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Abstract Each year across the USA, destructive weather
events disrupt transportation and commerce, resulting in
both loss of lives and property. Mitigating the impacts of
such severe events requires innovative new software tools
and cyberinfrastructure through which scientists can mon-
itor data for specific severe weather events such as
thunderstorms and launch focused modeling computations
for prediction and forecasts of these evolving weather
events. Bringing about a paradigm shift in meteorology
research and education through advances in cyberinfras-
tructure is one of the key research objectives of the Linked
Environments for Atmospheric Discovery (LEAD) project,
a large-scale, interdisciplinary NSF funded project spanning
ten institutions. In this paper we address the challenges of
making cyberinfrastructure frameworks responsive to real-
time conditions in the physical environment driven by the
use cases in mesoscale meteorology. The contribution of the
research is two-fold: on the cyberinfrastructure side, we
propose a model for bridging between the physical
environment and e-Science1 workflow systems, specifically
through events processing systems, and provide a proof of
concept implementation of that model in the context of the
LEAD cyberinfrastructure. On the algorithmic side, we
propose efficient stream mining algorithms that can be

carried out on a continuous basis in real time over large
volumes of observational data.
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Introduction

Information technology research has made significant
advances over the past several years in cyberinfrastructure
architectures for computational science investigation. These
infrastructures, often assembled as loose collections of
services, enable new forms of scientific investigation; of
particular interest for this paper is adaptive investigation
that is responsive to sensors, instruments, and sensor
networks in the physical environment. The meteorology
community is on the leading edge in motivating adaptive
cyberinfrastructure research by means of use cases that
involve the sensing and recognition of severe storms, and
associated complex parallel and distributed analysis
sequences that are invoked in response. Until recently
meteorologists conducted research in severe storm model-
ing through either executing weather forecast runs on a
static schedule or through conducting an analysis post-
mortem, long after the weather conditions had moved on.
The models and codes used in meteorology research were
often stitched together by complex and brittle scripts. The
cyberinfrastructure developed as part of the Linked Envi-
ronments for Atmospheric Discovery (LEAD) project
(LEAD 2007) was funded to address this challenge. The
LEAD cyberinfrastructure (LEAD-CI) gives a scientist
tools with which they can automatically spawn weather
forecast models in response to real time weather events for
a desired region of interest. The interaction modes and data-
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driven analysis patterns supported in the LEAD-CI are
applicable to a broad class of domain science problems
generally known as e-Science. Cyberinfrastructure solutions
developed here and elsewhere are bringing advanced
research and education capabilities to all e-Science appli-
cations, often first by domain-specific solutions that are
then generalized further.

The LEAD-CI has emerged as an outcome of the LEAD
project, an interdisciplinary research project between
computer scientists, meteorology community data pro-
viders, and meteorology researchers and educators. The
purpose of the project, which began in 2001, has been to
address the fundamental IT and meteorology research
challenges needed to create an integrated, scalable frame-
work for identifying, accessing, decoding, assimilating,
predicting, managing, analyzing, mining, and visualizing a
broad array of meteorological data and model output,
independent of format and physical location (Droegemeier
et al. 2005). A cyberinfrastructure framework engineered
to address this need must account for multiple dimen-
sions of complexity. The framework has to handle users
specifications, computational requirements, data access
and integration in real time, and complex workflow
execution. The latter complex workflow execution is
accomplished by deploying as part of the infrastructure a
workflow engine; these engines are capable of executing
arbitrarily complex sequences of tasks on behalf of a
user.

A couple of challenges exist in making cyberinfrastruc-
ture frameworks responsive to real-time conditions in the
physical environment: first, workflow engines are often not
well suited to the continuous and indefinite nature of data
arriving from sensor networks and instruments. Instead, the
workflow engines are more likely to execute a directed
graph of analysis tasks once, then exit. Second, detection of
physical or environmental phenomena in streaming data
requires data mining algorithms, often embedding domain
specific knowledge, that are not designed for continuous
processing over large amounts of high volume data.

Our solution to the problem of bridging between the
physical environment and workflow-driven analyses
derives from the observation that events processing systems
(Gartner 2007) are well suited to continuous stream mining
as demonstrated by their application to network processing
(Cranor et al. 2003), Interstate traffic patterns (Arasu et al.
2004), and ecology monitoring (Mainwaring et al. 2002).
Specifically, anomalous behavior in the physical envi-
ronment (such as severe storms) can be recognized by an
events processing model capable of filtering through the
vast volumes of environmental data, carrying out sophis-
ticated data mining algorithms for classifying weather
patterns, and interacting with workflow systems thus
creating a linkage in real time between observational data

arriving in real time from sensor networks and instru-
ments and the complex workflow-driven analysis sequen-
ces that ingest and act upon the data (Vijayakumar et al.
2006).

The contribution of this research is two-fold: on the
cyberinfrastructure side, we propose a model for bridging
between the physical environment and e-Science workflow
systems, specifically through events processing systems,
and provide a proof of concept implementation of that
model in the context of the LEAD-CI cyberinfrastructure
for mesoscale meteorology research. On the algorithmic
side, we propose efficient stream mining algorithms that
can be carried out on a continuous basis in real time over
large volumes of observational data.

Science motivation

Each year across the USA, floods, tornadoes, hail, strong
winds, lightning, and winter storms—so-called mesoscale
weather events—cause hundreds of deaths, routinely
disrupt transportation and commerce, and result in annual
economic losses on the order of $12B (Pielke and Carbone
2002). Mitigating the impacts of such events requires
frameworks to accommodate the real time, on-demand,
and dynamically-adaptive needs of mesoscale weather
operational forecasting. Most current operational weather
prediction systems throughout the world run on fixed time
schedules, and in fixed configurations, regardless of user
need or the actual weather. Software tools are needed to
provide scientists with the ability to monitor data for
specific weather events and simulative modeling computa-
tions for these specific evolving weather events. These tools
should be able to launch weather models at finer-scale
features in response to specific weather event detections to
deal most effectively with weather that is driven by local
physical influences (e.g., terrain) and has local impact.
Tools with such capability can have profound implications
for operational weather forecasting in the USA. The
impacts of such tool will not just be limited to forecasting
operations but will also be vital for education. It will allow
students to analyze weather events as they occur and then
study the model forecasts and its associated societal
impacts, particularly for the local area.

These tools must be based on dynamically adaptive on-
demand frameworks that can monitor and be steered by
data continuously; change configuration rapidly and auto-
matically in response to the weather; initiate other processes
such as spawning weather models or other mining
algorithms automatically; and be easily configurable by
users. For instance, the Weather Research Forecast model
(WRF) is initialized with observational data and external
model forecast data (such as data from the North American
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Meso (NAM) model) and lateral boundary conditions are
set by coarser forecast data (such as an external model or
WRF run at coarser resolution). Key components of the
LEAD-CI architecture that support the automatic response
is shown in Fig. 1. The LEAD-CI is organized as a set of
cooperating web services. The user interacts with the
cyberinfrastructure through a portal, often called a “science
gateway”. The user will bring up a graphical interface and
link together components to form a workflow graph. This is
shown in the top center of the diagram. The workflow
graph is submitted to the Workflow Engine, which submits
it as a distributed and parallel job to the back end
computational resources. The web services that work on
the user’s behalf communicate with one another by
publishing messages to the event notification bus. For
instance, when the WRF model has finished executing on
the parallel computer, a message is returned to the Work-
flow Engine, which can then take action to start up the next
analysis task in the sequence of tasks indicated by the
graphical picture the scientist drew. The LEAD-CI is richer
in functionality than what is depicted in Fig. 1. It provides
meteorology researchers and students secure X.509 certif-
icate access to services, access to a large number of indexed
data products that are available in Unidata’s THREDDS
Data Server and OPeNDAP servers, complex weather

forecasting models, assimilation and visualization codes
such as Unidata’s IDV.

Simplifying assumptions

Severe weather events such as severe storms, tornadoes
have both a geospatial and a temporal component to them.
Even though both these components are important in
characterizing these events, for the initial research the
temporal component was ignored. This assumption allows
the detection algorithms to view the streaming data as a
single independent snapshot of the state of the environment.
This simplifies the mining algorithms as it is no longer
required to track these weather events as they grow, evolve,
move and die over time.

The justification of launching a finer resolution model
forecasts run after severe weather events have been detected
in real-time is based on the supposition that the storms may
still grow and move. It is also assumed that the storm
growth and movement is not too rapid, in other words the
detection and the forecast model run results are produced in
reasonable time to be useful. This assumption applies to
most storm systems but may not be applicable under few
scenarios such as squall lines.
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Fig. 1 LEAD-CI cyberinfrastructure support for stream mining. The
workflow engine submits workflows through the application factory to
the back end compute engine. The events processing component

(called Calder Stream Service) is selectively mining stream sources
(upper right), and communicating its results to the workflow engine
through trigger messages
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Model for environment driven action in Service
Oriented Architecture (SOA)

Computational science cyberinfrastructures often include a
workflow engine used to automatically execute sequences
of tasks on behalf of a user. The scientist specifies a desired
sequence of tasks through some manner of task graph
construction, either by writing the XML-based script
directly, through a visual interface (Gannon et al. 2007)
wherein which the scientist connects tasks together, or
through a declarative language or other simplification
means. A workflow graph’s ability to respond to events in
the external environment is built into the formal specifica-
tion of most workflow languages (through support for a
specific workflow patterns called a “persistent trigger
pattern” (Russell et al. 2006) where a trigger can initiate a
task (or the beginning of a thread of execution) that is not
contingent on the completion of any preceding tasks. In the
BPEL workflow language this behavior is achieved through
the <pick> construct waiting on specific message type; in
UML 2.0 Activity Diagrams, support is provided through
signals. We extend the persistent trigger pattern (Russell et
al. 2006) with event sequences to capture the behavior of an
interaction between a workflow and its external environ-
ment through a bounded period of time.

The manner in which a workflow responds to the
environment is as follows. The physical environment
(sensor networks and instruments), as shown in Fig. 2,
causes the generation of some number, im, of timestamped
events over a bounded time range, [t0− tk]. The events are
not necessarily of the same type or contained in a single
“stream”, and no ordering of events can be assumed. Events

are received at an activity, a rule or SQL-based events
processing activity, which carries out an arbitrarily complex
decision process to determine if an anomalous event (severe
weather) has occurred. An anomalous event causes the
generation of an event ei that is sent to the trigger
production activity. Note that since the activity is looking
for anomalous behaviors only, the number of events
generated in response to events processing, n, is signifi-
cantly smaller than the number of events generated by the
physical environment, m, that is n << mð Þ. The persistent
trigger workflow pattern is defined such that a “start
thread” listener can respond to a sequence of triggers, and
in response can execute a new activity that receives
parameters in the form of the event or message contents
at startup. An execution of a workflow results in the
generation of one or more result products that are labeled
<o1, … op> where p is not necessarily equal to n. The
scientist’s request to monitor the physical environment is
bounded in time. When the end of the time interval is
reached, a different kind of trigger, a “stop” trigger, must be
sent to signal the workflow that there are no further triggers.

To the scientist and cyberinfrastructure programmer
alike, the bridging of real time observational data into a
Service Oriented Architecture (SOA) such as LEAD is
transparent. This is accomplished by making events
processing just another web service that interacts with the
user through the portal and responds to requests the
workflow engine. As illustrated in Fig. 1, the events
processing tools are wrapped as a web service as shown
in the figure as the Calder Stream Service. The Calder
Stream takes requests in the form of “User query” through
the Portal Server. The stream service deploys requests (as

Fig. 2 The trigger-responsive
workflow on the left receives a
stream of notification events
from the trigger production ac-
tivity. The stream mining system
on the right detects and responds
to changes in the physical envi-
ronment. Many workflow lan-
guages support responses to
external triggers. Extended from
(Russell et al. 2006)
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long-running queries) to the compute engine. Queries ingest
data in real time from the stream sources, shown in the
upper right of the diagram as radar icons.

The architecture of one stream processing system is
shown in Fig. 3. Above the network layer are three
transport systems, each serving a unique role. The Unidata
Internet Data Dissemination/Local Data Manager (IDD/
LDM) system ingests and distributes observational data. The
data products, most often in the binary netCDF format, are
cracked open and the metadata passed as an XML document
to the Calder Runtime query processing engine (Liu et al.
2006). The XML documents are converted into the internal
format of Calder and queries are processed on this internal
format. The resulting derived events are converted back to
XML before being sent out. Calder supports SQL-like
queries on C structures. We have implemented serializing
and de-serializing operators that transform the XML docu-
ments into the internal C format and back in memory.

The netCDF data file is written to the local file system
for use by the Algorithm Development and Mining
(Rushing et al. 2005) library (described in next section).
The dQUOBEC publish-subscribe system transports events
within the system. The WS-messenger (Huang et al. 2006)
notification system, a content based publish-subscribe
system, is used to ferry trigger messages to the workflow
engine in the LEAD-CI. Above the communication layer is
the Calder runtime which invokes queries upon arrival of
relevant events. The events are instantiated from operators
in the Calder query operator library, which provides SQL-
like query operators and functionality, and the ADAM data
mining library which provides functions for mining
meteorology and atmospheric data.

Mining components

The Algorithm Development and Mining (ADaM) is an
extensive image processing and data mining toolkit

(Rushing et al. 2005). This toolkit contains almost all of
the typical image processing and data mining algorithms
used by researchers in their analysis as well as numerous
data preprocessing algorithms such as feature reduction,
subsetting, subsampling, etc. This toolkit was augmented
with new specialized mining algorithms to address the use
case selected for this proof of concept implementation.
These additional specialized mining algorithms are pre-
sented in detail in this section.

Detection algorithms

Mesocyclones

Mesocyclones are rotating updraft/downdraft structures
inside severe thunderstorms. Detection of mesocyclones is
important for severe weather forecast because over 90% of
mesocyclones are accompanied by severe weather such as
tornadoes or large hail (Burgess 1976). Mesocyclone
signatures can be identified from the Weather Surveillance
Radar —1988 Doppler (WSR-88D, (Crum et al. 1993)) and
appear as couplets of incoming and outgoing radial
velocities. Experienced radar analysts can identify mesocy-
clone signatures in WSR-88D data. However, this manual
identification process is tedious and time-consuming, and
can be overwhelming during a severe weather outbreak.
Consequently, several algorithms have been developed
(Stumpf et al. 1998; Zrnic et al. 1985; Desrochers and
Donaldson 1992) for automated mesocyclone signature
detection. The National Severe Storm Laboratory (NSSL)
MDA (Stumpf et al. 1998) is one such algorithm and is an
enhancement to the Build 9 WSR-88D Mesocyclone
Algorithm (B9MA) (Zrnic et al. 1985). Compared to
B9MA, NSSL MDA identifies a broader spectrum of
mesocyclones and has an improved probability of mesocy-
clone feature detection. The latest version of the NSSL
MDA includes a neural network classifier to filter out false
mesocyclone signatures (Marzban and Stumpf 1996).

Fig. 3 Architecture of stream
processing system. The three
transport systems (IDD/LDM,
dQUOBEC, and WS-messenger)
transport events from outside ob-
servational data sources, from
within the continuous query sys-
tem, and to the trigger activity
respectively. The Calder library
provides SQL-like operators and
the ADAM data mining library
provides the classification algo-
rithms. Together the libraries
support filter, fuse, transform, and
mining of data streams
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Mesocyclones have a velocity signature known as a
Rankine Vortex (Donaldson 1970), representing incoming
and outgoing radial velocity couplets in the radar velocity
field. We designed a Mesocyclone Detection Algorithm
(UAH MDA) that uses this velocity signature for detection.
The detection algorithm has three steps: (1) identify 1-
dimensional (1D) shear segments based on Rankine Vortex,
(2) identify two-dimensional (2D) shear regions in a scan
sweep, and (3) Aggregate collocated shear regions (along
the elevation scans) into 3-dimensional (3D) mesocyclone
signatures. A known criteria is used to determine the
strength of the shear segments (Stumpf et al. 1998). The
algorithm builds 2D shear regions using a region-growing
technique (Gonzalez and Woods 1992), i.e., grouping those
1D shear segments adjacent to each other into a 2D region.
A feature vector is calculated for each 2D shear region and
its features include central azimuth angle, central range,
central height, diameter, shear, maximum Gate-to-Gate
Velocity Difference (GTGVD), rotational velocity differ-
ence (Vrot), and mesocyclone strength index, as defined in
Stumpf et al. (1998). For a 3D mesocyclone signature, a
number of features such as base and top heights, core base
and top heights are calculated in addition to the mean
values of the corresponding 2D features. Consequently,
each 3D mesocyclone signature contains twenty features.
The UAH MDA can be used in conjunction with a classifier
to accurately detect mesocyclones and filter out false
signatures. Details on this algorithm and comparison of its
performance against other similar algorithms can be found
in Li et al. (2004).

Storm detection algorithm (SDA)

A flexible Storm Detection Algorithm (SDA) based on user
defined thresholds that would work on multiple types of
data sets such as the WSR88-D and numerical models
outputs was developed to meet the requirements of LEAD
project scientists and students. The algorithm is an
extension of a basic image thresholding algorithm where
the user provides the threshold value and the data points
with intensities higher than the specified threshold are
retained. Since storms must have a minimum size and
spatial volume, SDA uses region growing technique to
build 3D volumes using the retained pixels. Volumes that
meet the minimum size criteria are kept. SDA output
contains spatial location in latitude and longitude, distance
from radar sites, the sizes and depths of the storm, the base
height of the storm, and mean and maximum reflectivity in
the storm for each of the storms detected in a data volume.
The SDA complements the MDA as it targets a larger
phenomenon (storms). The two algorithms can be used
concurrently do identify storms and tornadoes to aid in
severe weather prediction and forecast.

Storm clustering algorithm (SCA)

In many cases, the SDA and the MDA can produce
numerous event detections for a given spatial region of
interest. Brute force approach of spawning a finer resolu-
tion model run for each detection can be computationally
prohibitive and can produce redundant forecast especially if
the detections have close spatial proximity. A better
approach is to spatially group the detections, determine
which groups are most interesting and spawn limited finer
resolution models runs for groups that ranked high. We
have developed a Storm Clustering algorithm to address
this problem. Our algorithm is based on the DBSCAN
algorithm (Ester et al. 1996). The DBSCAN algorithm is a
density-based clustering algorithm, which regards a spatial
cluster as a region in data space that contains data samples
with certain density. Data density around a data sample is
determined as the number of samples N within a distance ɛ
to the sample. Two data samples are connected if their
distance is less than ɛ. DBSCAN algorithm connects
neighboring samples into spatial clusters and can identify
a spatial cluster of any shape. The N and ɛ parameters
determines the number of clusters in a data set and
clustering performance and indirectly determines the
number of clusters in a data set.

Since the purpose of the storm clustering algorithm is to
automatically group data samples into optimal number of
clusters, we have employed the use of the Hartigan index
(1975) criterion. The Hartigan index (1975) is a statistical
index that examines the relative change of fitness as
number of clusters changes. For a given data set containing
N samples, Xi, i=1,N where Xi is a M-component vector
representing M features for sample i, the overall fitness for
the clustering can be expressed as the square of error for all
samples:

err kð Þ ¼
Xk

i¼1

XN

j¼1;j2Ci
d2 Xj;XCi

� �
;

Where d is the distance between data sample Xj and the
center XCi that it belongs to. err(k) is the total square of
error for k cluster partitioning.

The Hartigan index H(k) for k partitioning, as a ratio, is
expressed as follow:

H kð Þ ¼ n� k � 1ð Þ err kð Þ � err k þ 1ð Þ
err k þ 1ð Þ

Since err(k) is monotonically non-increasing with in-
creasing k, the ratio is a relative measure of the reduction of
square error when number of clusters increases from k to
k+1. The multiplier correction term of (N−k−1) is a
penalty factor for large number of cluster partitioning. The
optimal k number is the one that maximizes the H(k).
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Once the spatial clusters have been identified, they need
to be ranked based on observed measures. This ranking
allows the CEP system to only spawn detailed forecast runs
on limited regions. We have developed a heuristic measure-
Storm Severity Factor (SSF) to rank the spatial clusters.
SSF is a weighted average of these geophysical attributes
and is estimated as follow:

SSF ¼ w1 � cs þ w2 � cmd þ w3 � cmi;

where cs, cmd and cmi are the normalized attributes of Cs,
Cmd and Cmi, respectively. Cs is the total size of all storms
in a cluster; Cmd is the mean storm depth in a cluster; Cmi is
the mean storm intensity in a cluster. ω1, ω2 and ω3 are the
weights for the three geophysical attributes cs, cmd and cmi,
respectively. These weights indicate the relative importance
of the three geophysical attributes in evaluating the storm
severity and ω1+ω2+ω3=1. Statistical z-score is used to
normalize each geophysical attribute. Therefore, cs is
calculated as follow:

cs ¼
Cs � mcs

scs
;

where mcs and scs are the mean and standard deviation of
Cs, respectively. Same is true for cmd and cmi. A large SSF
value indicates severe weather for a spatial cluster and is
ranked at top of the list.

Figure 4 shows the storm clusters identified over the
borders of Oklahoma, Kansas and Missouri on 21:00–21:30
UT, May 6, 1994. The SDA was applied to the reflectivity

field of WSR88D-II radar product. The threshold was set at
30.0 dBz, implying all radar volume with reflectivity
intensity over 30 dBz were considered as part of a storm.
Total of 19 storms from six radar volume scans were
detected during this time period. The SCA algorithm was
then applied to the identified storms. Three storm clusters
were automatically identified and were labeled as C1, C2
and C3. Table 1 shows the statistics of geophysical
properties of the three storm clusters, as discussed above,
with the ranking using the SSF measure. The total storm
size, mean storm depth and mean storm intensity were
considered equally important to characterize the severity of
storm clusters. Consequently, each of the weights ω1, ω2

and ω3 in SSF equation was set as 1/3, respectively.
Storm cluster 2 was ranked first, followed by storm

cluster 1 (see Table 1). Storm cluster 3 was the least
significant of the three. Detailed examination revealed that
storm cluster 1 was more severe than storm cluster 2 with
respect to mean storm depth and mean storm intensity.
However, the total size of storm cluster 2, as contributed by
the total number of storms in the cluster, was significantly
larger than that of storm cluster 1. As a result, its SSF
measure is larger than that of storm cluster 1. Different
weight setting may cause different ranking result. The true
(non-normalized) values of total storm size Cs, mean storm
depth Cmd, and mean storm intensity, Cmi, are presented in
Table 1.

Dynamic triggering of forecast models

Detecting severe storm patterns in real time by looking
though observational data is like sorting through hay in a
haystack to find a needle; it requires working through large
volumes of data in a short period of time. This events
processing requires a combination of domain-independent
operators (e.g., to fuse streams, filter unwanted data, count
instances, and create new streams) plus domain-dependent
operators, such as the data mining algorithms we describe
here. There are two main philosophies of event processing
(Liu et al. 2006): the first are the SQL-based approaches,
which use a declarative, query-like language to specify the

Fig. 4 Storm clusters identified over the borders of Oklahoma,
Kansas and Missouri on 21:00–21:30 UT, May 6, 1994. Three clusters
were identified and labeled as C1, C2 and C3

Table 1 Statistics of geophysical properties (storm size Cs, mean
storm depth Cmd, and mean storm intensity, Cmi), SSF measure and
severity rank of the storm clusters identified using the SCA on 21:00–
21:30 UT, May 6, 1994

Storm
cluster

Storm
number

Cs Cmd Cmi SSF Rank

1 5 398.75 11.59 39.63 1.976 2
2 14 1,096.62 5.0 38.39 4.027 1
3 2 73.0 3.74 38.11 −0.742 3
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desired events processing behavior. The second is the rule-
based approaches that view anomaly detection as behavior
that can be detected by means of a series of rules that are
executed in a forward or backward manner. Interaction
between the events processing system and a workflow
engine can best be illustrated by an example. A scientist
through a graphical interface in the LEAD portal bounds a
700 square mile region using a graphical map and specifies
a request that there be a “watch on a 700 square mile region
of the country for the next 4 h, with a 6-h weather forecast
triggered on each occurrence of a severe storm.” She would
also through the LEAD portal configure the 6-h weather
forecast over a similarly spatially-configured region.
Weather triggered workflows, which our research has
enabled, are a scientific research outcome of LEAD, not
having been demonstrated in a repeatable way before. In
LEAD, we use the Calder events processing system and
ADAM data mining toolkit to mine the real-time weather
data and trigger forecast workflows.

The events processing is carried out as a sequence of
operators where events are pushed from downstream
operators to upstream operators. This is best illustrated
through an example as given in Fig. 5. NEXRAD Doppler
WSR 88-D data is ingested at the events processing service,
shown in the left of the diagram, marked with the
timestamp at which the data were generated at the
instrument. The sensed data for the radars falling within
the region selected by the meteorologist are passed on to an
“aggregate” node where they are fused based on their
timestamp. These event snapshots are passed to a parallel
classification operation that executes one instance of the
detection algorithm such as SDA per radar stream. The final
node merges the results, and applies the SCA to determine
the relevant storm clusters and their spatial bounds (as seen

in Fig. 4). For each storm cluster, a notification event is
generated and sent to the LEAD-CI workflow engine,
which triggers a latent weather forecast workflow. The
newly generated information can then be used in subse-
quent executions of the query. The latter is shown as a
stream of derived data feeding back into the first operator.

The model we propose here for bridging the observa-
tional data from sensor networks and instruments into a
SOA such as the LEAD-CI is through an events processing
system which combines filtering, aggregating, and temporal
joins with sophisticated data mining algorithm libraries.
These systems are built for the continuous processing
required by constantly arriving data. The interoperability
between the events processing system and the remaining
SOA is achieved by means of “triggers” that the workflow
engine can understand and react to. Triggers are delivered
on a common enterprise service bus.

Summary and future work

Information technology research has given rise to cyberin-
frastructure frameworks that serve the needs of next
generation computational science knowledge discovery.
Challenges exist in making these frameworks responsive
to the physical environment around them. While workflow
engines are quite adept at executing known sequences of
tasks, to date they lack responsiveness to the dynamic
behavior required to respond to weather events as they
occur. We propose in this paper a model and algorithms for
bridging the gap between the physical environment and the
cyberinfrastructure framework by means of an events
processing approach to responding to anomalous behavior
and sophisticated data mining algorithms that apply

Repeat for 3 hours

Filter out NEXRAD level 
II radars not falling 
within 700 sq. mi. 

bounded region

12:04
12:10

12:16

12:14

12:06

12:00

Aggregate based on 
“happens at same time”

Classification (e.g., 
DBScan or K-means on 
one radar (in parallel))

Identify number of 
workflows to trigger in 

this time step.  Equates 
to number of unique 

storms detected. 

History of previous 
storm detections over 

life of query.

Fig. 5 An example event-processing query. Events travel from left to
right. The NEXRAD Level II Doppler data arrives from multiple
radars and is filtered according to the spatial area in which the scientist

is interested. The detection algorithm executes in parallel on the radar
data. The previous storm detections are retained from one execution of
the query to the next
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classification techniques to the detection of severe storm
patterns. The ideas presented in this paper have been
implemented in the LEAD-CI prototype.

As with any research, several interesting research
questions both at the system and the mining algorithm
level were discovered while designing and developing this
prototype. At the systems level, questions for future work
focus on finding the optimal frequency of executing the
clustering algorithm, on differentiating the triggers for
storms for which the forecast runs has already been
launched, and on sharing the results across users in order
to limit redundant forecasts.

Our basic assumption to ignore the temporal aspect of
weather events in order to simplify the mining algorithms
has to be modified. Our future research will look at adding
mining algorithms that can track the growth and the
movement of the storms in both space and time. The other
algorithm level research questions that require further
research focus on exploring the performance of generic
detection algorithms as compared to developing specialized
mining algorithms per phenomenon. The cluster ranking
metric is a simple statistical Z-score measure and has not
been whetted by the science community and will require
further investigation.
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