
Cryptography and Communications (2024) 16:481–506
https://doi.org/10.1007/s12095-023-00682-y

RESEARCH

Frameproof codes, separable codes and B2 codes: Bounds
and constructions

Marcel Fernandez1 · John Livieratos2 · Sebastià Martín3

Received: 1 December 2022 / Accepted: 21 October 2023 / Published online: 10 November 2023

Abstract
In this paper, constructions of frameproof codes, separable codes, and B2 codes are obtained.
For each family of codes, the Lovász Local Lemmais used to establish lower bounds for the
codes. The obtained boundsmatch all best known bounds in the literature. Our strategy allows
us to present constructions of the aforementioned codes, by using the variable framework for
the Lovász Local Lemma.

Keywords Frameproof codes · Separable codes · B2 codes · Lovasz local lemma,
Moser-Tardos algorityhm

Mathematics Subject Classification (2010) 94B65 · 05D40

1 Introduction

The concept of frameproof codes was coined in [1], where they are used to offer protection
against illegal redistribution of digital goods. In that scenario, frameproof codes serve as
underlying codes in fingerprinting schemes. In these schemes, a distributor prevents illegal
redistribution of his/her goods by making delivered copies different. This is achieved by
embedding a unique mark in each copy. Having distinguishable copies, clearly rules out

Marcel Fernandez, John Livieratos and Sebastià Martín contributed equally to this work

B Sebastià Martín
sebastia.martin@upc.edu

Marcel Fernandez
marcel.fernandez@upc.edu

John Livieratos
johnlivieratos89@gmail.com

1 Department of Network Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 31,
Barcelona 08034, Spain

2 Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis,
84, Athens, Greece

3 Department of Mathematics, Universitat Politècnica de Catalunya, Jordi Girona, 31, Barcelona 08034,
Spain

123

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-023-00682-y&domain=pdf

482 Cryptography and Communications (2024) 16:481–506

plain redistribution. Unfortunately, this strategy is weak against collusion attacks, where a
coalition of malicious users compare their copies in order to detect the positions in which the
embedded marks differ. The goal of these traitor users is to change the detected positions, in
order to create a new pirate copy that masks their identities. This new pirate copy is the one
that will be illegally redistributed. On the other hand, the goal of the distributor is to design
the set of marks to be embedded in such a way that, given a pirate copy, traitors can be traced
back.

Separable codes were proposed in [2] for the case of multimedia fingeprinting, where
traitor users can perform averaging attacks. The connection between separable codes and-
frameproof codes was discussed in [2, 3]. See also the work in [4]. Multimedia fingerprinting
codes are also related to the family of B2 codes, as was stated in [5]. The concept of B2

codes [6] (known as 2-signature codes in multiple access communications) has its origins in
the work of Sidon [7].

1.1 Our contribution

For the state of the art about bounds for separable codes, B2 codes and frameproof codes,
we refer the reader to the elegant expositions in [8] and [9]. In this paper, by means of the
Lovász Local Lemma, we present proofs that match the already known lower bounds in [8]
and [9]. We insist in proving bounds through the Lovász Local Lemma, because we can then
use the approach that Giotis et al. [10] made of the variable framework developed by Moser
and Tardos [11, 12], to devise an algorithm that constructs codes.

Therefore, themain contribution of this paper, alongwith the alternative proofs of the lower
bounds, is the construction of separable codes, B2 codes, and frameproof codes. In this sense
it is a follow-up companion to [8] and [9], where only existence results were discussed. We
stress that we also extend the work in [10], in order to establish the computational complexity
of the algorithmic construction in a more precise manner.

2 Previous results

We adopt the notation of [8]. LetQ be an alphabet of size q . A code C of length n and sizeM is
a subset of n-tuples in Qn , i.e. C = {c1, . . . , cM }. The n-tuples ci = (ci (1), . . . , ci (n)) ∈ C,
1 ≤ i ≤ M , are called code words. The distance between two code words ci and c j is the
number of positions in which they differ, |{l ∈ {1, . . . , n} : ci (l) �= c j (l)|. The minimum
distance of a code is the smallest distance between any two distinct code words, and will be
denoted by d . In this case we say that C is an (n, M, d)q code or (n, M)q for short.

Given an (n, M)q code C , we form an M × n matrix C by writing the M code words as
its rows. We denote the row set of C as {c1, · · · , cM}. A set U of t rows {ci1 , . . . , cit } will
be denoted as Ut .

If Q is the finite field Fq , we can take C to be a vector subspace of Fn
q . Then the size of

the code is M = qk , where k is the dimension of the subspace. In this case we say we have
an [n, k, d]q linear code.

The rate of an (n, M)q code, which is an important parameter, is defined as

R = logq M

n
. (1)

123

Cryptography and Communications (2024) 16:481–506 483

In order to obtain families of codeswith good asymptotic rate,wewillmake use of Forney’s
idea of code concatenation [13].We take an inner code defined over a small alphabet of size q ,
say Ci = (n, Mi)q , and we take an outer code Co = (N , Mo)Q . The size of the alphabet of the
outer codeQo is taken to be equal to the cardinality of the inner code, that is |Qo| = Q = Mi .
Thus, we can define a bijection between the outer code alphabet and the code words of the
inner code, φ : Qo → Ci . Applying this bijection to all code words of the outer code, we
obtain an (nN , Mo)q code over the small alphabet of size q , which we denote by Ci ◦Co. If the
rates of the inner and outer code are Ri and Ro respectively, then the rate of the concatenated
code Ci ◦ Co is Ri Ro.

Given U ⊆ C, we define the i th projection set of U as

U (i) = {u j (i) ∈ Q : u j ∈ U }, 1 ≤ i ≤ n. (2)

Also, we define the descendant set of U as

desc(U) = U (1) × · · · ×U (n) = {z ∈ Qn : z(i) ∈ U (i), 1 ≤ i ≤ n}. (3)

Definition 1 Let t ≥ 2 be an integer. We say that an (n, M)q code C is:

1. a t-frameproof code, t-FP, if for every U ⊂ C with |U | ≤ t , we have desc(U) ∩ C = U .
2. a t̄-separable code, t̄-SC, if for all distinct U , V ∈ C with |U | ≤ t and |V | ≤ t , we have

desc(U) �= desc(V).
3. a B2 code if all sums ui +u j , 1 ≤ i ≤ j ≤ M , are different, where the operation+ takes

place in the field of real numbers.

In a t-FP code, given a subset U of code words of size at most t , there are no other code
words in desc(U) than the code words in U . This is the weakest form of tracing. The reason
to study the families of t-FP, t̄-SC, and B2 codes together is because they are closely related
as the following lemma shows.

Lemma 2 [2, 5] Let n, M, q, t be positive integers greater than or equal to 2. We have the
following relationships:

1. A t-FP code is a t̄-SC.
2. A t̄-SC is a (t − 1)-FP code.
3. In the binary case, a 2̄-SC(n, M)2 is a B2(n, M)2 code and vice versa.

Wewill denote the largest cardinality of t-FP, t̄-SC, and B2 codes as F(t, n, q), S(t̄, n, q)

and B(n, q), respectively.
Let Rq(n, t) be the optimal rate of an (n, M)q code. As is customary in information theory,

we are interested in the asymptotic rate

Rq(t) = lim sup
n→∞

Rq(n, t). (4)

We will use the following notation for the asymptotic rate of t-FP, t̄-SC, and B2 codes:

f (t, q) = lim sup
n→∞

logq F(t, n, q)

n
, (5)

s(t̄, q) = lim sup
n→∞

logq S(t̄, n, q)

n
, (6)

b(q) = lim sup
n→∞

logq B(n, q)

n
. (7)

123

484 Cryptography and Communications (2024) 16:481–506

2.1 Algebraic geometric codes

Algebraic geometric codes (AG) were developed by V.D. Goppa [14], and built from the
theory of algebraic curves. Let C be a code from a curve of genus g, over the field Fq , with
N points. If d denotes the minimum distance of the code, it has been shown that the rate of
the code satisfies:

R ≥ 1 − d

N
− g

N
. (8)

Since we are aiming for codes with the highest possible rate, we need g/N to be small. In
that regard, Drinfeld and Vlădut [15] gave the following lower bound for g/N

lim inf
g→∞

g

N
≥ 1√

q − 1
. (9)

Several research efforts [16, 17] show that there are explicitly described sequences of curves
that achieve the Drinfeld-Vlădut bound. Also, by the results in [18], AG codes having asymp-
totic rate

R ≥ 1 − d

N
− 1√

q − 1
(10)

can be constructed with polynomial complexity.

2.2 Lovász Local Lemma

We start with a sample space �. We will define independent random variables, say V =
{V1, . . . , Vm}, taking values in �. In this context we will have a set of events {E1, . . . , Eb}
that will be considered “bad”.Wewill assume that all events are defined based on V1, . . . , Vm .
The scope sc(E) of an event E is the minimal subset of random variables in V that determines
its occurrence. In the sequel, these events are going to be ordered. The most used version of
the LLL is:

Lemma 3 (Symmetric Lovász Local Lemma) Let E1, . . . , Eb be a set of (typically bad)
events such that for each E j :

• Pr [E j] ≤ p ∈ (0, 1).
• E j is mutually independent of a set of all but at most s of the other events.

If
ep(s + 1) ≤ 1, (11)

then

Pr

[
b⋂

i=1

Ei

]
> 0.

That is, all bad events can be avoided.

Intuitively, a configuration exists if the probability of each bad event is not too large, and if
the mutual independence is relatively small.

Observe that, in Lemma 3, a given event E has to be mutually independent of all but
at most s events. Let us display some machinery, developed in [19], that will allow us to
establish claims on mutual independence throughout the paper. We start by defining mutual
independence.

123

Cryptography and Communications (2024) 16:481–506 485

Definition 4 [19] An event E is mutually independent of a set of events E if for every
E1, . . . , Er ∈ E , Pr[E | E1 ∩ · · · ∩ Er] = Pr[E].

AsMolloy andReed state in [19], formutual independence, “looks can often be deceiving”,
therefore in their own words: “we appeal to the following fact nearly every time we wish to
establish mutual independence”.

The Mutual Independence Principle [19]. Let V be a set of independent random vari-
ables. Suppose that E1, . . . , Er ∈ E is a set of events, where each Ei is determined by
Fi ⊂ V . If Fi ∩ (Fi1 ∪ · · · ∪ Fik) = ∅, then Ei is mutually independent of {Ei1 , . . . , Eik }.

With the Mutual Independence Principle at hand, we can define a dependency graph. The
vertices are the events E1, . . . , Eb, and there is an edge between Ei and E j if they share
at least a random variable. The neighborhood of a vertex E j will be denoted by � j . We
will consider that no vertex belongs to its neighborhood. We denote by s ≥ 1 the maximum
degree of the graph. Therefore, |� j | ≤ s for j = 1, . . . , b. Now, according to the Mutual
Independence Principle, an event Ei is considered to be mutually independent with all events
not in � j .

Intuitively, the symmetric version of the Lovász Local Lemma is appropriate when all bad
events are “alike” in terms of error probability and dependence. If this is not the case, then
one must resort to the general version, where each event is treated individually. However, if
the bad events can be grouped into sets of events that are “alike”, and the number of sets is
relatively small, the following version can be very useful.

Lemma 5 Let E = {E1, . . . , Eb} be a set of (typically bad) events such that each E j is
mutually independent of E \ (S j ∪E j), for some S j ⊂ E . If for all i = 1, . . . , b, the following
conditions are satisfied:

1. Pr[Ei] ≤ 1/4,
2.
∑

Ei∈S j
Pr[Ei] ≤ 1

4 ,

then, with positive probability, none of the events in E occur.

2.3 The variable framework

Since the appearance of the Lovász Local Lemma, a lot of work has been done in order
to develop an algorithm to explicitly obtain the combinatorial objects whose existence was
established by the lemma. The algorithmic version, that became a reality with the work
in [11, 12], is usually called the variable framework. In this section, we discuss the variable
framework approach of [10]. The main idea in [10] is to show that the probability that the
variable framework algorithm performs more than N iterations is inverse exponential in N .
We make a succinct presentation, and only highlight the aspects in [10] we will need in
Section 5, where we extend the work in [10], and obtain an explicit upper bound on the
number of “iterations” that the algorithm performs.

As said before, we can represent a code of size M and length n as an M × n matrix. We
start by outlining a general algorithm that constructs a matrix that represents a code whose
code words avoid a set of bad events (see Algorithm 1).

Observe that, if and when Algorithm 1 terminates, it produces a code in which none of
the bad events occur. This is true because by the condition in the loop of line 2 of Body,
if and when the Algorithm terminates, no bad event in E occurs. Note also than by line 2
of the Resample(Ei) procedure, whenever a Resample call returns, there is no bad event
occurring that shares random variables with Ei .

123

486 Cryptography and Communications (2024) 16:481–506

Algorithm 1

Input:

Parameters: Integers M (code size), n (code length).
Code alphabet: Q = {α1, . . . , αq }.
M × n matrix of independent random variables C = {X1,1, . . . , XM,n}, taking values inQ, with a certain
probability distribution.
Events: Ordered set E = {E1, . . . , Eb} of events.
Output:

Assignment A of values to Xi, j , such that no bad event in E occurs.

Body:

1: Sample variables Xi, j , 1 ≤ i ≤ M , 1 ≤ j ≤ n. Let A be the resulting assignment of values.
2: while there is a bad event in E occurring do
3: Resample(Ei), where Ei is the least indexed bad event
4: end while
5: Output current assignment A.

Resample(Ei)

1: Resample the random variables Xr ,s associated with Ei .
2: while there is a least indexed bad event E j , such that sc(Ei) ∩ sc(E j) �= ∅, occurring under the current

assignment do
3: Resample(E j)
4: end while

Let us show how it is proven in [10] that this algorithm terminates fast with positive
probability. A Resample call made in line 2 of the Body is a root call, and one made
by line 2 of the Resample(Ei) routine is a recursive call. The computational complexity
discussion we will make is based on the number of Resample calls. Specifically, the authors
of [10] prove the following result (we have adapted notation to our context):

Theorem 6 [10] Let Xi, j , 1 ≤ i ≤ M, 1 ≤ j ≤ n be distinct random variables (arranged
as an M × n matrix), taking values in an alphabet Q. Let E = {E1, . . . , Eb} be a set of
bad events, where each event is associated to a subset of the random variables Xi, j . Let
p ≥ Pr[Ei], ∀1 ≤ i ≤ b, and let s be the maximum number of events whose scopes intersect
the scope of a given event. Suppose bad events satisfy ep(s+1) < 1. Then, the probability that
Algorithm 1 executes for at least N rounds is inverse exponential in N and, upon termination,
the algorithm outputs an M × n matrix in which no bad event E occurs.

Proof (Sketch) First, note that Algorithm 1 makes progress after each Resample call. More
precisely, take an arbitrary call, say Resample(Ei).

(i) If and when Resample(Ei) terminates, then Ei no longer occurs.
(ii) Let us suppose E j is not a bad event at the start of Resample(Ei).

If and when Resample(Ei) ends, then E j is still not bad.

In otherwords, after aResample call returns, all progressmade up to that point ismaintained,
and there is at least one more bad event that is “fixed”.

To continue, let us define a graph in order to represent executions of Algorithm 1. More
precisely, the graph is a labeled rooted forest whose components are rooted trees with labeled
vertices. In our scenario the labels of the vertices of the trees are from the set of events E .
A witness forest of an execution of Algorithm 1, making at least N Resample calls, is a
representation of the execution detailed in the following way:

1. A node labeled as Ei depicts a Resample(Ei) call.

123

Cryptography and Communications (2024) 16:481–506 487

2. The labels of the roots correspond to root Resample calls (line 3 of Body).
3. A recursive Resample(E j) call done in line 3 of Resample(Ei) is associated to a child

labeled as E j of the node labeled as Ei .

Let T denote a witness forest having N nodes. Next lemma will be key to prove our result.
��

Lemma 7 Let p denote an upper bound on the probability of bad events in the sense of
Lemma 3. Let PN denote the probability that Algorithm 1 executes at least N Resample
calls. Then

PN ≤
∑

T :|T |=N

pN . (12)

The sum is over all witness forests with N nodes.

See [20]. ��
Since the sum in (12) is over all witness forests, it follows that to compute PN we have to

count witness forests.
We call a forest feasible if:

(i) the labels of the roots are pairwise distinct,
(ii) the labels of the children of a node are pairwise distinct,
(iii) if a vertex labeled by E j is a child of a vertex labeled by Ei , then sc(Ei) ∩ sc(E j) �= ∅.

It can be seen that the class of feasible forests includes witness forests. So it will be enough
for our purposes to deal with the former. As a matter of fact, as shown in [20], it turns out we
can deal with full unlabeled ordered rooted planar forests. Informally, to convert a feasible
forest into a full unlabeled ordered rooted planar forest, one has to:

• add root nodes labeled conveniently so that the set of labels of roots is the set of bad
events,

• add leaves to every node so that the set of labels of each child is the set of bad events
whose scope intersect the scope of the event of its label. Thus, each node will have at
most s + 1 children, since the scope of an event intersects itself,

• then remove all the labels.

Consequently, it suffices to count the number of full (s + 1)-ary rooted planar trees with a
given number of nodes, say v. This number, that we denote by Tv , has already been computed
(see for instance [21, Theorem 5.13]):

Tv = 1

sv + 1

(
(s + 1)v

v

)
, (13)

and we have the upper bound

Tv < A

((
1 + 1

s

)s
(s + 1)

)v

, (14)

where A is a constant depending only on s.
The number FN of rooted planar forests with N internal nodes that are composed of |E|

(s + 1)-ary rooted planar trees is:

FN =
∑

N1+···+N|E |=N
N1,...,N|E |≥0

TN1 · · · TN|E | . (15)

123

488 Cryptography and Communications (2024) 16:481–506

Now, from (15) and (14) we get:

FN < (AN)|E|
((

1 + 1

s

)s
(s + 1)

)N

< (AN)|E|(e(s + 1))N . (16)

And therefore, (12) together with (16) yield

PN < (AN)|E|(ep(s + 1))N . (17)

Now Theorem 6 follows since ep(s + 1) < 1 by assumption.

Remark 8 Note that according to the Mutual Independence Principle, in Algorithm 1,
Resample(Ei), line 2, the statement sc(Ei) ∩ sc(E j) �= ∅ means that the events E j we
are resampling are not considered to be mutually independent with Ei .

3 Sketch of proof

Since we are going to provide constructions for t-frameproof codes, 2̄-separable codes and
B2 codes, using the variable framework of the LLL, the outline of the proofs will be similar.
In this section we provide an outline of our strategy in order to clarify our discussion.

Our proof reasoning will observe the following guidelines:

• Existence

– Definition of random variables and events. Typically we will arrange a set of random
variables as a matrix. A given assignment to these random variables will represent
a code of length equal to the number of columns of the matrix and size equal to the
number of rows of the same matrix. The events will be defined in terms of subsets of
rows of the matrix.

– Computing the probability of an event being bad. This probability will depend only
on the number of columns of the matrix (code length).

– Computing the number of events not mutually independent with a given event. This
number will depend only on the number of rows of the matrix (code size).

– Apply the LLL. Since the LLL relates probability with mutual independence, we will
obtain a relationship between number of columns and number of rows, so that there
exists a matrix that avoids all bad events.

• Construction

– Particularize the variable framework algorithm to the code to be constructed. We
will clearly establish the input parameters of the algorithm.

– Impose further restrictions of the LLL condition. This will allow us to find closed
expressions for an upper bound of the computational complexity. Nevertheless this
complexity will be exponential in the code length.

– Describe a concatenated construction. Establish outer code parameters, so the overall
construction is polynomial in the code length.

4 Lower bounds

The key issue in using the variable framework of the LLL is deciding how to define the
random variables and events that are going to be used in order to represent the object one

123

Cryptography and Communications (2024) 16:481–506 489

wishes to obtain. The choice has direct impact in the sampling procedure, which in turn
affects the computational complexity.

4.1 Frameproof codes

Since we wish to obtain a code of size M and length n, we take Mn independent random
variables X = {X1, . . . , XMn}, and arrange them as an M × n matrix C . If assignments to
the rows of the matrix represent code words, then entry Xi j is associated with position j of
code word i . Let us take a row c of C , and a set of t rowsUt of C , such that c /∈ Ut . Abusing
notation, we also denote the assignment to these random variables as c and Ut respectively.
To define bad events, we will use Definition 1. So, for frameproof codes, a bad event is an
assignment for which c ∈ desc(Ut). We denote such an event as E(c,Ut).

Observe that, according to the Mutual Independence Principle, an event E(ci ,Ut) is
mutually independent with all events whose scope does not intersect sc(E(c j , V t)). In this
case, this means that E(ci ,Ut) is mutually independent with all events not sharing all the
variables of at least a row of C . Thus, given E(ci ,Ut), we need to compute the number s of
events, different from E(ci ,Ut), whose scopes intersect with sc(E(c j , V t)). In Section 2.2,
s was defined as the maximum degree of the dependency graph. Therefore, the number s
corresponding to a given event E(c,Ut) is the total number of events, minus the number of
events that do not contain neither c nor Ut , minus 1 (corresponding to the event E(c,Ut)).

s =
(
M

1

)(
M − 1

t

)
−
(
M − (t + 1)

1

)(
M − (t + 2)

t

)
− 1. (18)

According to Pascal’s rule,

(
n

k

)
=
(
n − 1

k − 1

)
+
(
n − 1

k

)
,

(
n − 1

k

)
=
(
n − 2

k − 1

)
+
(
n − 2

k

)
. (19)

Therefore, (
n

k

)
−
(
n − 2

k

)
=
(
n − 1

k − 1

)
+
(
n − 2

k − 1

)
. (20)

By repeated application, we have

(
n

k

)
−
(
n − 3

k

)
=
(
n − 1

k − 1

)
+
(
n − 2

k − 1

)
+
(
n − 3

k − 1

)
... = ...

(
n

k

)
−
(
n − s

k

)
=
(
n − 1

k − 1

)
+
(
n − 2

k − 1

)
+ · · · +

(
n − s

k − 1

)
=

s∑
j=1

(
n − j

k − 1

)

Substituting n by M − 1, k for t , and s by t + 1, we obtain

(
M − 1

t

)
−
(
M − 1 − (t + 1)

t

)
=

t+1∑
j=1

(
M − 1 − j

t − 1

)
. (21)

123

490 Cryptography and Communications (2024) 16:481–506

Therefore, from (18) we have

s + 1 = M

(
M − 1

t

)
− (M − (t + 1))

(
M − (t + 2)

t

)

= M

(
M − 1

t

)
− M

(
M − (t + 2)

t

)
+ (t + 1)

(
M − (t + 2)

t

)

= M

[(
M − 1

t

)
−
(
M − (t + 2)

t

)]
+ (t + 1)

(
M − (t + 2)

t

)

= M

⎡
⎣ t+1∑

j=1

(
M − 1 − j

t − 1

)⎤⎦+ (t + 1)

(
M − (t + 2)

t

)

< M(t + 1)

(
M − 2

t − 1

)
+ (t + 1)

(
M − (t + 2)

t

)

< M(t + 1)
Mt−1

(t − 1)! + (t + 1)
Mt

t ! = (t + 1)2

t ! Mt ≤ 9

2
Mt .

In the previous calculation we have used the fact that

(
n

k

)
≤ nk

k! .
Therefore, the maximum degree of the dependency graph, s, satisfies

s + 1 <
9

2
Mt , ∀t ≥ 2. (22)

A first approach to the problem is to consider a uniform distribution for the random
variables.When doing so, we obtain the following theorem. This result will later be improved
by using a refined distribution.

Theorem 9 Let Q = {0, · · · , q − 1} be an alphabet of size q ≥ 2. If t ≥ q, then there exists
a t-frameproof code of length n and size:

F(t, n, q) ≥
⎢⎢⎢⎣ 1

(9e/2)
1
t (1 − (1 − 1

q)t)
n
t

⎥⎥⎥⎦ . (23)

Proof Using the above notation, we take the distribution of the random variables Xi j , 1 ≤
i ≤ M , 1 ≤ j ≤ n, to be

Pr(Xi j = 0) = · · · = Pr(Xi j = q − 1) = 1

q
. (24)

Then, the probability of a bad event E(ci ,Ut) is

Pr[E(ci ,U
t)] =

(
1 −

(
1 − 1

q

)t)n

(25)

Indeed, Pr[ci (l) = α] = 1

q
with α ∈ Q, and the result follows from the independence of the

random variables Xi j .
Having computed both the probability of a bad event, and an upper bound on the value of

s (22), according to the Lovász Local Lemma, all bad events can be avoided if

e

(
1 −

(
1 − 1

q

)t)n

9Mt/2 ≤ 1 (26)

123

Cryptography and Communications (2024) 16:481–506 491

Therefore,

M ≤ 1

(9e/2)
1
t (1 − (1 − 1

q)t)
n
t

, (27)

and the theorem follows.

The versatility of the Lovász Local Lemma allows to accommodate for alternative distri-
butions of the random variables. To improve the result in the previous theorem, we are going
to follow the approach in [9], where the authors use an interesting non-uniform distribution.
Note that, in a related context, a similar approach was used in [22]. The proof of the following
theorem follows along the lines of the previous one, and it is given in the Appendix.

Theorem 10 Let Q = {0, · · · , q − 1} be an alphabet of size q ≥ 2. If t + 1 ≥ q, then there
exists a t-frameproof code of length n and size:

F(t, n, q) ≥

⎢⎢⎢⎢⎣ 1

(9e/2)
1
t

1(
1 − (1 − q−1

t+1)(
q−1
t+1)t − q−1

t+1 (t
t+1)

t
) n

t

⎥⎥⎥⎥⎦ . (28)

Remark 11 According to [9], Theorem 10 is an improvement on Theorem 9when q ≤ t
2 +1,

and t ≥ 8.

4.2 Separable codes

For the family of separable codes, and in view of Lemma 2, we focus on the interesting and
already non-trivial case t = 2. This is also the main focus in [8]. To establish a lower bound
for 2̄-separable codes, we again take Mn random variables X1, . . . , XMn , and arrange them
as an M × n matrix C , with rows {c1, . . . , cM }, ci = {Xi1, . . . , Xin}. As before, this is our
representation of a code of sizeM and length n, where code words correspond to assignments
to the random variables associated with a row, that is position j of code word ci corresponds
to matrix entry Xi j . We obtain the following result, whose proof is given in the Appendix.

Theorem 12 LetQ = {0, · · · , q − 1} be an alphabet of size q ≥ 2. If n ≥ 2, then there exist
2̄-separable codes of size

S(2̄, n, q) ≥
⌊

1

(16)
1
3

(
q3

2q − 1

)n/3
⌋

. (29)

The following corollary states the asymptotic rate.

Corollary 13 be LetQ = {0, · · · , q − 1} an alphabet of size q ≥ 2. If n ≥ 2, then there exist
2̄-separable codes of rate

s(2̄, q) ≥ 1 − logq(2q − 1)

3
(30)

Proof Just apply the definition of s(2̄, q) in (6).

Note that this is the same rate obtained in Corollary 4 of [8].

123

492 Cryptography and Communications (2024) 16:481–506

4.3 B2 codes

For B2 codes we have the following result, whose proof will be given in the Appendix.

Theorem 14 LetQ = {0, · · · , q − 1} be an alphabet of size q ≥ 2. If n ≥ 2, then there exist
B2 codes of size

B(n, q) ≥
⌊
qn/3

2

⌋
. (31)

Our result and the one in Theorem 8 of [8] are asymptotically identical, as the following
corollary shows.

Corollary 15 LetQ = {0, · · · , q − 1} be an alphabet of size q ≥ 2. If n ≥ 2, then there exist
B2 codes of rate

b(q) ≥ 1

3
. (32)

Proof The proof is immediate using (31) in (7).

5 Combinatorial constructions using the variable framework

In this section we provide probabilistic combinatorial constructions, for t-frameproof codes,
2̄-separable codes and B2 codes. The constructions are obtained as the output of an algorithm.
First, we study the complexity of Algorithm 1 (see Section 2.3).

5.1 Expected number of iterations

We extend the work in [10], and deal with the expected number of Resample calls made
in line 3 of the Body, and line 3 of the Resample routine. Let us first give the explicit
expression of A in (14). The work in [23] proves that

√
2πe−nnn+1

√
n

< n! <

√
2πe−nnn+1

√
n − 1

,

and therefore,

(
(s + 1)v

v

)
<

√
2πe−(s+1)v((s + 1)v)(s+1)v+1

√
(s + 1)v − 1√

2πe−sv(sv)sv+1

√
sv

√
2πe−vvv+1

√
v

(33)

=
√
s(s + 1)v√

2π
√

(s + 1)v − 1

(s + 1)sv+1

ssv+1 (34)

= f (s, v)

((
1 + 1

s

)s
(s + 1)

)v

, (35)

where f (s, v) = s + 1√
2π

√
s
√

(s + 1)v − 1
. (36)

123

Cryptography and Communications (2024) 16:481–506 493

Now, according to (13),

Tv = 1

sv + 1

(
(s + 1)v

v

)
<

f (s, v)

sv + 1
ev(s + 1)v <

s + 1√
2πs2v

ev(s + 1)v <
ev(s + 1)v√
2π(s − 1)v

.

(37)
Observe that constant A in (14) corresponds to taking v = 1 in f (s, v), that makes A
dependent only on s, and in particular A < 1.

Take a given event, say Ei , and letE[Ei] be the expected number of times Ei is resampled.
According to the reasoning in the proof of Theorem 6, we have that a fully (s+1)-ary rooted
planar tree with v internal nodes serves us to analyze a Resample call and its recursion.

Let Ti be the set of witness trees rooted in Ei , and let T v
i be the set of witness trees rooted

in Ei with v nodes. Finally, let PT be the probability that a tree T is a witness tree in an
execution of Algorithm 1. Then, by the reasoning done in Section 2.3,

E[Ei] ≤
∑
T∈Ti

PT =
∞∑

v=1

(∑
T∈T v

i

PT

)
. (38)

Using Lemma 7, the expectation in (38) can be bounded as follows:
∞∑

v=1

(∑
T∈T v

i

PT

)
<

∞∑
v=1

(
Tv p

v
)

<

∞∑
v=1

(
1

sv + 1

(
(s + 1)v

v

)
pv

)

<
1√

2π(s − 1)

∞∑
v=1

1

v

(
ep(s + 1)

)v

= 1√
2π(s − 1)

(− ln(1 − ep(s + 1))). (39)

We have used the well known Taylor expansion ln(1− x) = −∑∞
v=1

xv

v
, ∀|x | < 1, and the

fact that since a witness tree is a feasible tree, then we can sum over the number of feasible
trees. Finally, adding for the total number of possible bad events, we have the following
proposition:

Proposition 16 Let E1, . . . , Em be bad events that are to be avoided. The expected number of
Resample calls (both in the main body and recursive routine) in an execution of Algorithm 1
is at most:

m∑
j=1

E[E j] <
1√
2π

m

(s − 1)
(− ln(1 − ep(s + 1))), ∀s ≥ 2. (40)

Proof The proposition follows from (38) and (39).

Corollary 17 Let E1, . . . , Em the bad events that are to be avoided. If ep(s + 1) ≤ 2/3 and
s ≥ 2, then the expected number of Resample calls (both in the main body and recursive
routine) in an execution of Algorithm 1 is at most m

s .

Proof Since − ln(1 − x) ≤ x + x2, ∀x ∈ [0, 2/3], in view of (40), an upper bound on the
expected number of steps is

10m

(s − 1)9
√
2π

<
m

s
, ∀s ≥ 2. (41)

123

494 Cryptography and Communications (2024) 16:481–506

Remark 18 In their paper,Moser andTardos [12] also discussed the expectation of the number
of times an event is going to be resampled. Adapted to Lemma 5, their result states that∑

events Ei

E[Ei] ≤
∑

events Ei

2 Pr[Ei]
1 − 2 Pr[Ei] . (42)

We will have occasion to use (42) when we discuss the complexity of constructions for
separable and B2 codes.

5.2 Frameproof codes

We begin by giving constructions of t-frameproof codes over an alphabet of size q . We will
deal with the interesting case q = 2, but to understand the impact of the alphabet size, we
start by discussing the case of a larger alphabet q = t . Observe that q = t minimizes the
denominator of (23).

5.2.1 Plain algorithmic construction

For q = t and in order to obtain compact expressions, it is more convenient to use Theorem 9.
We will use the improvement given in Theorem 10 for q = 2. Let us impose a stronger
restriction to (26),

e

(
1 −

(
1 − 1

t

)t)n
9

2
Mt ≤ 2

3
, (43)

which leads to

n ≥ ln(27eMt/4)

− ln(1 − (1 − 1
t)

t)
. (44)

Since x < − ln(1 − x), ∀x ∈ (0, 1), and (1 − 1/t)t ≥ 1/4, ∀t ≥ 2, then

ln(27eMt/4)

− ln(1 − (1 − 1
t)

t)
< 4 ln(27eMt/4). (45)

Finally, we observe that 4 ln(27eMt/4) < 6t lnM − 1, ∀t ≥ 3, ∀M ≥ 8. If t = 2, we can
directly check that equation (44) is satisfied for n ≥ 6t lnM − 1. Then,

n ≥ �6t ln t logt M�, ∀t ≥ 2. (46)

Proposition 19 Let t ≥ 2, M ≥ 8, and n = �6t ln t logt M�. UsingAlgorithm1, t-frameproof
(n, M)t codes can be constructed, with an expected number of Resample calls less than M

t .

Proof The codes can be obtained using Algorithm 1 with the following input:

• Integers t ≥ 2, M ≥ 8 and n = ⌊6t ln t logt M⌋.
Alphabet Q of size t , Q := {0, . . . , t − 1}.

• Random variables: {Xi j : Q → Q, 1 ≤ i ≤ M, 1 ≤ j ≤ n}.
• Probability mass function: Pr(Xi j = 0) = · · · = Pr(Xi j = t − 1) = 1

t .• Bad events:

– Arrange the r.v. Xi j as an M × n matrix C , with (C)i j = Xi j .

* Let Crow the set of rows of C .
* Define the set {(r , T) | T ⊂ Crow, |T | = t, r ∈ Crow \ T }.

123

Cryptography and Communications (2024) 16:481–506 495

* Order the previous set and denote it by R.
* Let E(r , T) be the bad event r ∈ desc(T), in the sense of Section 4.1.

– Define the ordered set E := {E(r , T) | (r , T) ∈ R}.
The existence of the code is guaranteed by the reasoning leading to (46). It only remains
to prove the statement about the expected number of Resample calls. Since we have
imposed (43), then according to Corollary 17 we have to find an upper bound on m

s .

Since the total number of events is m = (M
1

)(M−1
t

)
, and s + 1 = (M

1

)(M−1
t

) −(M−(t+1)
1

)(M−(t+2)
t

)
, we have

m

s + 1
<

M
(M−1

t

)
M
(M−1

t

)− M
(M−(t+2)

t

) = 1

1 − (M−(t+2)
t)

(M−1
t)

<
M − t

t + 1
. (47)

This is because(M−(t+2)
t

)
(M−1

t

) = (M − (t + 2))(M − (t + 3)) · · · (M − (2t + 1))

(M − 1)(M − 2) · · · (M − t)
(48)

=
t∏

k=1

M − (t + 1 + k)

M − k
=

t∏
k=1

(
1 − t + 1

M − k

)
(49)

< 1 − t + 1

M − t
. (50)

Now,

(M − t)
s + 1

s
≤ M

t + 1

t
�⇒ m

s
= m

s + 1

s + 1

s
≤ M

t
,

and in view of (18), the inequality on the left holds because s ≥ t .

Analogously, for binary codes we have the following result:

Proposition 20 Let t ≥ 2, M ≥ 8, and n = ⌊3t(t + 1) log2 M
⌋
. Using Algorithm 1, binary

t-frameproof (n, M)2 codes can be constructed, with an expected number of Resample calls
less than M

t .

Proof For q = 2, we make again a stronger restriction, in this case to (63), and impose

e

[
1 − (1 − q − 1

t + 1
)(
q − 1

t + 1
)t − q − 1

t + 1
(

t

t + 1
)t
]n 9

2
Mt ≤ 2

3
. (51)

Therefore, the code length n has to satisfy

n ≥ ln(27eMt/4)

− ln

(
1 − t

t+1

(
1

t+1

)t − 1
t+1

(
1

1+ 1
t

)t) . (52)

Since

− ln

(
1 − t

t + 1

(
1

t + 1

)t
− 1

t + 1

(
1

1 + 1
t

)t)
> − ln

(
1 − 1

e(t + 1)

)
>

1

e(t + 1)
,

123

496 Cryptography and Communications (2024) 16:481–506

then
ln(27eMt/4)

− ln

(
1 − t

t+1

(
1

t+1

)t − 1
t+1

(
1

1+ 1
t

)t) < e(t + 1) ln(27eMt/4).

Finally, since e(t + 1) ln(27eMt/4) < 3t(t + 1) log2 M − 1, for all t ≥ 3, M ≥ 8, we
can safely take n ≥ �3t(t + 1) log2 M�. The case t = 2 can be checked directly from
equation (52).
The codes can be can be constructed using Algorithm 1 with the following input:

• Integers t ≥ 2, M ≥ 8, and n = �3t(t + 1) log2 M�.
Alphabet Q of size 2, Q := {0, 1}.

• Random variables: C = {Xi j : Q → Q, 1 ≤ i ≤ M, 1 ≤ j ≤ n}.
• Probability mass function: Pr(Xi j = 0) = t

t+1 ,Pr(Xi j = 1) = 1
t+1 .• Bad events:

– Arrange the r.v. Xi j as an M × n matrix C , with (C)i j = Xi j .

* Let Crow the set of rows of C .
* Define the set {(r , T) | T ⊂ Crow, |T | = t, r ∈ Crow \ T }.
* Order the previous set and denote it by R.
* Let E(r , T) be the bad event r ∈ desc(T), in the sense of Section 4.1.

– Define the ordered set E := {E(r , T) | (r , T) ∈ R}.
The claim about the number of iterations is proved in the same manner as in Proposition 19,
so we omit it.

Remark 21 We would like to point out that performing the same analysis leading to (46),
using (26) instead of (43), would lead to a value of n of the same order of magnitude.

Remark 22 Observe that, according to Proposition 19 and Proposition 20, we can take M ≤
tn/(7t ln t) and M ≤ 2n/(3t(t+1)), for codes with alphabet size t and 2, respectively. This means
that the number of Resample calls is exponential in the code length. Moreover, consider
line 2 in Body of Algorithm 1. For the algorithm to find the least indexed event, in the worst
case, it is needed to go over all events in E , and check if they are bad. There are approximately
Mt events in E . Moreover, in line 2 of Resample, the algorithm must check all events in the
neighborhood of the event that has been resampled. In both cases, and given the bound we
have proved, the number of events that need to be checked is exponentially large in n. We
deal with this situation in the following section.

5.2.2 Polynomial complexity constructions

Let us overcome the drawback stated in Remark 22, and construct codes with complexity
polynomial in the code length. To do so, we will resort to concatenated constructions.

The concept of frameproof codes goes as far as the work of Boneh and Shaw in [1]. In
that paper, the following result is stated:

Lemma 23 [1] Let C be an (n, M, d)Q code. If d > n − n
t , then C is a t-frameproof code.

Now, using (10) we obtain the following result.

123

Cryptography and Communications (2024) 16:481–506 497

Lemma 24 An AG t-frameproof (n, M, d)Q code can be constructed, for rates

R + ε = 1

t
− 1√

Q − 1
, (53)

and polynomial complexity O((n logQ n)3).

Proof From Lemma 23 we have that d
n > 1 − 1

t is a sufficient condition for the frame-
proof property. With this in mind, the lemma is a consequence of (10). The result about the
complexity is stated in [18].

Proposition 25 [1] If Ci is a t-FP code of rate Ri , and Co is a t-FP code of rate Ro, then
Ci ◦ Co is a t-FP code of rate Ri Ro.

In view of the previous proposition, for the inner code we take the constructions
for t-frameproof codes (alphabet sizes q = 2 and q = t) that we have presented in
Propositions 19 and 20. In both cases, for the outer code we take an alphabet Q of size
|Q| = Q ≥ tβ , with β > 2. Then, from (53) we have:

Ro + ε ≥ 1

t
− 1

tβ/2 − 1
, i.e., Ro = 1

t
(1 − o(1)) . (54)

Now, we are in position to state the following theorem:

Theorem 26 Using the variable framework, with t ≥ 2, we can construct t-frameproof codes,
over an alphabet of size t , of rate

R = 1

6t2 ln t
(1 − o(1)), (55)

with polynomial complexity in the code length.

Proof For the outer code we take an AG (no, Mo, do)Qo code as given by Lemma 24, over
an alphabet Qo of size |Qo| = Qo ≥ tβ , β > 2. Note that Qo has to be a prime or a prime
power, therefore we can choose Qo ≤ 2�tβ�, according to Bertrand’s postulate.

Now, the concatenated construction imposes to take an inner code of size Mi = Qo.
According to Proposition 19, we can construct such a code using Algorithm 1, with an
expected number of Resample calls less than Mi/t = Qo/t ≤ 2�tβ�/t < 2tβ . From
Lemma 23, we have that t < no, and therefore, the expected number of Resample calls is
less than 2nβ

o , i.e. polynomial in the code length n = noni . Moreover, from Lemma 24, the
complexity of constructing the outer code is also polynomial in the code length. Finally, the
claim about the rate is straightforward from (54), taking an inner code of rate

Ri = 1

6t ln t
, (56)

(which is again possible by Proposition 19), and then applying Proposition 25.

For the binary case and t ≥ 3, using Proposition 20, we have the following theorem, whose
proof is analogous to the previous one.

Theorem 27 Using the variable framework, for t ≥ 3, we can construct t-frameproof binary
codes of rate

R = 1

3t2(t + 1)
(1 − o(1)), (57)

with polynomial complexity in the code length.

123

498 Cryptography and Communications (2024) 16:481–506

5.3 Separable codes and B2 codes

For the case of 2-separable codes and B2 codes we have the following proposition, whose
proof is given in the Appendix.

Proposition 28 Using the variable framework, we can construct 2-SC (

⌊
4 logq M

3 − logq(2q − 1)

⌋
,

M)q codes, with an expected number of Resample calls less than M
9 , ∀M ≥ 16.

For the binary case we have:

Corollary 29 By means of the variable framework, 2-SC (

⌊
4 log2 M

3 − log2 3

⌋
, M)2, binary codes

can be constructed. The expected number of Resample calls is less than M/9, ∀M ≥ 16.

Again, as in the case of frameproof codes, Remark 22 applies, and since M is exponential
in the code length n, so are the expected number of Resample calls. In order to construct
codes with polynomial complexity in the code length, we use code concatenation again. For
the outer codewe have, by Lemma 2, that a t-FP code is a t-SC code, so we can use Lemma 24
to obtain the following result:

Theorem 30 Using the variable framework, we can construct 2̄-SC(n, M)q codes, of rate R
satisfying

R + ε = 1

8
− logq(2q − 1)

24
, (58)

with polynomial complexity in the code length.

Proof For the outer code we take an AG (no, Mo, do)Qo code as given by Lemma 24, with
t = 2, over an alphabet of size Qo ≥ 2β , β ≥ 4. Again, according to Bertrand’s postulate,
we can choose 2β ≤ Qo ≤ 2�2β�. According to (54), the rate Ro of this code satisfies

Ro + ε ≥ 1

2
− 1

2β/2 − 1
≥ 1

6
, ∀β ≥ 4. (59)

Now, the concatenated construction imposes to take an inner code of size Mi = Qo, over
an alphabet of size q < Qo. According to Proposition 28, we can construct such an inner

code using Algorithm 1, with an expected number of Resample calls less than
2�2β�
9

. From

Lemma 23, we have that t = 2 ≤ no − 1 and therefore, the expected number of Resample
calls is less than 2nβ

o /9, i.e., polynomial in the code length n = noni . Moreover, as before,
from Lemma 24, the complexity of constructing the outer code is also polynomial in the code
length. Finally, the claim about the rate is straightforward from (28), if we take an inner code
of rate

Ri = 3 − logq(2q − 1)

4
, (60)

(which is again possible by Proposition 28), and then applying Proposition 25.

Corollary 31 We can construct 2̄-SC(n, M)2 codes, of rate R satisfying

R + ε = 1

8
− log2 3

24
, ∀ε > 0, (61)

with polynomial complexity in the code length.

Observe that in the previous theorem we have also constructed B2(n, M)2 codes, since a
2̄-SC(n, M)2 is a B2(n, M)2 code and vice versa, according to Lemma 2.

123

Cryptography and Communications (2024) 16:481–506 499

6 Conclusions

In this paper we have presented constructions for t-frameproof codes, 2̄-separated codes,
and B2 codes, along with lower bounds for the respective code rates. Although the bounds
were already known, our proof strategy leads to probabilistic constructions of such codes in
polynomial time with respect to the code length.

Frameproof codes first appear in the work of Boneh and Shaw [1]. The reader familiar
with [1] would have noticed that ours is a completely different approach with respect to the
original one. Whereas in [1], in order to obtain asymptotically good codes, they concatenate
a random outer code with an inner code having structure, we concatenate an outer code
having structure with an inner code without structure. The reason to do so is that in this way
our codes, as opposed to the codes in [1], are decodable with polynomial complexity in the
code length, using algebraic list decoding algorithms (see for instance [24]). Moreover, the
complexity of constructing our codes is polynomial in the code length. For this reason, both
approaches are not comparable.

Separable codes were developed in order to make fingerprinting schemes for multimedia
contents resistant to the averaging collusion [3]. There is a vast amount of work in the
literature related to both upper and lower bounds. On the other hand, actual constructions are
scarce and mostly restricted to codes of short length. We have also presented the first known
constructions for the already non trivial case of t = 2. Moreover, the codes obtained have
asymptotic positive rate. These constructions readily give B2 codes.

Appendix

Proof of Theorem 10

Recall that we have considered Mn independent random variables X = {X1, . . . , XMn},
arranged as an M × n matrix C .

From [9], we take the distribution of the random variables Xi j , 1 ≤ i ≤ M , 1 ≤ j ≤ n,
to be

Pr(Xi j = 0) = 1 − q − 1

t + 1
, Pr(Xi j = 1) = · · · = Pr(Xi j = q − 1) = 1

t + 1
. (62)

Now, since the randomvariables Xi j are independent, the probability of a bad event E(ci ,Ut)

is

Pr[E(ci ,U
t)] =

n∏
l=1

⎛
⎝Pr[ci (l) = 0]Pr[0 ∈ Ut (l)] +

q−1∑
j=1

Pr[ci (l) = j]Pr[j ∈ Ut (l)]
⎞
⎠

=
[(

1 − q − 1

t + 1

)(
1 −

(
q − 1

t + 1

)t)
+ (q − 1)

1

t + 1

(
1 −

(
t

t + 1

)t)]n

=
[
1 −

(
1 − q − 1

t + 1

)(
q − 1

t + 1

)t

− q − 1

t + 1

(
t

t + 1

)t]n
.

With the event probability at hand, as well as an upper bound on the number s computed
in (22), we apply the Lovász Local Lemma again. Bad events can be avoided if

e

[
1 −

(
1 − q − 1

t + 1

)(
q − 1

t + 1

)t

− q − 1

t + 1

(
t

t + 1

)t]n 9Mt

2
≤ 1. (63)

123

500 Cryptography and Communications (2024) 16:481–506

It follows that M ≤ 1

(9e/2)
1
t

1(
1 − (1 − q−1

t+1)(
q−1
t+1)t − q−1

t+1 (t
t+1)

t
) n

t
.

Proof of Theorem 12

In Section 4.2 we defined Mn random variables X1, . . . , XMn , and arranged them as
an M × n matrix C , with rows {c1, . . . , cM }, ci = {Xi1, . . . , Xin}. Consider the ran-
dom variables associated with a set of four rows V 4 = {ci1 , ci2 , ci3 , ci4}. As before,
we also denote an assignment to these random variables as {ci1 , ci2 , ci3 , ci4}. An assign-
ment is bad if desc(ci1 , ci2) = desc(ci3 , ci4), or if desc(ci1 , ci3) = desc(ci2 , ci4), or if
desc(ci1 , ci4) = desc(ci3 , ci2). We represent such an event by E(V 4).

To compute the probability of a bad event E(V 4) happening, observe that desc(ci1 , ci2) =
desc(ci3 , ci4) if {ci1(k), ci2(k)} = {ci3(k), ci4(k)}, for 1 ≤ k ≤ n. Therefore, we start by
computing Pr[{ci1(k), ci2(k)} = {ci3(k), ci4(k)}].
We have

Pr[{ci1(k), ci2(k)} = {ci3(k), ci4(k)} | (ci1(k) = ci2(k))] = 1

q2
, (64)

and

Pr[{ci1(k), ci2(k)} = {ci3(k), ci4(k)} | (ci1(k) �= ci2(k))] = 2

q2
. (65)

Also,

Pr[ci1(k) = ci2(k)] = 1

q
and Pr[ci1(k) �= ci2(k)] = q − 1

q
. (66)

By the law of total probability,

Pr[{ci1(k), ci2(k)} = {ci3(k), ci4(k)}]
= Pr[{ci1(k), ci2(k)} = {ci3(k), ci4(k)} | (ci1(k) = ci2(k))] · Pr[ci1(k) = ci2(k)]
+ Pr[{ci1(k), ci2(k)} = {ci3(k), ci4(k)} | (ci1(k) �= ci2(k))] · Pr[ci1(k) �= ci2(k)]
= 1

q2
1

q
+ 2

q2
q − 1

q
= 2q − 1

q3
(67)

Since the random variables Xi j are independent and identically distributed (i.i.d), and we
have to take into account the three cases desc(ci1 , ci2) = desc(ci3 , ci4), desc(ci1 , ci3) =
desc(ci2 , ci4), desc(ci1 , ci4) = desc(ci3 , ci2), then

Pr[E(V 4)] ≤ 3

(
2q − 1

q3

)n
(68)

Remark 32 When computing the probability of a bad event, the reader has noticed in (64)
and (66) that, for a given assignment, ci1 can be equal to ci2 . In this case, if the assignments
for ci3 and ci4 were to be different, then the event would be considered good. Nevertheless,
the event should be considered bad, because we have desc(ci1) = desc(ci2) if and only if
ci1 = ci2 and, from Definition 1, the code would not satisfy the separable property.

According to the previous remark, let us consider a set of two rows V 2 = {ci1 , ci2}. An
assignment is bad if desc(ci1) = desc(ci2). Using (66), we have that

Pr[E(V 2)] =
(
1

q

)n

. (69)

123

Cryptography and Communications (2024) 16:481–506 501

According to the Mutual Independence Principle, an event is mutually independent with
all events not intersecting its scope. For a given event, the number of mutually independent
events can be computed by adding the number of both mutually independent events of size
4 and mutually independent events of size 2.

Let us start with an event of size 4, say E(V 4) = {ci1 , ci2 , ci3 , ci4}. The number of events
of size 4 mutually independent with E(V 4) is the total number of events of size 4 minus
the number of events of size 4 that do not contain any of the rows {ci1 , ci2 , ci3 , ci4}, minus 1
(corresponding to the event E(V 4)) :(

M

4

)
−
(
M − 4

4

)
− 1. (70)

We can obtain the following upper bound on this number:(
M

4

)
−
(
M − 4

4

)
− 1 = 2M3 − 21M2 + 79M − 105

3
− 1 <

2M3

3
. (71)

On the other hand, the number of events of size 2 mutually independent with E(V 4) is
the total number of events of size 2 minus the number of events of size 2 that do not contain
any of the rows {ci1 , ci2 , ci3 , ci4}, (

M

2

)
−
(
M − 4

2

)
. (72)

We have, (
M

2

)
−
(
M − 4

2

)
= 4M − 10 < 4M . (73)

The number of events of size 2 mutually independent with E(V 2) = {ci1 , ci2} is the total
number of events of size 2 minus the number of events of size 2 that do not contain any of
the rows {ci1 , ci2}, minus 1 (corresponding to the event E(V 2)) :(

M

2

)
−
(
M − 2

2

)
− 1 = 2M − 4 < 2M . (74)

Analogously, the number of events of size 4 mutually independent with E(V 2) = {ci1 , ci2} is
the total number of events of size 4 minus the number of events of size 4 that do not contain
any of the rows {ci1 , ci2},(

M

4

)
−
(
M − 2

4

)
= 2M3 − 15M2 + 37M − 30

6
<

M3

3
. (75)

Now, according to Lemma 5, we have that all bad events can be avoided both if

2M3

3
3

(
2q − 1

q3

)n

+ 4M

(
1

q

)n

≤ 1

4
(76)

and

M3

3
3

(
2q − 1

q3

)n

+ 2M

(
1

q

)n

≤ 1

4
. (77)

Observe that (77) is holds whenever (76) does.
Now, let us consider two cases:

123

502 Cryptography and Communications (2024) 16:481–506

1. If 2M3
(
2q−1
q3

)n
< 4M

qn , then (76) is satisfied when 8M
qn ≤ 1

4 , i.e., M ≤ qn

32 .

2. If 2M3
(
2q−1
q3

)n ≥ 4M
qn , then (76) is satisfied when 4M3

(
2q−1
q3

)n ≤ 1
4 , i.e.,

M ≤ 1

(16)
1
3

(
q3

2q − 1

)n/3

. (78)

Since
qn

32
≥ 1

(16)
1
3

(
q3

2q − 1

)n/3

, then (78) implies (76) holds.

Remark 33 Observe that once the events E(V 2) have been considered (and ruled out), we
do not need to bother about the following events:

• Let {ci1 , ci2 , ci3} be a set of three rows. An assignment is bad if desc(ci1) = desc(ci2 , ci3),
or desc(ci2) = desc(ci1 , ci3), or desc(ci3) = desc(ci1 , ci2), which implies ci1 = ci2 = ci3 .

• Let {ci1 , ci2} be a set of two rows. An assignment is bad if desc(ci1) = desc(ci1 , ci2), or
desc(ci2) = desc(ci1 , ci2), which implies ci1 = ci2 .

Proof of Theorem 14

Our approach is routine by now. To establish a lower bound for B2 codes, we take Mn
random variables Xi j arranged as an M × n matrix C , and associate the rows of the matrix
{c1, . . . , cM }, where ci = {Xi1, . . . , Xin}, to code words.

First, we need to define bad events. For the M × n matrix to be a B2 code, there are two
types of sets of assignmentswewish to avoid.Given a four row subsetV 4 = {ci1 , ci2 , ci3 , ci4},
an assignment to the random variables (that again we also denote by {ci1 , ci2 , ci3 , ci4}) is bad
if ci1 + ci2 = ci3 + ci4 , or if ci1 + ci3 = ci2 + ci4 , or if ci1 + ci4 = ci2 + ci3 . We represent the
event of an assignment to V 4 being bad as E(V 4). A three element subset V 3 = {ci1 , ci2 , ci3}
is bad if 2ci1 = ci2 + ci3 , or if 2ci2 = ci1 + ci3 , or if 2ci3 = ci1 + ci2 . The event of V

3 being
bad will be represented by E(V 3).

Note that, for V 4 = {ci1 , ci2 , ci3 , ci4}, the event that ci1 = ci2 = ci3 = ci4 is taken as a bad
event. Also, for V 3 = {ci1 , ci2 , ci3}, the event that ci1 = ci2 = ci3 is also taken as a bad event.
However, an assignment such that there are two equal code words might be possible, so we
need to consider the event V 2 = {ci1 , ci2}. An assignment to such a V 2 is bad if 2ci1 = 2ci2 .

Let us compute the probability of bad events. Notice that given {ci1 , ci2 , ci3 , ci4}, with
{ci1 , ci2 , ci3} fixed, there is only a single value for c4 such that ci1 + ci2 = ci3 + ci4 . Since
there are q3 ways to choose {ci1 , ci2 , ci3}, it is clear that

Pr[ci1 + ci2 = ci3 + ci4] = q3

q4
= 1

q
.

As in the previous section, we are dealing with three cases: ci1 +ci2 = ci3 +ci4 , ci1 +ci3 =
ci2 + ci4 and ci1 + ci4 = ci2 + ci3 . Since the random variables Xi j are i.d.d., the probability
of a bad event E(V 4) happening is

Pr[E(V 4)] = 3
1

qn
(79)

123

Cryptography and Communications (2024) 16:481–506 503

Now, given {ci1 , ci2 , ci3}with ci2 , ci3 fixed, there is only a single value for ci1 that satisfies
2ci1 = ci2 + ci3 . There are q

2 ways to choose ci2 , ci3 , so

Pr[2ci1 = ci2 + ci3] = q2

q3
= 1

q
.

Since we are also dealing with three cases,

Pr[E(V 3)] = 3
1

qn
. (80)

For V 2 = {ci1 , ci2} we have that 2ci1 = 2ci2 if and only if ci1 = ci2 , and so,

Pr[E(V 2)] =
(
1

q

)n

. (81)

Let us now tackle the computation of the dependence.
From the Mutual Independence Principle, given an event, we consider as mutually depen-

dent all other events having at least one row of the matrix of random variables C in common.
We count the number of 2-subsets, 3-subsets and 4-subsets that contain a given row. To

compute that number, we count the number of 1-subsets, 2-subsets and 3-subsets in a set of
M − 1 elements, that is(

M − 1

1

)
,

(
M − 1

2

)
and

(
M − 1

3

)
, respectively. (82)

Now, observe that we need to take into account the number of rows in the event, thus, for
events E(V 4), E(V 3) and E(V 2) the condition in Lemma 5 leads to:

4

((
M − 1

3

)
3

qn
+
(
M − 1

2

)
3

qn
+
(
M − 1

1

)
1

qn

)
≤ 1

4
(83)

3

((
M − 1

3

)
3

qn
+
(
M − 1

2

)
3

qn
+
(
M − 1

1

)
1

qn

)
≤ 1

4
(84)

2

((
M − 1

3

)
3

qn
+
(
M − 1

2

)
3

qn
+
(
M − 1

1

)
1

qn

)
≤ 1

4
(85)

Since (85) and (84) are satisfied whenever (83) is, and

3

(
M − 1

3

)
+ 3

(
M − 1

2

)
+
(
M − 1

1

)
<

M3

2
,

then Lemma 5 leads to:

4
M3

2
qn ≤ 1

4
⇐⇒ M ≤ qn/3

2
.

Proof of Proposition 28

Observe that, we cannot use the extension of the work in [10] (as in Section 5), since that
development is only valid for the symmetric version of the LLL. Therefore, as observed in
Remark 18, we can resort to the original work of Moser and Tardos [12], who provide the
bound (42) on the expected number of times resamples are performed in Algorithm 1.

123

504 Cryptography and Communications (2024) 16:481–506

We are going to obtain an upper bound on the number

S =
∑

events Ei

2 Pr[Ei]
1 − 2 Pr[Ei] =

∑
events E(V 4)

2 Pr[E(V 4)]
1 − 2 Pr[E(V 4)] +

∑
events E(V 2)

2 Pr[E(V 2)]
1 − 2 Pr[E(V 2)] .

(86)

We observe that the number of events of type E(V 4) is

(
M

4

)
<

M4

24
, and the number of

events of type E(V 2) is

(
M

2

)
<

M2

2
.

Since
2x

1 − 2x
< 3x , for all x <

1

6
, and

Pr[E(V 2)] = 1

qn
≤ 1

8
, Pr[E(V 4)] = 3

(
2q − 1

q3

)n

<
1

6
, ∀n ≥ 3,

then, according to (86), we have

S <
M4

24
3 Pr[E(V 4)] + M2

2
3 Pr[E(V 2)] ≤ M4

8

(
2q − 1

q3

)n

+ 3M2

2qn
. (87)

Now, the bound on M obtained in (78) implies

(
2q − 1

q3

)n

≤ 1

16M3 ,
1

qn
<

(
2q − 1

q3

)n/2

≤ 1

4M3/2 ,

and therefore,

S <
M4

8

1

16M3 + 3

2
M2 1

4M3/2 = 1

8

(
M

16
+ 3

√
M

)
≤ M

9
, ∀M ≥ 14,

so we can conclude the expected number of Resample calls is less than M/9.

To conclude, from (78), we obtain n = logq (16M3)

3−logq (2q−1) ≥ 4 logq M
3−logq (2q−1) , ∀M ≥ 16.

The codes can be obtained using Algorithm 1 with the following input:

• Alphabet Q of size q , Q := {0, . . . , q − 1}.
Integers M ≥ 16, n =

⌊
4 logq M

3−logq (2q−1)

⌋
.

• Random variables: C = {Xi j : Q → Q, 1 ≤ i ≤ M, 1 ≤ j ≤ n}.
• Probability mass function: Pr(Xi j = 0) = · · · = Pr(Xi j = q − 1) = 1

q .• Bad events:

– Arrange the r.v. Xi j as an M × n matrix C , with (C)i j = Xi j .
* Let Crow the set of rows of C .
* Define the set {T ⊂ Crow : |T | = 4}.
* Order the previous set and denote it by R.
* Let E(T) be a bad event in the sense of Section 3.2.

– Define the ordered set E := {E(T) | T ∈ R}.
Acknowledgements We thank the anonymous referees for their comments, that have greatly improved the
presentation of the paper, as well as the accuracy of some results.

Author Contributions All authors contributed the same.

123

Cryptography and Communications (2024) 16:481–506 505

123

Funding OpenAccess funding provided thanks to theCRUE-CSIC agreementwith SpringerNature. Thework
of Marcel Fernández has been supported by TCO-RISEBLOCK (PID2019-110224RB-I00) MINECO. The
work of Sebastiá Martín has been supported by Ministerio de Ciencia e Innovación, PID2019-109379RB-I00.

Availability of supporting data No supporting data in the paper.

Declarations

Ethical Approval and Consent to participate This manuscript has not been submitted to any other journal for
simultaneous consideration.

Consent for publication Yes

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE transactions on information
theory 44(5), 1897–1905 (1998)

2. Cheng, M., Miao, Y.: On anti-collusion codes and detection algorithms for multimedia fingerprinting.
IEEE transactions on information theory 57(7), 4843–4851 (2011)

3. Cheng, M., Ji, L., Miao, Y.: Separable codes. IEEE Trans Inf Theor 58(3), 1791–1803 (2012)
4. Blackburn, S.R.: Probabilistic existence results for separable codes. IEEE Trans Inf Theor 61(11), 5822–

5827 (2015)
5. Egorova, E., Fernandez, M., Kabatiansky, G., Lee, M.H.: Signature codes for the a-channel and collusion-

secure multimedia fingerprinting codes. In: 2016 IEEE international symposium on information theory
(ISIT), pp 3043–3047 (2016)

6. Lindström, B.: Determination of two vectors from the sum. J. Combin. Theor, Series A 6, 402–407 (1969)
7. Sidon, S.: Ein satz über trigonometrische polynome und seine anwendung in der theorie der fourier-reihen.

Mathematische Annalen 106, 536–539 (1932)
8. Gu, Y., Fan, J., Miao, Y.: Improved bounds for Separable codes and B2 codes. IEEE communications

letters 24(1), 15–19 (2020)
9. Shangguan, C., Wang, X., Ge, G., Miao, Y.: New bounds for frameproof codes. IEEE transactions on

information theory 63(11), 7247–7252 (2017)
10. Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: On the algorithmic Lovász local lemma and

acyclic edge coloring. In: Proceedings of the twelfthworkshop on analytic algorithmics and combinatorics
(2015). Soc. Ind. Appl. Math

11. Moser, R.A.: A constructive proof of the Lovász local lemma. In: Proceedings 41st annual acm symposium
on theory of computing (STOC), pp. 343–350 (2009). ACM

12. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM (JACM) 57(2),
11 (2010)

13. Forney, G.D.: Concatenated Codes. MIT Press, Cambridge, MA (1966)
14. Goppa, V.D.: Codes on algebraic curves. Sov. Math.-Dokl. 24, 170–172 (1981)
15. Vlǎduţ, S., Drinfeld, V.: Number of points of an algebraic curve. Functional Analysis and Its Applications

- Funct Anal Appl-Engl tr. 17, 53–54 (1983)
16. Garcia, A., Stichtenoth, H.: A tower ofArtin - Schreier extensions of Function Fields attaining theDrinfeld

- Vlâdut bound. Inventiones Mathematicae 121, 211–222 (1995)

506 Cryptography and Communications (2024) 16:481–506

123

17. Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite
fields. J. Num. Theor. 61(2), 248–273 (1996)

18. Shum, K., Aleshnikov, I., Kumar, P., Stichtenoth, H., Deolalikar, V.: A low-complexity algorithm for the
construction of algebraic-geometric codes better than the gilbert-varshamov bound. Information Theory,
IEEE Transactions on 47, 2225–2241 (2001)

19. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer, Springer (2002)
20. Livieratos, J.: Constraint satisfaction problems: Probabilistic approach and applications to social choice

theory. PhD thesis, National and Kapodistrian University of Athens, Department of Mathematics (2020)
21. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Addison-

Wesley (2013)
22. Alon, N., Cohen, G., Krivelevich, M., Litsyn, S.: Generalized hashing and parent-identifying codes. J.

Combin. Theory, Series A 104(1), 207–215 (2003)
23. Sandor, J., Debnath, L.: On certain inequalities involving the constant e and their applications. J. Math.

Anal. Appl. 249(2), 569–582 (2000)
24. Fernandez,M.,Moreira, J., Soriano,M.: Identifying traitors using the koetter-vardy algorithm. Information

Theory, IEEE Transactions on 57, 692–704 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Frameproof codes, separable codes and B2 codes: Bounds and constructions
	Abstract
	1 Introduction
	1.1 Our contribution

	2 Previous results
	2.1 Algebraic geometric codes
	2.2 Lovász Local Lemma
	2.3 The variable framework

	3 Sketch of proof
	4 Lower bounds
	4.1 Frameproof codes
	4.2 Separable codes
	4.3 B2 codes

	5 Combinatorial constructions using the variable framework
	5.1 Expected number of iterations
	5.2 Frameproof codes
	5.2.1 Plain algorithmic construction
	5.2.2 Polynomial complexity constructions

	5.3 Separable codes and B2 codes

	6 Conclusions
	Appendix
	Proof of Theorem 10
	Proof of Theorem 12
	Proof of Theorem 14
	Proof of Proposition 28

	Acknowledgements
	References

