16. Hence, 2KZ = L. Therefore, C′
i is optimal by Tang-Fan-Matsufuji Bound.

A graphical representation of periodic correlation of sequences in C
′
0

is shown in Fig. 1

Example 2: (Non-binary case) Here let λ = 3, k = 2, m = 3 and p = 3. Also let E1 =

{2, 3}, E2 = {1} be a partition of {1, 2, 3}. Further, let π1(1) = 3, π1(2) = 2, and π2(1) = 1.

Define f : Z3
3 → Z3 as f(x1, x2, x3) = x3x2. Now, let us fix uk = 0 then
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

, (19)

C
′
0

is a (9, 27, 2)-Golay-ZCZ sequence set. Similarly, C′
uk

for 1 ≤ uk ≤ 8 are also (9, 27, 2)-

Golay-ZCZ sequence set. Hence C
′ = {C′

0
,C′

1
, . . . ,C′

8
} is a (9, 9, 27, 2)-CC-ZCZ code set.

IV. CC-ZCZ CODE SETS FROM GRM CODES

In this section, a relation between CC-ZCZ code set and elements of second-order coset of

GRMp(m, 1) is established for λ = p. The precise number of cosets and number of CC-ZCZ

code set in each coset is also given. Hamming distance of Golay-ZCZ sequence is also calculated.

It can be obtained that if we have a sequence in C
′
uk

, then it is a codeword belonging to
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Fig. 1: (a) Auto-correlation plot for {θ(a0
0
), θ(a1

0
), θ(a2

0
), θ(a3

0
)}, (b) Cross-correlation plot

for {(θ(a1
0
), θ(a2

0
)), (θ(a3

0
), θ(a4

0
))}, (c) Cross-correlation plot for {(θ(a1

0
), θ(a3

0
)), (θ(a2

0
), θ(a4

0
))}

(d) Cross-correlation plot for {(θ(a1
0
), θ(a4

0
)), (θ(a2

0
), θ(a3

0
))}.

second-order coset Q1 +GRMp(m, 1) where Q1 is given by

Q1 =

k
∑

β=1

nβ−1
∑

γ=1

xπβ(γ)xπβ(γ+1). (20)

Conversely, if any sequence is in the coset Q1 + GRMp(m, 1) then it belongs to a certain

(pk, pm, (p−1)pπ1(2)−1)-Golay-ZCZ sequence set. Now, let us consider the constructed (pk, pm, (p−

1)pm−k−1)-Golay-ZCZ sequence family by taking π1(2) = m− k.

Corollary 1: The number of coset representative Q1 in the second-order coset of the form

Q1 +GRMp(m, 1) is given by

∑

n1+n2+···+nk=m

(

m− k − 1

n1 − 2, n2 − 1, . . . , nk − 1

)

(n1 − 2)!
k
∏

β=2

(nβ − 1)!. (21)
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Proof: Since, we have π1(1) = m and π1(2) = m − k, so we can get (n1 − 2)! different

quadratic forms of the type

xπ1(1)xπ1(2) + xπ1(2)xπ1(3) + · · ·+ xπ1(n1−1)xπ1(n1), (22)

where π1(i) is a permutation of n1 − 2 integers where i = 3, 4, . . . , n1. Similarly, there are

(nβ−1)! different quadratic forms of the type
∑nβ−1

β=1 xπβ(γ)xπβ(γ+1) for β = 2, 3, . . . , k as πβ(1)

is restricted to m − β + 1. In addition, we have the condition n1 + n2 + · · · + nk = m where

nβ = |Eβ| and non-empty sets E1, E2, . . . , Ek form a partition of {1, 2, . . . , m}. Therefore, we

can explicitly determine the number of distinct coset representatives Q1 as

∑

n1+n2+···+nk=m

(

m− k − 1

n1 − 2, n2 − 1, . . . , nk − 1

)

(n1 − 2)!
k
∏

β=2

(nβ − 1)!.

Corollary 2: Let Q1 +GRMp(m, 1) be any second-order coset with coset representative Q1

and let π1(2) = m− k. Then the coset Q1 +GRMp(m, 1) consists of pm−k+1 and pm+1 distinct

p-ary (pk, pk, pm, (p − 1)pm−k−1)-CC-ZCZ code set and (pk, pm, (p − 1)pm−k−1)-Golay-ZCZ

sequence set respectively.

Proof: We have from Theorem 1, that a codeword c in Q1 + GRMp(m, 1) lies in the

(pk, pm, (p− 1)pm−k−1)-Golay-ZCZ sequence set

C
′
uk

=

{

f +
k−1
∑

β=0

xπβ+1(1)uβ+1 +
k

∑

β=1

xπβ(nβ)vβ + b0 : vβ ∈ Zp, 1 ≤ β ≤ k

}

. (23)

So it can easily be obtained that for a fixed value of uk, Q1 +GRMp(m, 1) consists of pm−k+1

distinct p-ary (pk, pm, (p−1)pm−k−1)-Golay-ZCZ sequence set. Hence, we have pm−k+1 distinct

p-ary (pk, pk, pm, (p − 1)pm−k−1)-CC-ZCZ code set. Since uk can vary in pk ways, therefore,

Q1+GRMp(m, 1) consists of pm−k+1 · pk = pm+1 distinct p-ary (pk, pm, (p−1)pm−k−1)-Golay-

ZCZ sequence set.
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Since the codes in our construction lie inside the second-order cosets of first-order GRM

codes, therefore, they have the high Hamming distance. Hamming distance of a code measures

how efficient a code is to detect and correct errors. If the Hamming distance of a code is h then

we can correct the errors of Hamming weight less than h/2. Therefore, in the next corollary,

we prove that minimum Hamming distance of the constructed CC-ZCZ code set is equal to

minimum Hamming distance of GRMp(m, 1).

Corollary 3: The minimum Hamming distance of (pk, pm, (p − 1)pm−k−1)-Golay-ZCZ se-

quence sets which are constructed in Theorem 1 is (p− 1)pm−1.

Proof: Since, C′
uk

is contained in the second-order coset

Q1 +GRMp(m, 1) = {Q1 + c : c ∈ GRMp(m, 1)}. (24)

Hence, according to Lemma 1, C′
uk

has the minimum Hamming distance (p− 1)pm−1 .

Considering p-ary sequences, let N(Q1) be the number of coset representatives Q1, N(GZ)

be the number of distinct (pk, pm, (p − 1)pm−k−1)-Golay-ZCZ sequence set in a coset Q1 +

GRMp(m, 1), N(CZ) be the number of distinct (pk, pk, pm, (p − 1)pm−k−1)-CC-ZCZ code set

in a coset Q1 + GRMp(m, 1), and d(Q1 + GRMp(m, 1)) be the minimum Hamming distance

of Q1 +GRMp(m, 1). Taking p = 3 in corollary 1, corollary 2, and corollary 3, Table I shows

the values of N(Q1), N(GZ), N(CZ) and d(Q1 + GRM3(m, 1)) for lengths 27, 81, and 243.

Taking m = 5 and k = 1, it can be observed from Table I that there are 6 second-order cosets

Q1+GRM3(5, 1) and each coset consists of 243 distinct (3, 3, 243, 54)-CC-ZCZ code set. If we

want to increase the set size from 3 to 9, we need to take k = 2. Then, Table I gives that we

can obtain 81, (9, 9, 243, 18)-CC-ZCZ code set with reduced ZCZ width from one of 6 different

second-order cosets Q1 +GRM3(5, 2).

V. PMEPR OF PROPOSED CC-ZCZ CODE SET

In this section, a method has been discussed to reduce column sequence PMEPR of proposed

CC-ZCZ code set. Since in the proposed CC-ZCZ code set, each code is Golay-ZCZ sequence set

July 28, 2022 DRAFT



16

TABLE I: Calculated Values of N(Q1), N(GZ), (K,L, Z) and d(Q1 +GRM3(m, 1)).

m k (K,K,L,Z) N(Q1) N(CZ) N(GZ) d(Q1 +GRM3(m,1))

3
1 (3, 3, 27, 6) 1 27

81
18

2 (9, 9, 27, 2) 1 9 18

4

1 (3, 3, 81, 18) 2 81

243

54

2 (9, 9, 81, 6) 2 27 54

3 (27, 27, 81, 2) 1 9 54

5

1 (3, 3, 243, 54) 6 243

729

162

2 (9, 9, 243, 18) 6 81 162

3 (27, 27, 243, 6) 3 27 162

4 (81, 81, 243, 2) 1 9 162

of size pk and hence its row sequence PMEPR is bounded by pk. But column sequence PMEPR

of CC-ZCZ can further be reduced. If we want to generate jth column of C′
uk

, 0 ≤ j ≤ pm − 1

given in (23) then only variable terms in (23) is
∑k

β=1 xπβ(nβ)vβ. Now, we add some constant

to it and we can get,

φj(v) =
λ

p

k−1
∑

β=1

vπ′(β)vπ′(β+1) +
λ

p

k
∑

β=1

jπβ(nβ)vβ +
λ

p
vπ′(1)t+

λ

p
vπ′(k)l (25)

where l, t, v ∈ Zp, π′ be the permutation of symbols 1, 2, . . . , k, [v1, v2, . . . , vk] be the p-ary

representation of v. By putting m = k and k = 1 in Lemma 2 it can easily be seen that

Θ(φj(v)) is a member of a GCS which has p sequences each of length pk. Hence its column

sequence PMEPR is bounded by p. Now, let us redefine C
′
uk

as

C
′
uk

=

{

f +
λ

p

k−1
∑

β=0

xπβ+1(1)uβ+1 + φx(v) + b0 : vβ ∈ Zp, 1 ≤ β ≤ k

}

, (26)
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where

φx(v) =
λ

p

k−1
∑

β=1

vπ′(β)vπ′(β+1) +
k

∑

β=1

xπβ(nβ)vβ +
λ

p
vπ′(1)t+

λ

p
vπ′(k)l. (27)

For some multivariable functions g1, g2 and constants c1, c2, it can easily be verified that

A(g1 + c1) = A(g1),

A(g1 + c1, g2 + c2) = A(g1, g2)ω
c1−c2,

P(g1 + c1) = P(g1), (28)

P(g1 + c1, g2 + c2) = P(g1, g2)ω
c1−c2.

Using (28), we can assure that redefining of C′
uk

as in (26) affect its correlation properties by a

multiplication of constant, i.e., C′
uk

appearing in (26) is still a Golay-ZCZ sequence set whose

column sequence PMEPR is bounded by p.

Remark 2: In [44], the PMEPR of Golay-ZCZ sequence set is upper bounded by the number

of sub-carriers, i.e, 2k. The PMEPR of Golay-ZCZ sequence set increases with the increase in

the value of k. On the other hand, in the proposed Golay-ZCZ sequence set, the number of

sub-carriers is pk and upper bound for its column sequence PMEPR is p. For p = 2, we have

2k sub-carriers and maximum column sequence PMEPR 2, which remains same with increase

in the value of k. So, the proposed construction have advantage over the construction presented

in [44] as maximum column sequence PMEPR of the proposed construction is bounded above

by 2 for 2k sub-carriers.

Remark 3: Although, we have taken CCCs from [14], but authors in [14] didn’t bound the

column sequence PMEPR in proposed construction. In the proposed construction, we bound the

maximum column sequence PMEPR of CCCs having flock size pk by p.
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VI. MORE CC-ZCZ CODE SETS

In this section, another construction of CC-ZCZ code set is provided which are different from

those generated from Theorem 1. Similar to CC-ZCZ constructed in Theorem 1, we also provide

number of cosets of GRM codes, number of CC-ZCZ code set in each coset, and Hamming

distance but omit the proof as they are same as proof given in section IV.

Theorem 2: For a fixed uk, Cuk
is GCS as defined in Lemma 2. Let C′′

uk
be Cuk

together with

the permutation πβ(nβ) = m−k+β, for β = 1, 2, . . . , k. Then C
′′
uk

is (pk, pm, (p−1)pπk(nk−1)−1)-

Golay-ZCZ sequence set and hence C
′′ = {C′′

uk
: 0 ≤ uk ≤ pk − 1} is (pk, pk, pm, (p −

1)pπk(nk−1)−1)-CC-ZCZ code set.

Corollary 4: The number of coset representative Q2 in the second-order coset of the form

Q2 +GRMp(m, 1) is given by

∑

n1+n2+···+nk=m

(

m− k − 1

n1 − 1, n2 − 1, . . . , nk − 2

)

(nk − 2)!
k−1
∏

β=1

(nβ − 1)!, (29)

where

Q2 =
k

∑

β=1

nβ−1
∑

γ=1

xπβ(γ)xπβ(γ+1). (30)

Corollary 5: Let Q2+GRMp(m, 1) be any second-order coset with coset representative Q2 as

defined in (30) and let πk(nk−1) = m−k. Then coset Q2+GRMp(m, 1) consists of pm−k+1 and

pm+1 distinct p-ary (pk, pk, pm, (p− 1)pm−k−1)-CC-ZCZ code set and (pk, pm, (p− 1)pm−k−1)-

Golay-ZCZ sequence set respectively.

Corollary 6: The minimum Hamming distance of (pk, pm, (p − 1)pm−k−1)-Golay-ZCZ se-

quence sets which are constructed in Theorem 2 is (p− 1)pm−1.

VII. COMPARISON WITH EXISTING WORKS

Since the construction of CC-ZCZ is not available in the literature therefore in this section,

the contributed Golay-ZCZ sequences, ZCZ sequences, and PMEPR of Golay-ZCZ sequences

and CCCs are compared with existing works along with comparison tables.
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A. Comparison with existing constructions of Golay-ZCZ Sequence Set

1) Comparison with [22], [44]: In [44], authors proposed the construction of (2k, 2m, 2π1(2)−1)-

Golay-ZCZ sequence sets. In our construction (Theorem 1), if we take p = 2 then the parameters

of Golay-ZCZ sequence sets in [44] appear as special case of our parameters of Golay-ZCZ

sequence sets. Similarly, in [22], parameters of proposed (2k, 2m, 2πk(nk)−1)-Golay-ZCZ sequence

sets appear as special case of ours for p = 2 in Theorem 2.

2) Comparison with [45], [46]: In [45], authors proposed an indirect construction of (M, (M−

1)N,M2N)-Golay-ZCZ sequence set with the help of (M,M,N)-CCC. This construction re-

quires CCC as a seed code to construct Golay-ZCZ sequence set which makes it indirect.

Furthermore, in the proposed construction, we are getting Golay-ZCZ sequence set through

a multivariable function which makes our construction direct and advantageous over [45]. In

[46], authors proposed an indirect construction of Golay-ZCZ complementary pair of length 4N

using GCPs of length N , having ZCZ width N + 1. This construction can produce only GCPs

but not GCSs. Moreover, length of sequence is also dependent on length of GCP because the

construction is indirect. On the other hand, the proposed construction is direct which is based on

multivariable functions. Furthermore, the proposed construction can produce GCPs (for p = 2)

as well as GCSs (for p 6= 2).

A detailed comparison of contributed Golay-ZCZ sequences with existing works is provided

in Table II.

B. Comparison with existing constructions of ZCZ Sequences

The constructions of ZCZ sequences based on RM codes or Boolean functions [39], [40],

[44], multivariable functions [41], bent functions [53], and perfect non-linear function [54] are

direct constructions of ZCZ sequences available in the literature while many constructions need

kernel sequences such as perfect sequences [36]–[38], [55]. Although, constructions presented in

[39], [40], [44] are direct but length of ZCZ sequences is limited to power-of-two only. In [53]
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TABLE II: Comparision with [22], [44]–[46]

Author, Reference Based on Parameter (K,L,Z) & Constraints Direct/Indirect Optimality

Chen et. al, [44] GBF of order 2
(2k, 2m, 2π1(2)−1), πα(1) = m− α+1, 1 ≤

β ≤ k
Direct Optimal for binary case

Wang et. al, [22] GBF of order 2
(2k, 2m, 2πk(nk−1)−1), πα(nα) = m− k +

α, 1 ≤ β ≤ k
Direct Optimal for binary case

Gu et. al, [45] (M,M,N)-CCC (M, (M − 1)N,M2N) Indirect Optimal for binary case

Gu et. al, [46] Concatenation of GCP (2, 4N,N), N is a positive integer Indirect Asymptotically optimal

Theorem 1 Second-order multivariable functions
(pk, pm, (p − 1)pπ1(2)−1), p is prime and

πβ(1) = m − β + 1, 1 ≤ β ≤ k
Direct

Optimal for binary case

else asymptotically op-

timal

Theorem 2 Second-order multivariable functions
(pk, pm, (p − 1)pπk(nk−1)−1), p is prime and

πβ(nβ ) = m − k + β, 1 ≤ β ≤ k
Direct

Optimal for binary case

else asymptotically op-

timal

and [54], the length of ZCZ sequences is limited to N2 and p2 respectively, where p is an odd

prime, and N is a positive integer. Hence flexibility in length parameter is not adequate here.

Furthermore, in [41], authors provided a direct construction of ZCZ sequences having flexible

length, i.e., pn, where n is a positive integer ≥ 3 but it is unable to produce ZCZ sequences of

length p2. The proposed construction can generate ZCZ sequences of length pn, where n is a

positive integer ≥ 2. A detailed comparison is provided in Table III.

C. Comparison with PMEPR of Existing Works.

In this section, the proposed PMEPR of CC-ZCZ code set is compared with the PMEPR of

existing constructions of CCCs, detailed comparison is provided in Table IV. It can be observed

from the Table IV that if we put p = 2 in our construction then, the parameter of CCCs presented

in [13], [18], [56], [57] and Golay-ZCZ sequence sets presented in [22], [44] can be obtained

from our construction. Furthermore, since PMEPR of our CC-ZCZ code set is bounded by 2

hence it has advantage over [13], [18], [22], [44], [57] and PMEPR of our CC-ZCZ code set

coincide with PMEPR of CCC in [56]. Additionally, the authors in [14] presented a construction
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TABLE III: Comparison with [35], [44], [55], [40], [54], [53], and [39]*

Author, Reference Based on Parameter (K,L, Z) Direct/Indirect Optimality

Tang et. al, [35] MOGCS (2n, 2n+1Zcz, Zcz + 1), n ≥ 1 Indirect Optimal

Chen et. al, [44] Generalised Boolean function
(2k, 2m, 2m−k−1), m ≥ 2, and k ≤

m − 1.
Direct Optimal for binary case

Hayashi et. al, [55] Perfect sequences
(2(2n + 1), 4(2k + 1)(2n + 1), 4k +

1), n ≥ 1, k ≥ 1
Indirect Neither optimal nor almost optimal

Liu et. al, [40] Second-order Reed-Muller codes (2k+1, 2n+k+2, 2n), k ≥ 0, n ≥ 1 Direct Optimal for binary case

Zhou et. al, [54] Perfect non-linear function (p, p2, p), p is an odd prime Direct Optimal

Zhang et. al, [53] Generalised Bent function (N,N2, N), N is positive integer. Direct Optimal.

Tang et. al, [39] Generalised Boolean function
(2k, 2m, 2m−k − 2m−k−z) , k ≥

0, n ≥ 1
Direct

optimal if m = k + z and almost optimal if

m = k + z + 1

Kumar et. al, [41] Multivariable functions
(pt, pn+t+1, (p − 1)pn), n, t ≥ 1, p

is prime and t ≤ n
Direct

Optimal for binary case else asymptotically

optimal

Theorem 1 and Theorem 2 Multivariable functions (pk, pm, (p− 1)pm−k−1), p is prime Direct
Optimal for binary case else asymptotically

optimal

* The parameters presented in table are according to the definition of ZCZ in the corresponding paper. However, changing the definition of ZCZ also changes the bound and hence it doesn’t

affect the optimality of ZCZ sequence sets.

of CCCs but did not bound the column sequence PMEPR. In Section V, we tackled this problem

and provided a bound for column sequence PMEPR of CCC.

VIII. CONCLUSION

In this paper, we settled open problem provided by Gong. et al. by providing a direct

construction of (pk, pk, pm, (p−1)pπ1(2)−1)-CC-ZCZ code set and (pk, pm, (p−1)pπ1(2)−1)-Golay-

ZCZ sequence set using multivariable functions. The proposed construction provides the non-

power-of-two sequence length and larger ZCZ width. We are interested in larger ZCZ width

therefore by substituting π1(2) = m−k, (pk, pm, (p−1)pm−k−1)-CC-ZCZ code set is achieved, in

which each Golay-ZCZ sequence set is asymptotically optimal for non-binary case else optimal,

with respect to Tang-Fan-Matsufuji Bound. We also established a relation between proposed

CC-ZCZ code set and GRM codes and provided minimum Hamming distance of such codes.

Moreover, the proposed construction provides tighter upper bound for column sequence PMEPR

of proposed CC-ZCZ code set. The comparison of the proposed construction in the context of
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TABLE IV: Comparison of the PMEPR of construction with [13], [18], [22], [44]–[46], [56],

[57]

Author, Ref. Parameters Based on Constraints

Column sequence

PMEPR is upper

bounded by

Rathinakumar et. al, [13] (2k+1, 2k+1, 2m)-CCC GBF of order 2 m,k ∈ Z
+, m > 1 2k+1

Chen et. al, [18] (2k, 2k, 2m)-CCC GBF of order > 2 k,m ∈ Z
+, m ≥ 1, k ≤ m 2k

Wang et. al [22] (2k, 2m, 2m−k−1)-Golay-ZCZ GBF m,k ∈ Z
+, 1 ≤ k ≤ m− 1 2k

Chen et. al [44] (2k, 2m, 2m−k−1)-Golay-ZCZ GBF m,k ∈ Z
+, 1 ≤ k ≤ m− 1 2k

Gu et. al, [45] (M, (M − 1)N,M2N)-Golay-ZCZ CCC There exist a (M,M,N)-CCC M

Gu et. al [46] (2, 4N,N)-Golay-ZCZ Concatenation of GCP N is a positive integer 2

Z. Liu, [56] (2k+1, 2k+1, 2m)-CCC GBF of order > 2 m,k ∈ Z
+, m > 1 2

Wu et. al, [57] (2k, 2k, 2m)-CCC GBF of order 2 m,k ∈ Z
+, m ≥ 3, 1 ≤ k ≤ m 2k

This paper* (pk, pk, (p− 1)pm−k−1, pm)-CC-ZCZ MVF of order 2 k,m ∈ Z
+, p is prime p

* In this paper CCCs are directly taken from [14] but we have bounded the column sequence PMEPR of these CCCs.

Golay-ZCZ sequences, ZCZ sequences, and PMEPR is provided. Further, relying on the existing

literature, we propose two open problems as

1) Construction of CC-ZCZ code set and Golay-ZCZ sequence set having length in the form

of product of different primes.

2) Since each code in CC-ZCZ code set is ZCZ sequence set so we can treat CC-ZCZ code set

as multiple ZCZ sequence set. Hence, it would be interesting to find inter-set ZCZ which

is beneficial in multiuser environment to resist inter-cell interference caused by users from

different cells in CDMA systems.

APPENDIX A

PROOF OF Theorem 1

We first state and prove a lemma which will later be used to prove the Theorem 1.

Lemma 3: For two non-negative integers i and j, let (i1, i2, . . . , im) and (j1, j2, . . . , jm) be

p-ary representation of i and j respectively. Let f : Zm
p → Zλ be a function as defined in (15).
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Now, we can write avk

uk
by using (16) and (17) as

avk

uk
= f +

λ

p

k
∑

β=1

xπβ(1)uβ +
λ

p

k
∑

β=1

xπβ(nβ)vβ. (31)

Further, suppose we have iπβ(1) = jπβ(1) ∀ β = 1, 2, . . . , k. For a certain β ′ ≤ k, let us assume t

be the smallest integer such that iπβ′(t) 6= jπβ′(t). Let us define iη to be an integer whose vector

representation with base p is

(i1, i2, . . . , iπβ′(t−1) − η, . . . , im), (32)

which differs from that of i only at the position πβ′(t− 1) and η = 1, 2, . . . , (p− 1). Similarly,

we define jη such that its vector representation with base p is

(j1, j2, . . . , jπβ′(t−1) − η, . . . , jm). (33)

Then we have
p−1
∑

η=1

ω
(a

v
k

uk
)jη−(a

v
k

uk
)iη

λ + ω
(a

v
k

uk
)j−(a

v
k

uk
)i

λ = 0. (34)

Proof: For notational convenience, we write avk

uk
= c. Now using (15) and (31), we can

write

ciη − ci =fiη − fi

=
λ

p
[iπβ′(t−2)i

η

πβ′(t−1) + iη
πβ′(t−1)iπβ′(t) − iπβ′(t−2)i

η

πβ′(t−1) − iπβ′(t−1)iπβ′(t)]

+ gπβ′(t−1)[i
η

πβ′(t−1) − iπβ′(t−1)]

=[−ηλ
p
iπβ′(t) − η

λ

p
iπβ′(t−2) − ηgπβ′(t−1)]

=− η[
λ

p
iπβ′(t) +

λ

p
iπβ′(t−2) + gπβ′(t−1)]. (35)

Similarly,

cjη − cj = fjη − fj = −η[λ
p
jπβ′(t) +

λ

p
jπβ′(t−2) + gπβ′(t−1)]. (36)
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From (35) and (36), we have

(ciη − cjη)− (ci − cj) = −ηλ
p
(iπβ′(t) − jπβ′(t)). (37)

Now, taking sum of ω
(ciη−cjη )−(ci−cj)

λ over η, we have

p−1
∑

η=1

ω
ciη−cjη−(ci−cj)

λ =

p−1
∑

η=1

ω
η λ
p
(jπ

β′ (t)−iπ
β′ (t)

)

λ =

p−1
∑

η=1

ω
η(jπ

β′ (t)−iπ
β′ (t)

)

p . (38)

It is given that iπβ′(t) 6= jπβ′(t), implies that iπβ′(t) − jπβ′(t) 6= 0 and hence RHS of (38) is the

sum of roots of polynomial zp − 1 = 0 except the root z = 1. Hence

p−1
∑

η=1

ω
η(jπ

β′ (t)−iπ
β′ (t)

)

p = −1. (39)

Therefore, from (38) and (39), we have

p−1
∑

η=1

ω
ciη−cjη−(ci−cj)

λ = −1, (40)

which further implies that
p−1
∑

η=1

ω
ciη−cjη

λ + ω
(ci−cj)
λ = 0. (41)

Proof of Theorem 1: We need to show that for a fixed uk, Cuk
is a (pk, (p−1)pπ1(2)−1, pm)-

ZCZ. Except the ZCZ width all the parameters are directly inherited from Lemma 2. So, we only

need to show that the ZCZ width is (p−1)pπ1(2)−1. Let c ∈ Cuk
, by (18), c = ψ(a

vk1

uk
) for some

0 ≤ vk1
≤ pk − 1. First, we find the PACF of c and show that for 0 < τ ≤ (p− 1)pπ1(2) − 1,

P(c)(τ) =
L−1
∑

i=0

ω
c(i+τ)mod L−ci

λ = 0, (42)

where L is the length of the sequence, i.e., L = pm. For any integer i, let us denote another

integer j = (i+ τ)mod L. Then we consider two cases and demonstrate that for each pair (i, j)

there exist other (p− 1) pairs (iη, jη), η = 1, 2, . . . , p− 1 such that

p−1
∑

η=1

ω
ciη−cjη

λ + ω
(ci−cj)
λ = 0, (43)

in each case.
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Case 1 (iπ1(2) = jπ1(2)): In this case, we have iπβ(1) = jπβ(1), ∀β = 1, 2, . . . , k. For the con-

trary, suppose this is not true. Then, assume that β̄ is the largest integer such that iπβ̄(1)
6= jπβ̄(1)

.

For ease of presentation, let d = πβ̄(1), now if jd > id, we have

τ = j − i =

d
∑

s=1

(js − is)p
s−1

=(jd − id)p
d−1 +

d−1
∑

s=1,s 6=π1(2)

(js − is)p
s−1

≥(jd − id)p
d−1 − (p− 1)

d−1
∑

s=1

ps−1 + (p− 1)pπ1(2)−1

=(jd − id)p
d−1 − (p− 1)

[pd−1 − 1

p− 1

]

+ (p− 1)pπ1(2)−1

=(jd − id − 1)pd−1 + 1 + (p− 1)pπ1(2)−1 > (p− 1)pπ1(2)−1. (44)

Hence (44) implies that τ > (p− 1)pπ1(2)−1 which is a contradiction. Similarly, if jd < id, then

τ = j − i+ pm =
d

∑

s=1

(js − is)p
s−1 + pm

= (jd − id)p
m−β̄ + pm +

d−1
∑

s=1,s 6=π1(2)

(js − is)p
s−1

= (jd − id + pβ̄)pm−β̄ +

d−1
∑

s=1,s 6=π1(2)

(js − is)p
s−1

≥ (jd − id + pβ̄)pm−β̄ − (p− 1)
d−1
∑

s=1

ps−1 + (p− 1)pπ1(2)−1

=(jd − id + pβ̄ − 1)pm−β̄ + 1 + (p− 1)pπ1(2)−1 > (p− 1)pπ1(2)−1. (45)

Again we got a contradiction. Hence iπβ(1) = jπβ(1) ∀β = 1, 2, . . . , k. Now without loss of

generality, we assume that there exist a positive integer β ′ ≤ k such that iπβ(r) = jπβ(r), ∀β =

1, 2, . . . , β ′−1 and r = 1, 2, . . . , nβ. Assume t be the smallest integer with iπβ′(t) 6= jπβ′(t). Now,
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let us define iη and jη same as in (32) and (33) respectively. Then it can easily be obtained that

jη = (iη + τ)mod L and hence using Lemma 3, we get (43).

Case 2 (iπ1(2) 6= jπ1(2)): In this case, let iη and jη are modified from i and j by changing

only last bit of i and j as iηm = im − η and jηm = jm − η. Then

ciη − ci = fiη − fj +
λ

p
(im − η − im)u1

=
λ

p

[

iηmiπ1(2) − imiπ1(2)

]

+ gm(im − η − im) +
λ

p
(im − η − im)u1

= −η
[

λ

p
iπ1(2) + gm +

λ

p
u1

]

. (46)

Similarly,

cjη − cj = −η
[

λ

p
jπ1(2) + gm +

λ

p
u1

]

. (47)

By subtracting (47) from (46), we get

(ciη − cjη)− (ci − cj) = −ηλ
p
(iπ1(2) − jπ1(2)). (48)

Now following the same steps as in (37), (38), (39), and (40), we get

p−1
∑

η=1

ω
ciη−cjη

λ + ω
(ci−cj)
λ = 0. (49)

Till now we have proved that for 0 < τ ≤ (p−1)pπ1(2)−1, the value of P(c)(τ) = 0. Now in the

rest of the proof, we will prove that for any 0 ≤ τ ≤ (p−1)pπ1(2)−1, the PCCF of any two different

sequences in Cuk
is zero. For that let 0 ≤ γk, δk ≤ pk − 1 such that ψ(aγk

uk
), ψ(aδk

uk
) ∈ Cuk

.

Again for notational convenience, we denote ψ(aγk

uk
) and ψ(aδk

uk
) by b and c respectively. Then,

we need to prove that for 0 ≤ τ ≤ (p− 1)pπ1(2)−1,

P(c,b)(τ) =
L−1
∑

i=0

ω
c(i+τ)mod L−bi

λ = 0. (50)

Let j = (i+ τ)mod L. Following similar arguments as in Case 1 and Case 2, for any pair (i, j),

we can find other pairs (iη, jη), η = 1, 2, . . . , k − 1 such that

p−1
∑

η=1

ω
ciη−bjη

λ + ω
(ci−bj)
λ = 0, (51)
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for τ 6= 0, where jη = (iη + τ)mod L. Therefore, we can obtain that (50) holds for τ 6= 0. Now,

it remains to prove that,

P(c,b)(0) =

L−1
∑

i=0

ωci−bi

λ = 0. (52)

Taking (31) into consideration, let c−b = λ
p
.d. Then d is a non-zero codeword in GRMp(1, m).

Now let d = (d1, d2, . . . , dpm) and hence d can be written as linear combination of θ(x1), θ(x2),

. . . , θ(xm) as d = c1 · θ(x1) + c2 · θ(x2) + · · · + cm · θ(xm), where ci ∈ Zp, 1 ≤ i ≤ m. For

each i, θ(xi) contains each element of the set {0, 1, . . . , p− 1}, pm−1 times. Hence d will also

contains each element of the set {0, 1, . . . , p− 1}, pm−1 times. Now (52) can be written as

P(c,b)(0) =

L−1
∑

i=0

ω
λ
p
di

λ =

L−1
∑

i=0

ω
λ
p
di

λ =

L−1
∑

i=0

ωdi
p = 0. (53)

Hence the Theorem 1 is proved.
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