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Abstract: Partial spread is important in finite geometry and can be used to construct linear codes. From
the results in (Designs, Codes and Cryptography 90:1-15, 2022) by Xia Li, Qin Yue and Deng Tang, we know
that if the number of the elements in a partial spread is “big enough”, then the corresponding linear code is
minimal. They used the sufficient condition in (IEEE Trans. Inf. Theory 44(5): 2010-2017, 1998) to prove
the minimality of such linear codes. In this paper, we use the geometric approach to study the minimality of
linear codes constructed from partial spreads in all cases.
Index Terms: Linear code, minimal code, partial spread.

1 Introduction

Let q be a prime power and Fq the finite field with q elements. Let n be a positive integer and Fn
q the vector

space with dimension n over Fq. In this paper, all vector spaces are over Fq and all vectors are row vectors.
For a vector v = (v1, . . . , vn) ∈ Fn

q , let Suppt(v) := {1 ≤ i ≤ n : vi 6= 0} be the support of v. The Hamming
weight of vector of v is wt(v):=# Suppt(v). For any two vectors u,v ∈ Fn

q , if Suppt(u) ⊆ Suppt(v), we say
that v covers u (or u is covered by v) and write u � v. Clearly, av � v for all a ∈ Fq.
An [n,m]q linear code C over Fq is a m-dimensional subspace of Fn

q . Vectors in C are called codewords. A
codeword c in a linear code C is called minimal if c covers only the codewords ac for all a ∈ Fq, but no other
codewords in C. That is to say, if a codeword c is minimal in C, then for any codeword b in C, b � c implies
that b = ac for some a ∈ Fq. For an arbitrary linear code C, it is hard to determine the set of its minimal
codewords [9, 11].
If every codeword in C is minimal, then C is said to be a minimal linear code. Minimal linear codes have

interesting applications in secret sharing [12, 13, 16, 22, 26] and secure two-party computation [3, 14], and
could be decoded with a minimum distance decoding method [2]. Searching for minimal linear codes has been
an interesting research topic in coding theory and cryptography.
Up to now, there are two approaches to study minimal linear codes. One is algebraic method and the

other is geometric method. The algebraic method is based on the Hamming weights of the codewords. In [2],
Ashikhmin and Barg gave a sufficient condition on the minimum and maximum nonzero Hamming weights for
a linear code to be minimal.

Lemma 1.1. (Ashikhmin-Barg [2]) A linear code C over Fq is minimal if

wmin

wmax

>
q − 1

q
,

where wmin and wmax denote the minimum and maximum nonzero Hamming weights in the code C, respectively.

Cohen et al. [14] provided an example to show that the condition wmin

wmax

> q−1

q
is not necessary for a linear

code to be minimal. Ding, Heng and Zhou [15, 17] generalized this sufficient condition and derived a sufficient
and necessary condition on all Hamming weights for a given linear code to be minimal.
When using the algebraic method to prove the minimality of a given linear code, one needs to know all the

Hamming weights in the code, which is very difficult in general. Even all the Hamming weights are known, it
is also hard to use the algebraic method to prove the minimality. In this paper, we will show that there exist
two linear codes with the same weight distribution, one is minimal but the other is not.
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Recently, minimal linear codes were characterized by geometric approaches in [4, 20, 23]. In [4, 23], the
authors used the cutting blocking sets to study the minimal linear codes. In [20], the authors used the basis of
linear space to study the minimal linear codes. Based on these results, it is easier to construct minimal linear
codes or to prove the minimality of some linear codes , see [5–8, 10, 18].
There are two basic problems in minimal linear codes. One is the existence of minimal linear codes with given

parameters, see [4, 20, 23]. The other is to discuss the minimality of some interesting codes, see [21, 24, 25].
In this paper, we will discuss the minimality of linear codes constructed by partial spread.
Partial spread (see section 2) is important in finite geometry [19] and can be used to construct bent functions

[1]. Partial spread can also be used to construct linear codes. Let s be the number of the elements in a partial
spread. From [21, Theorem 10], we know that if s is “big enough”, (precisely s ≥ q+1), then the corresponding
linear code is minimal. In [21, Theorem 10], they used the sufficient condition in Lemma 1.1 to prove the
minimality of such linear codes.
In this paper, we will use the geometric approach to consider the minimality of linear codes constructed

from partial spreads for all s. We get the following three results: (1) when s is “big enough”, precisely, when
s ≥ q + 1, for any partial spread, the corresponding linear code is minimal; (2) when s is “small enough”,
precisely, when 2 ≤ s ≤ 3 ≤ q, for any partial spread, the corresponding linear code is not minimal; (3) when
3 < s ≤ q, for some partial spreads, the corresponding linear codes are minimal, while for some other partial
spreads, the corresponding linear codes are not minimal.
The rest of this paper is organized as follows.

2 Preliminaries

2.1 Partial spread

Throughout this paper, let k be a positive integer and m = 2k. A partial spread S of Fm
q is a set of

k-dimensional subspaces of Fm
q , which pairwise intersect trivially. It is easy to see that #S ≤ qk + 1. If

#S = qk + 1, hence every nonzero element of Fm
q is in exactly one of those subspaces, then S is called a

(complete) spread.
Let 2 ≤ s ≤ qk + 1 be a positive integer and

Ω = {Ei ≤ Fm
q : dimEi = k, Ei ∩ Ej = {0}, 1 ≤ i 6= j ≤ s}. (1)

Then Ω is a partial spread of Fm
q . It is easy to see that for any 1 ≤ i 6= j ≤ s,

Ei + Ej = Fm
q . (2)

2.2 Euclidean inner product

Let m be a positive integer. For vectors x = (x1, x2, ..., xm), y = (y1, y2, ..., ym) ∈ Fm
q , their Euclidean

inner product is:

< x,y >:= xyT =

m
∑

i=1

xiyi.

For any S ⊆ Fm
q , we define

Span(S) := {

r
∑

i=1

λisi | r ∈ N, si ∈ S, λi ∈ Fq},

S⊥ := {v ∈ Fm
q | vsT = 0, for any s ∈ S}.

Then Span(S) and S⊥ are vector spaces over Fq and

dim(Span(S)) + dim(S⊥) = m. (3)
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2.3 Minimal linear codes

All linear codes can be constructed by the following way. Let m ≤ n be two positive integers. Let D :=
{d1, ...,dn} be a multiset, where d1, ...,dn ∈ Fm

q . Let r(D) be the rank of D (it equals the dimension of the
vector space Span(D) over Fq). Let

C = C(D) = {c(x) = c(x;D) = (xdT
1 , ...,xd

T
n ),x ∈ Fm

q }.

Then C(D) is an [n, r(D)]q linear code. We always study the minimality of C(D) by considering some
appropriate multisets D.
To present the sufficient and necessary condition for minimal linear codes in [20], some concepts are needed.
For any y ∈ Fm

q , we define

H(y) := y⊥ = {x ∈ Fm
q | xyT = 0},

H(y, D) := D ∩H(y) = {x ∈ D | xyT = 0},

V (y, D) := Span(H(y, D)).

It is obvious that H(y, D) ⊆ V (y, D) ⊆ H(y).

Proposition 2.1. [20] For any x,y ∈ Fm
q , c(x) � c(y) if and only if H(y, D) ⊆ H(x, D).

Let y ∈ Fm
q \{0}. The following lemma gives a sufficient and necessary condition for the codeword c(y) ∈

C(D) to be minimal.

Lemma 2.2. [20, Theorem 3.1] Let y ∈ Fm
q \{0}. Then the following three conditions are equivalent:

(1) c(y) is minimal in C(D);
(2) dimV (y, D) = m− 1;
(3) V (y, D) = H(y).

The following lemma gives a sufficient and necessary condition for linear codes over Fq to be minimal.

Lemma 2.3. [20, Theorem 3.2] The following three conditions are equivalent:
(1) C(D) is minimal;
(2) for any y ∈ Fm

q \{0}, dimV (y, D) = m− 1;
(3) for any y ∈ Fm

q \{0}, V (y, D) = H(y).

By the following lemma, we can get infinity many minimal linear codes from any known minimal linear
codes.

Lemma 2.4. [20, Proposition 4.1.] Let D1 ⊆ D2 be two multisets with elements in Fm
q and r(D1) = r(D2) =

m. If C(D1) is minimal, then C(D2) is minimal.

The following corollary is trivial.

Corollary 2.5. Let D1 ⊆ D2 be two multisets with elements in Fm
q and r(D1) = r(D2) = m. If C(D2) is not

minimal, then C(D1) is not minimal.

In the following section, we will use the above lemmas to consider the minimality of linear codes constructed
from partial spreads.

3 The minimality of linear codes constructed from partial spreads

In this section, we consider the linear codes constructed from partial spreads and discuss the minimality of
these linear codes.
Let k be a positive integer and m = 2k, 2 ≤ s ≤ qk + 1 be a positive integer and

Ω = {Ei ≤ Fm
q : dimEi = k,Ei ∩Ej = {0}, 1 ≤ i 6= j ≤ s}

be a partial spread of Fm
q . Let

D = (

s
⋃

i=1

Ei)\{0} =

s
⋃

i=1

(Ei\{0}). (4)

It is easy that C(D) is a [s(qk − 1),m]q linear code.
The following lemma is important in the proofs of this section.
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Lemma 3.1. For all y ∈ Fm
q \{0}, Ei ∈ Ω, we have H(y, Ei) = V (y, Ei) and

dimV (y, Ei) =

{

k, if y ∈ Ei
⊥;

k − 1, if y /∈ Ei
⊥.

Proof. Since Ei is a subspace, we have H(y, Ei) = V (y, Ei). Since dimEi = k, by (3), we get dimEi
⊥ = k.

Let α1, · · · , αk be a basis of Ei
⊥, A = (α1, · · · , αk,y)

T be a (k + 1) ×m matrix. Note that V (y, Ei) is the
solution space of AxT = 0, where x = (x1, · · · , xm) ∈ Fm

q . Thus dimV (y, Ei) = m− r(A). So if y ∈ Ei
⊥, then

dimV (y, Ei) = k; if y /∈ Ei
⊥, then dimV (y, Ei) = k − 1. The proof is completed.

The following lemma is trivial.

Lemma 3.2. Let Ω = {E1, ..., Es} be a partial spread of Fm
q . Define Ω⊥ := {E⊥

1 , ..., E
⊥
s }. Then Ω⊥ is also

a partial spread of Fm
q . That is to say, for any 1 ≤ i 6= j ≤ s, dimEi

⊥ = k, and E⊥

i ∩ E⊥

j = {0}.

Now we consider the minimality of C(D) in three cases. First, when s ≥ q + 1, we have

Theorem 3.3. Let Ω = {E1, ..., Es} be a partial spread of Fm
q . If s ≥ q + 1, then C(D) is a [s(qk − 1),m]q

minimal linear code.

Proof. According to Lemma 2.3, we only need to prove that for any y ∈ Fm
q \{0}, dimV (y, D) = m − 1. By

(4), we get

H(y, D) = D ∩H(y) =

s
⋃

i=1

(H(y, Ei)\{0}). (5)

When k = 1, then m = 2. For any 1 ≤ i 6= j ≤ s, Ei is a one dimensional subspace of F2
q and Ei ∩Ej = {0}.

By Lemma 3.2, we have that Ei
⊥ is also a one dimensional subspace of F2

q and Ei
⊥ ∩ Ej

⊥ = {0}. Note that

F2
q has q + 1 one dimensional subspaces in all and s ≥ q + 1, so s = q + 1 and F2

q =
s
⋃

i=1

Ei
⊥. Then for any

y ∈ F2
q\{0}, there exists i0, such that y ∈ Ei0

⊥, so dimV (y, Ei0 ) = 1, thus dimV (y, D) = 1 = m− 1.
When k > 1, there are two cases.
(1) If there exists i0 such that y ∈ E⊥

i0
, then by Lemma 3.1, dimH(y, Ei0 ) = k. According to Lemma 3.1

and Lemma 3.2, we can take j0 6= i0 such that dimH(y, Ej0 ) = k − 1. Let α1, · · · , αk be a basis of H(y, Ei0 )
and β1, · · · , βk−1 be a basis of H(y, Ej0 ). By (5), we have

H(y, D) ⊇ {α1, · · · , αk, β1, · · · , βk−1}. (6)

Since Ei0 ∩Ej0 = {0},
r({α1, · · · , αk, β1, · · · , βk−1}) = 2k − 1 = m− 1. (7)

Combining (6) and (7), we get dimV (y, D) = m− 1.
(2) If for any 1 ≤ i ≤ s, y /∈ E⊥

i , then dimH(y, Ei) = k − 1. Let α1, · · · , αk−1, αk be a basis of E1, where
α1, · · · , αk−1 is a basis of H(y, E1). Let β1, · · · , βk−1, βk be a basis of E2, where β1, · · · , βk−1 be a basis of
H(y, E2). Let

B = {α1, · · · , αk−1, β1, · · · , βk−1}.

Since E1 ∩ E2 = {0}, we have r(B) = 2k − 2 = m− 2.
Let V = Fm

q , W = Span(B) and V = V/W the quotient space. Then dimFq
V = 2. Let π be the standard

mapping from V to V . Note that π is a linear mapping, then for any 1 ≤ i ≤ s, π(Ei) is a subspace of V . If
π(Ei) = {0}, then we get Ei ≤W ≤ H(y), thus y ∈ Ei

⊥, a contradiction. So dimπ(Ei) = 1 or 2.
(i) If there exists i0 such that dimπ(Ei0 ) = 2, then π(Ei0 ) = V . Let b = (αky

T )/(βky
T ). Then there exists

α ∈ Ei0 such that π(α) = αk − bβk. So α = αk − bβk +w, w ∈ W . It is easy to see that α 6= 0, α /∈ W and
α ∈ H(y). By (5), we have

H(y, D) ⊇ (B ∪ {α}). (8)

while
r(B ∪ {α}) = m− 1. (9)

Combining (8) and (9), we have dimV (y, D) = m− 1.
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(ii) If for any 1 ≤ i ≤ s, dimπ(Ei) = 1. Since for any 1 ≤ i 6= j ≤ s , we have V = Ei + Ej . So we get
V = π(V ) = π(Ei + Ej) = π(Ei) + π(Ej). Thus for any 1 ≤ i 6= j ≤ s, π(Ei) 6= π(Ej). Since V has q + 1

one dimensional subspaces in all and s ≥ q + 1. Hence, in this case, s = q + 1 and V =
s
⋃

i=1

π(Ei). Then there

exists j0 such that π(Ej0 ) = Span({αk − bβk}). Thus there exists α ∈ Ej0 such that π(α) = αk − bβk. Then
we have α = αk − bβk +w, w ∈ W . It is easy to see that α ∈ H(y) and α /∈W . So

r{B ∪ {α}} = m− 1, H(y, D) ⊇ B ∪ {α}.

and dimV (y, D) = m− 1.
In conclusion, when k > 1, for any y ∈ Fm

q \{0}, dimV (y, D) = m− 1, thus C(D) is minimal.

Remark 1. Theorem 3.3 is a special case of [21, Theorem 10] when t0 = 0. Our method is different from
theirs. When s ≤ q, our method also can be used to study the minimality of the linear codes, while theirs can
not.

Second, when s = 3, we have

Theorem 3.4. Let Ω = {E1, ..., Es} be a partial spread of Fm
q . If s = 3 ≤ q, then C(D) is not minimal.

Proof. Since Fm
q = E1 + E2 and for any 1 ≤ i 6= j ≤ 3 ,Ei ∩ Ej = {0}, it is easy to see for any α ∈ E1, there

exists unique β ∈ E2 such that α + β ∈ E3. If we define a map from E1 to E2, ϕ(α) = β, then ϕ is a linear
isomorphism from E1 to E2 and E3 = {x+ ϕ(x)|x ∈ E1}.
By Lemma 3.2, we can get dimE⊥

1 = dimE⊥
2 = k and E⊥

1 ∩E⊥
2 = {0}. Thus for any y1 ∈ E⊥

2 \{0}, we have
y1 /∈ E⊥

1 and then dimH(y1, E1) = k − 1 by Lemma 3.1. Let α1, · · · , αk be a basis of E1, such that

αiy
T
1 =

{

0, for 1 ≤ i ≤ k − 1;
1, for i = k.

Since ϕ is a linear isomorphism, we have dimϕ(H(y1, E1)) = k − 1 and dimϕ(H(y1, E1))
⊥ = k + 1. Thus

dim(ϕ(H(y1, E1))
⊥ ∩ E⊥

1 )

= dim(ϕ(H(y1, E1))
⊥) + dim(E⊥

1 )− dim(ϕ(H(y1, E1))
⊥ + E⊥

1 )

≥ k + 1 + k −m = 1.

Since q ≥ 3, there must exist y2 ∈ (ϕ(H(y1, E1))
⊥∩E⊥

1 )\{0}, such that ϕ(αk)y
T
2 6= −1. Since E⊥

i ∩E⊥

j = {0},

we have y2 /∈ E⊥
2 . Now we take y0 = y1 +y2. Since y1 /∈ E⊥

1 and y2 ∈ E⊥
1 , we have y0 /∈ E⊥

1 . Since y1 ∈ E⊥
2

and y2 /∈ E⊥
2 , we have y0 /∈ E⊥

2 . Since αk + ϕ(αk) ∈ E3 and

(αk + ϕ(αk))y
T
0 = (αk + ϕ(αk))(y1 + y2)

T

= αky
T
1 + αky

T
2 + ϕ(αk)y

T
1 + ϕ(αk)y

T
2

= 1 + 0 + 0 + ϕ(αk)y
T
2 6= 0.

Hence we have y0 /∈ E⊥
3 . So for all 1 ≤ i ≤ 3, we have dimH(y0, Ei) = k − 1 by Lemma 3.1. It is easy to

verify that
H(y0, E1) = H(y1, E1),

H(y0, E2) = H(y2, E2) = ϕ(H(y1, E1)) = ϕ(H(y0, E1)),

H(y0, E3) = {x+ ϕ(x)|x ∈ H(y0, E1)} ⊆ Span(H(y0, E1) ∪H(y0, E2)).

Then dimV (y0, D) = k − 1 + k − 1 = m− 2. By Lemma 2.3, we have c(y0) is not minimal.

Combining Theorem 3.4 and Corollary 2.5, we have

Corollary 3.5. Let Ω = {E1, ..., Es} be a partial spread of Fm
q . If 2 ≤ s ≤ 3 ≤ q, then C(D) is not minimal.
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Third, when 3 < s ≤ q, the situation is somewhat complicated, because for some partial spreads Ω =
{E1, ..., Es}, C(D) are minimal while for some other partial spreads Ω, C(D) are not minimal.
First,we give examples such that C(D) are not minimal. Let e1, · · · , em be the standard basis of Fm

q . For
any b ∈ Fq, we define

Eb = Span({ei + bek+i | 1 ≤ i ≤ k), (10)

and
Ω = {Eb|b ∈ Fq}. (11)

It is easy to prove that dimEb = k, and Ea ∩Eb = {0}, for any a, b ∈ Fq, a 6= b. That is to say, Ω is a partial
spread of Fm

q .

Theorem 3.6. For the partial spread Ω defined in (11), the linear code C(D) is not minimal.

Proof. Let y0 = e1. Then for any b ∈ Fq, we get

H(y0, Eb) = Span({e2 + bek+2, · · · , ek + bem})

⊆ Span({e2, · · · , ek, ek+2, · · · , em}).

By (5), we have
H(y0, D) ⊆ Span({e2, · · · , ek, ek+2, · · · , em}).

and then dimV (y0, D) ≤ m− 2. By Lemma 2.3, we have c(y0) is not minimal and C(D) is not minimal.

Combining Theorem 3.6 and Corollary 2.5, we have

Corollary 3.7. Let 3 < s ≤ q and S ⊆ Fq where #S = s. Let Ω = {Eb| b ∈ S}. Then C(D) is not minimal.

Now, we give examples such that C(D) are minimal.
Let f(x) be an irreducible polynomial in Fq[x] of degree k andM ∈Mk×k(Fq) satisfies that the characteristic

polynomial of M is f(x). We define

E1 = {(x,0)|x ∈ Fk
q}, E2 = {(0,x)|x ∈ Fk

q},

E3 = {(x,x)|x ∈ Fk
q}, E4 = {(x,xM)|x ∈ Fk

q},
(12)

and
Ω = {E1, E2, E3, E4}. (13)

It is easy to see dimEi = k and Ei ∩ Ej = {0} for any 1 ≤ i 6= j ≤ 4. That is to say, Ω is a partial spread of
Fm
q .

Theorem 3.8. For the partial spread Ω defined in (13), the linear code C(D) is minimal.

Proof. According to Lemma 2.3, we only need to prove that for any y ∈ Fm
q \{0}, dimV (y, D) = m− 1. There

are two cases.
(1) If exists i0 such that y ∈ Ei0

⊥, then by Lemma 3.1, dimH(y, Ei0 ) = k. According to Lemma 3.1 and
Lemma 3.2, we can take j0 6= i0 such that dimH(y, Ej0 ) = k − 1. Let α1, · · · , αk is a basis of H(y, Ei0 ) and
β1, · · · , βk−1 is a basis of H(y, Ej0 ). Note that

H(y, D) ⊇ {α1, · · · , αk, β1, · · · , βk−1}. (14)

Since Ei0 ∩Ej0 = {0}, hence

r{α1, · · · , αk, β1, · · · , βk−1} = k + k − 1 = m− 1. (15)

Combining (14) and (15), we get dimV (y, D) = m− 1.
(2) If for all 1 ≤ i ≤ 4, y /∈ Ei

⊥, then dimH(y, Ei) = k − 1. Let y = (y1,y2) where y1,y2 ∈ Fk
q . Next we

define two linear transformations ϕ, ψ from Fk
q to Fk

q :

ϕ(x) = x, ψ(x) = xM. (16)

Then
E3 = {(x, ϕ(x))|x ∈ Fk

q}, E4 = {(x, ψ(x))|x ∈ Fk
q}. (17)
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Let
S = Span{H(y, E1) ∪H(y, E2)}

= {(α, β)|α, β ∈ Fk
q , αy

T
1 = 0, βyT

2 = 0}

= {(α, β)|α ∈ H(y1), β ∈ H(y2)}.

(18)

Then dimS = 2k − 2 = m − 2. If H(y, E3) ⊆ S and H(y, E4) ⊆ S, then by (18), there exists α1, · · · , αk−1 ∈
H(y1), β1, · · · , βk−1 ∈ H(y2) such that (α1, β1), · · · , (αk−1, βk−1) is a basis ofH(y, E3). Note thatH(y, E3) ⊆
E3, by (17), we can get ϕ(αi) = βi. Next we prove the linear independence of α1, · · · , αk−1. Assume
a1α1 + · · ·+ ak−1αk−1 = 0, ai ∈ Fq, we have

a1(α1, β1) + · · ·+ ak−1(αk−1, βk−1) = (
k−1
∑

i=1

aiαi, ϕ(
k−1
∑

i=1

aiαi)) = (0,0).

Hence ai = 0,where 1 ≤ i ≤ k−1. So α1, · · · , αk−1 is linearly independent. Since βi = ϕ(αi), then β1, · · · , βk−1

is also linearly independent. Note that dimH(y1) = k − 1 and dimH(y2) = k − 1, then

H(y1) = Span({α1, · · · , αk−1}), H(y2) = Span({β1, · · · , βk−1}).

Thus ϕ(H(y1)) = H(y2). Similarly, we can get ψ(H(y1)) = H(y2). Then we have

ψ(H(y1)) = H(y2) = ϕ(H(y1)) = H(y1).

That is to say, H(y1) is the ψ-invariant subspace of Fk
q .

Let α1, · · · , αk−1, αk is a basis of Fk
q , where α1, · · · , αk−1 is a basis of H(y1). Then the matrix of ψ with

respect to this basis is

B =

(

B1 B2

0 b

)

.

where B1 is the matrix of ψ|H(y1) with respect to α1, · · · , αk−1. Note that M is the matrix of ψ with respect
to the standard basis, thus M and B are similar, they have the same characteristic polynomial. So

f(x) = |xI −B1|(x − b),

a contradiction with the irreducibility of f(x). Hence, H(y, E3) * S or H(y, E4) * S. It is easy to see that
r(H(y, E1)∪H(y, E2)∪H(y, E3)) = 2k− 1 or r(H(y, E1)∪H(y, E2)∪H(y, E4)) = 2k− 1. So dimV (y, D) =
2k − 1 = m− 1.
In conclusion, for any y ∈ Fm

q \{0}, dimV (y, D) = m− 1. By Lemma 2.3, C(D) is minimal.

Combining Theorem 3.8 and Lemma 2.4, we have

Corollary 3.9. Let s ≥ 4 and Ω = {E1, · · · , Es} be a partial spread of Fm
q . If {E1, E2, E3, E4} are defined as

(12), then C(D) is minimal.

4 Concluding remarks

In this paper, we use the geometric approach to study the minimality of linear codes constructed from partial
spreads in all cases. In [21], they assume that T0 is a Fp−subspace of Fm

p with dimFp
T0=t0, l = k + t0 and

Ω = {Ei ≤ Fm
p : dimFp

Ei = l, Ei ∩ Ej = T0, 1 ≤ i 6= j ≤ s}.

In [21, Theorem 10], they prove that when s = #Ω > p, the corresponding linear code is minimal. Our results
in this paper generalize the special case in [21, Theorem 10] when t0 = 0 to all s ≥ 2. When t0 6= 0, the
problem becomes complicated and we will consider it in the future.
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