
RESEARCH ARTICLE

Grid system for flood extent extraction from satellite images

Nataliia Kussul & Andrii Shelestov & Serhiy Skakun

Received: 17 April 2008 /Accepted: 9 September 2008 / Published online: 2 October 2008
# Springer-Verlag 2008

Abstract Floods are among the most devastating natural
hazards in the world, affecting more people and causing
more property damage than any other natural phenomena.
One of the important problems associated with flood
monitoring is a flood extent extraction from satellite
imagery, since it is impractical to acquire the flood area
through field observations. This paper presents a new
method to the flood extent extraction from synthetic-aperture
radar (SAR) images that is based on intelligent computa-
tions. In particular, we apply artificial neural networks, self-
organizing Kohonen’s maps (SOMs), for SAR image
segmentation and classification. We implemented our ap-
proach in a Grid system that was used to process data from
three different satellite sensors: ERS-2/SAR during the
flooding on the river Tisza, Ukraine and Hungary (2001),
ENVISAT/ASARWSM (Wide Swath Mode) and RADAR-
SAT-1 during the flooding on the river Huaihe, China (2007).
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Introduction

Increasing numbers of natural disasters have demonstrated to
the mankind the paramount importance of the natural hazards
topic for the protection of the environment, and the citizens.
Climate change is likely to increase the intensity of rain-
storms, river floods, and other extreme weather events. The
dramatic floods of Central and Eastern Europe in summer
2002 and spring 2001 and 2006 emphasize the extreme in
climatic variations. Floods are among the most devastating
natural hazards in the world, affecting more people and
causing more property damage than any other natural
phenomena (Wood 2001). That is why, the problems of
flood monitoring and flood risk assessment are among
priority tasks in national satellite monitoring systems and
the international Global Earth Observation System of
Systems (GEOSS; Work Plan 2007–2009 defined by the
international Group on Earth Observation—GEO (2007)).

Efficient monitoring and prediction of floods and risk
management is impossible without the use of Earth Obser-
vation (EO) data from space. Satellite observations enable
acquisition of data for large and hard-to-reach territories, as
well as continuous measurements. One of the most important
problems associated with a flood monitoring is a flood extent
extraction, since it is impractical to determine the flood area
through field observations. The flood extent is very
important for calibration and validation of hydraulic
models to reconstruct what happened during the flood
and determine what caused the water to go where it did
(Horritt 2006). The flood extent can be also used for
damage assessment and risk management, and can benefit
to rescuers during flooding (Corbley 1999).

The use of optical imagery for flood monitoring is limited
by severe weather conditions, in particular presence of clouds.
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In turn, SAR (synthetic aperture radar) measurements from
space are independent of daytime and weather conditions and
can provide valuable information to monitoring of flood
events. This is mainly due to the fact that smooth water
surface provides no return to antenna in microwave spectrum
and appears black in SAR imagery (Elachi 1988; Rees 2001).
In contrast, a wind-ruffled surface can give backscatter larger
than that of the surrounding land. This, in turn, considerably
complicates the detection of water surfaces on SAR
images for flood applications. Though such surfaces are
not present in our data sets, we plan to investigate the
influence of the wind on water detection from SAR
imagery in the future works.

As a rule, flood extent extraction procedure from SAR
imagery consists of the following steps. The first step is to
re-construct a satellite image taking into account the
calibration, the terrain distortion using digital elevation
model (DEM) and providing exact geographical coordi-
nates. The second step is to provide partition of the image
into regions that have the same characteristics (segmenta-
tion). And the third step consists in the classification to
determine the flood extent.

This paper proposes to use artificial neural networks
(NN), in particular self-organizing Kohonen’s maps
(SOMs; Haykin 1999; Kohonen 1995), for SAR image
segmentation, and the further classification. SOMs provide
effective software tool for the visualization of high-
dimensional data, automatically discover of statistically
salient features of pattern vectors in data set, and can find
clusters in training data pattern space which can be used to
classify new patterns (Kohonen 1995). We applied our
approach to the processing of data acquired from three
different satellites: ERS-2/SAR during the flooding on the
river Tisza, Ukraine and Hungary, 2001, ENVISAT/ASAR
WSM (Wide Swath Mode), and RADARSAT-1 during the
flooding on the river Huaihe, China, 2007.

As to software implementation of our approach, we
should take into account the following considerations: (1)
the need to fuse data from various sources: optical
(without clouds) and SAR imagery, DEM, land cover/
use, etc.; (2) the need for creation of image mosaics with
the aim to analyze large territories; (3) the need for
processing in the near real-time for fast response within
international programs and initiatives for disaster moni-
toring, in particular the International Charter “Space and
Major Disasters” and the International Federation of Red
Cross. All these factors, as well as the need for managing
large volumes of satellite data, lead to the use of Grid
technologies (Foster 2002; Fusco et al. 2003, 2007;
Shelestov et al. 2006). This paper will also highlight
issues regarding the creation of an InterGrid infrastructure
that integrates resources of the Space Research Institute
NASU-NSAU, the Institute of Cybernetics NASU and the

China’s Remote Sensing Satellite Ground Station of CAS
(RSGS-CAS).

Existing approaches to flood extent extraction

To this end, different methods were proposed to flood
extent extraction from satellite imagery. In the European
Space Agency (ESA), a multi-temporal technique is applied
to the flood extent extraction from SAR images (ESA Earth
Watch, http://earth.esa.int/ew/floods). This technique uses
SAR images of the same area taken on different dates (one
image is acquired during flooding and the second one in
“normal” conditions). The resulting multi-temporal image
clearly reveals change in the Earth’s surface by the presence
of colour in the image. This method has been implemented
in ESA’s Grid Processing on Demand (G-POD, http://
eogrid.esrin.esa.int).

Cunjian et al. (2001) applied threshold segmentation
algorithm to flood extent extraction from RADARSAT-1
imagery with the support of digital topographic data.
Firstly, RADARSAT SAR imagery was filtered by En-
hanced Frost filter (Frost et al. 1982) with window size of
7×7 pixels, and geo-registered to the topographic map.
Secondly, flood extent was primarily extracted from
RADARSAT SAR imagery using threshold segmentation.
Thirdly, DEM was created from the digital topographic data
by using GIS software. Fourthly, simulated SAR imagery
was created from DEM. Finally, the simulated SAR
imagery was registered to RADARSAT SAR imagery, and
the shade from the simulated SAR image was used to mask
the mislabeled flood extent from RADARSAT SAR due to
its shadow influence. The drawback of this approach is that
threshold value should be chosen manually, and will be
specific for different SAR instruments and images.

Csornai et al. (2004) used ESA’s ERS-2 SAR images and
optical data (Landsat TM, IRS WIFS/LISS, NOAA
AVHRR) for flood monitoring in Hungary in 2001. To
derive flood extent from SAR imagery, change detection
technique is applied. This technique uses two images made
before and during the flood event, and some “index” that
reveals changes in two images and, thus, the presence of
water due to the flooding (Wang 2002).

Though these methods are rather simple and fast (in
computational terms), they possess some disadvantages:
they need manual threshold selection and image segmenta-
tion, require expertise in visual interpretation of SAR images
and require the use of complex models for speckle reduction;
spatial connections between pixels are not concerned.

More sophisticated approaches have been proposed to
segment SAR imagery for flood and coastal applications.

Horrit (1999) has developed a statistical active contour
model for segmenting synthetic aperture radar (SAR)
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images into regions of homogeneous speckle statistics. The
technique measures both the local tone and texture along
the contour so that no smoothing across segment bound-
aries occurs. A smooth contour is favoured by the inclusion
of a curvature constraint, whose weight is determined
analytically by considering the model energy balance. The
algorithm spawns smaller snakes to represent multiply
connected regions. The algorithm was tested to segment real
SAR imagery from ESA’s ERS-1 satellite. The proposed
approach was capable of segmenting noisy SAR imagery
whilst accurately depicting (to within 1 pixel) segment
boundaries. But application of active contour algorithm, in
general, is subject to certain difficulties such as getting stuck
in local minima, poor modelling of long concavities, and
producing inaccurate results when the initial contour is
chosen simple or far from the object boundary (Shah-
Hosseini and Safabakhsh 2003). For statistical active
contour models, one should also have a priori knowledge
of image statistical properties. In a case of real SAR
imagery, statistics may be badly represented by a modelled
distribution. Moreover, spatial correlation and regions of
smoothly varying statistics may also occur (Horrit 1999).

In an approach proposed by Niedermeier et al. (2000), an
edge-detection method is first applied to SAR images to
detect all edges above a certain threshold. A blocktracing
algorithm then determines the boundary area between land
and water. A refinement is then achieved by local edge
selection in the coastal area and by propagation along
wavelet scales. Finally, the refined edge segments are
joined by an active-contour algorithm. In this case, the
error is estimated by comparing the results achieved with a
model based on visual inspection: the mean offset between
the final edge and the model solution is estimated to be 2.5
pixels (Niedermeier et al. 2000). But the number of the
parameters and threshold values affecting processing
robustness is considerable in this approach.

Dellepiane et al. (2004) have proposed an innovative
algorithm being able to discriminate water and land areas in
order to extract semi-automatically the coastline by means
of remote sensed SAR images. This approach is based on
fuzzy connectivity concepts and takes into account the
coherence measure extracted from an InSAR (Interferomet-
ric Synthetic Aperture Radar) couple. The method com-
bines uniformity features and the averaged image that
represents a simple way of facing textural characteristics.
One major disadvantage of this method is that we should
have two precisely co-registered SAR images in order to
estimate InSAR coherence measure.

Martinez and Le Toan (2007) used a time series of 21
SAR images from L-band PALSAR instrument onboard
JERS-1 satellite to map the flood temporal dynamics and
the spatial distribution of vegetation over a large Amazo-
nian floodplain. The mapping method is based on decision

rules over two decision variables: (1) the mean backscatter
coefficient computed over the whole time series; (2) the
total change computed using an “Absolute Change”
estimator. The first variable provides classification into
rough vegetation types while the second variable yields a
direct estimate of the intensity of change that is related to
flood dynamics. The classifier is first applied to the whole
time series to map the maximum and minimum flood extent
by defining three flood conditions: never flooded (NF);
occasionally flooded (OF); permanently flooded (PF).
Then, the classifier is run iteratively on the OF pixels to
monitor flood stages during which the occasionally flooded
areas get submerged. The mapping accuracy is assessed on
one intermediate flood stage, showing a precision in excess
of 90%. But to achieve this precision, the proposed
classifier should be built on more than eight images
(Martinez and Le Toan 2007).

In this paper, we propose a neural network approach to
flood extent extraction from satellite SAR imagery. Our
approach is based on segmentation of a single SAR image
using self-organizing Kohonen maps (SOMs) and further
image classification using auxiliary information on water
bodies derived from Landsat-7/ETM+ images and Corine
Land Cover (for European countries).

Data sets description

We applied our approach to the processing of remote-
sensing data acquired from three different satellites: ERS-2
(flooding on the river Tisza on March 2001—see Fig. 1),
ENVISAT and RADARSAT-1 (flooding on the river
Huaihe on July 2007—see Fig. 2). Data from European
satellites were provided from ESA Category-1 project
“Wide Area Grid Testbed for Flood Monitoring using
Spaceborne SAR and Optical Data” (No. 4181). Data from
RADARSAT-1 satellite were provided from RSGS-CAS.

A pixel size and ground resolution of ERS-2 imagery (in
ENVISAT format, SLC—Single Look Complex) were 4
and 8 m, respectively; for ENVISAT imagery—75 and
150 m; and for RADARSAT-1 imagery—12.5 and 25 m.

For more precise geocoding of SAR images (in
particular, ERS-2 images) and validation of obtained
results, we used the following set of auxiliary data:
Landsat-7/ETM+, European Corine Land Cover (CLC
2000) and SRTM DEM (version 2).

Neural network is built for each SAR instrument separate-
ly. In order to train and test neural networks, we manually
selected the ground-truth pixels with the use of auxiliary data
sets that correspond to both territories with the presence of
water (we denote them as belonging to a class “Water”) and
without water (class “Nowater”). The number of the ground-
truth pixels for each of the image is presented in Table 1.
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For each image, these data were randomly divided into
the training set (which constituted 75% of total amount) and
the testing set (25%). Data from the training set were used
to train the neural networks, and data from the testing set
were used to verify the generalization ability of the neural
networks, i.e. the ability to operate on independent,
previously unseen data sets (Haykin 1999).

Among the selected ground-truth pixels we have not
used those that relate to the boundaries between water and
no water lands. Classification of SAR images on more than

two classes (e.g. “Water”, “No water”, different levels of
water and vegetation presence) is beyond the scope of this
paper and will be investigated in future papers.

Neural network method for flood extent extraction
from SAR imagery

Our method for flood extent extraction consists of the data
pre-processing, image segmentation and classification on

Fig. 1 Flooding (a, date of
acquisition is 10.03.2001) and
post-flooding (b, 14.04.2001)
SAR/ERS-2 images of the river
Tisza. Rectangle on top image
indicates areas shown in Fig. 4a
(© ESA 2001)
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two classes using self-organising Kohonen maps (SOMs).
These steps are as follows:

1. Transformation of raw data to lat/long projection.
Level-1 data from ERS-2 and ENVISAT satellites in
Envisat format and from RADARSAT-1 satellite in
CEOS format were provided with ground control points
(GCPs) inside the files that were used to transform
images to lat/long projection in GeoTIFF format. For
this purpose, we used gdalwarp utility from GDAL
(Geospatial Data Abstraction Library, http://www.gdal.
org).

2. Image calibration. In order to calibrate ERS-2/SAR
and ENVISAT/ASAR images, we used standard pro-
cedures described in (Laur et al. 2004) and (Rosich and
Meadows 2004), respectively. As a result of image
calibration, the output signal (pixel values) was trans-
formed to backscatter coefficient (in dB). For RADAR-
SAT-1 image, we used original pixel values in DN
(digital number).

3. Geocoding. We made additional geocoding procedure
for the ERS-2 image in order to improve the accuracy.
This was performed manually in RSI Envi software
with the use of Landsat/ETM + and CLC2000 data.

Fig. 2 SAR images acquired
from ENVISAT (a, 15.07.2007)
and RADARSAT-1 (b,
19.07.2007) satellites during the
flooding on the river Huaihe,
China (© ESA 2007; © CSA
2007)
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4. Orthorectification of the SAR images is performed
using a procedure described in (Cossu et al. 2007).

5. Image processing using self-organizing Kohonen’s
maps (SOMs). SOM is a type of artificial neural
network that is trained using unsupervised learning to
produce a low-dimensional (typically two dimension-
al), discretised representation of the input space of the
training samples, called a map (Haykin 1999; Kohonen
1995). The map seeks to preserve the topological
properties of the input space. SOM is formed of the
neurons located on a regular, usually one- or two-
dimensional grid. Neurons compete with each other in
order to pass to the excited state. The output of the map
is a, so called, neuron-winner or best-matching unit
(BMU) whose weight vector has the greatest similarity
with the input sample x.

The network is trained in the following way: weight
vectors wj from the topological neighbourhood of BMU
vector i are updated according to (Haykin 1999; Kohonen
1995)

i xð Þ ¼ arg min
j¼1;L

x� wj

�
�

�
�;

wj nþ 1ð Þ ¼ wj nð Þ þ h nð Þhj;i xð Þ nð Þ x� wj nð Þ� �

; j ¼ 1; L;

ð1Þ
where η is learning rate (see Eq. 3), hj,i(x)(n) is a
neighbourhood kernel around the winner unit i, x is an
input vector, �k k means Euclidean metric, L is a number of
neurons in the output grid, n denotes a number of iteration
in the learning phase.

The neighbourhood kernel function hj,i(x)(n) is taken to
be the Gaussian

hj;i xð Þ nð Þ ¼ exp � rj � ri xð Þ
�
�

�
�
2

2s2 nð Þ

 !

ð2Þ

where rji(x) are the vectorial locations in the display grid of
the SOM, σ(n) corresponds to the width of the neighbor-
hood function, which is decreasing monotonically with the
regression steps.

For learning rate we used the following expression:

h nð Þ ¼ h0 � e�
n
t ; h0 ¼ 0:1; ð3Þ

where τ is a constant. The initial value of 0.1 for learning
rate was found experimentally.

Kohonen maps are widely applied to the image process-
ing, in particular image segmentation and classification
(Haykin 1999). Prior neural network training, we need to
select image features that will be give to the input of neural
network. For this purpose, one can choose original pixel
values, various filters, Fourier transformation etc (Gonzalez
and Woods 2002). In our approach we use a moving
window with backscatter coefficient values for ERS-2 and
ENVISAT images and DNs for RADARSAT-1 image as
inputs to neural network. The output of neural network, i.e.
neuron-winner, corresponds to the central pixel of moving
window (see Fig. 3).

In order to choose appropriate size of the moving
window for each satellite sensor, we ran experiments for
the following windows size: 3×3, 5×5, 7×7, 9×9 and
11×11.

We, first, used SOM to segment each SAR image where
each pixel of the output image was assigned a number of the
neuron in the map. Then, we used pixels from the training set
to assign each neuron one of two classes (“Water” or “No
water”) using the following rule. For each neuron, we
calculated a number of pixels from the training set that
activated this neuron. If maximum number of these pixels
belonged to class “Water”, then this neuron was assigned
“Water” class. If maximum number of these pixels belonged
to class “No water”, then this neuron was assigned “No
water” class. If neuron was activated by neither of the
training pixels, then it was assigned “No data” class.

For neural network quality assessment, we used two
parameters:

Quantization error that is estimated using the following
expression

QE ¼ 1

N

XN

t¼1

xt � wi xtð Þ
�
�

�
�; i xtð Þ

¼ arg min
j¼1;L

xt � wj

�
�

�
�;

where N is the number of the pixels.

Fig. 3 An example of moving
window of 3×3 pixels as an
input to the neural network

Table 1 Distribution of the ground-truth pixels for ERS-2, ENVISAT
and RADARSAT-1 images

Satellite image/Region Number of ground-truth pixels for images

“No water” “Water” Total

ERS-2/Ukraine 148,182 153,096 301,278
ENVISAT/China 60,575 34,493 95,068
RADARSAT-1/China 135,263 130,244 265,507
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Classification rate that shows relative number of
correctly classified pixels from the training and testing
sets.

Results of image processing

In order to choose the best neural network architecture, we
ran experiments for each image varying the following
parameters:

size of the moving window for images that define the
number of neurons in the input layer of the neural
network;

number of neurons in the output layer, i.e. the sizes of
two-dimensional output grid.

Other parameters that were used during the image
processing are as follows:

neighbourhood topology: hexagonal;
neighbourhood kernel around the winner unit: the
Gaussian function (see Eq. 2);
initial learning rate: 0.1;
number of the training epochs: 20.

The initial values for the weight vectors are selected as a
regular array of vectorial values that lie on the subspace
spanned by the eigenvectors corresponding to the two
largest principal components of the input data (Kohonen
1995). Using this procedure, computation of the SOM can
be made orders of magnitude faster, since (1) the SOM is
then already approximately organized in the beginning, (2)
one can start with a narrower neighbourhood function and
smaller learning rate.

The results of experiments for the images are presented
in Table 2.

For the images with higher spatial resolution (i.e. ERS-2
and RADARSAT-1), the best results were achieved for
larger moving window 7×7. In turn, for the ENVISAT/
ASAR WSM image, we used the moving window of
smaller size 3×3. The use of higher dimension of input
window for the ENVISAT image led to the coarser

Table 2 Results of SAR images classification using SOMs

Satellite image

ERS-2 ENVISAT RADARSAT-1

Input dimension 7×7 3×3 7×7
Output grid of neurons 10×10 7×5 5×5
Classification rate
for training set

«No water» 79.40% 100.0% 99.99%
«Water» 90.99% 95.64% 91.93%
Total 85.29% 98.41% 96.04%

Classification rate
for testing set

«No water» 79.57% 100.0% 99.99%
«Water» 91.06% 95.90% 91.89%
Total 85.40% 98.52% 95.99%

Fig. 4 Raw ERS-2 image (a) and the resulting flood extent shown with white colour (b) for the river Tisza, Ukraine and Hungary (© ESA 2001)
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resolution of the resulting flood extent image and reduced
classification rate. The resulting flood extent images for
ERS-2, ENVISAT and RADARSAT-1 satellites are shown
in Figs. 4, 5 and 6.

For comparison we also computed the flood extent using
threshold segmentation algorithm. For each SAR image,
threshold values were chosen manually in order to
maximize the classification rate for the testing sets (see
Table 3).

The resulting flood extent images derived using the
threshold segmentation are shown in Fig. 7.

From Table 3 and Fig. 7 we can see that for ENVISAT
image threshold algorithm gave rather good results. While
for the ERS-2 and RADARSAT-1 images, this algorithm
fails to produce precise flood extent. But, again, the
threshold algorithm requires manual selection and adjust-
ment of the threshold values that precludes use of the
algorithm in automated mode.

Implementation in Grid infrastructure

Regarding implementation of our approach, we should take
into account the following considerations:

1. The need to integrate multi-source data. For example,
we had to use both ENVISAT and RADARSAT-1
imagery in order to derive integrated information on
flood extent for the River Huiahe, China. Neither of
these two images covered the whole basin of the river;

2. The need for the creation of image mosaics. When
analysing large territories, we need to complement
SAR-derived flood extent with information from high-
resolution optical imagery. This requires the creation of
mosaics from dozens of images which is a time
consuming task, and effective management of large
volumes of satellite data;

3. Security issues regarding satellite data policy;

Fig. 5 Raw ENVISAT image (a) and the resulting flood extent shown with white colour (b) for the river Huaihe, China (© ESA 2007)

Fig. 6 Raw RADARSAT-1 image (a) and the resulting flood extent shown with white colour (b) for the river Huaihe, China (© CSA 2007)
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4. The need for processing in the near real-time for fast
response within international programs and initiatives
for disaster monitoring, in particular the International
Charter “Space and Major Disasters” and the Interna-
tional Federation of Red Cross.

All these factors, as well as the need for managing large
volumes of satellite data, lead to the use of Grid technologies
(Foster 2002; Fusco et al. 2003, 2007; Shelestov et al. 2006).
In this case, a Grid environment is considered not only for
providing high-performance computations, but, in fact, can
facilitate interactions between different actors by providing a
standard infrastructure and a collaborative framework to
share data, algorithms, storage resources, and processing
capabilities (Fusco et al. 2007).

We developed a parallel version of our method for flood
extent extraction that can be run on several computational

Fig. 7 The flood extent produced with the use of threshold segmentation: a ERS-2 image, b ENVISAT image, and c RADARSAT-1 image (©
ESA 2001, 2007; © CSA 2007)

Table 3 Results of SAR images classification using threshold
segmentation

Satellite image

ERS-2 ENVISAT RADARSAT-1

Classification rate
for training set

«No water»
(%)

53.55 91.36 92.90

«Water» (%) 82.30 99.98 93.27
Total (%) 67.68 94.50 93.08

Classification rate
for testing set

«No water»
(%)

53.63 91.36 92.97

«Water» (%) 81.99 99.98 93.35
Total (%) 67.60 94.47 93.16
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nodes. Parallelization of the image processing is performed in
the following way: SAR image is split into the uniform parts
that are processed on different nodes using the OpenMP
Application Program Interface (www.openmp.org). We
deployed this method in the InterGrid infrastructure that
integrates resources of geographically distributed organisa-
tions, in particular:

Space Research Institute NASU-NSAU (Ukraine) with
deployed computational and storage nodes based on
Globus Toolkit 4 (htpp://www.globus.org) and gLite 3
(http://glite.web.cern.ch) middleware, access to geo-
spatial data and Grid portal;
Institute of Cybernetics of NASU (Ukraine) with
deployed computational and storage nodes based
Globus Toolkit 4 middleware and access to computa-
tional resources (approximately 500 processors);
RSGS-CAS (China) with deployed computational
nodes based on gLite 3 middleware and access to
geospatial data (approximately 16 processors).

It is also worth mentioning that satellite data are
distributed through the InterGrid environment. ENVISAT
WSM data are stored on ESA’s rolling archive and
routinely downloaded for the Ukrainian territory. Then,
they are stored in the Space Research Institute archive that

is accessible via the InterGrid. For other territories,
ENVISAT data are acquired on demand. RADARSAT-1
data are stored on RSGS-CAS site.

The use of the Grids allowed us to considerably reduce
the time required for image processing. In particular, it took
approximately 10 min to process a single SAR image on a
single workstation. The use of Grid computing resources
allowed us to reduce the time to less than 1 min.

Access to the resources of the InterGrid environment is
organised via a high-level Grid portal that have been deployed
using GridSphere framework (Novotny et al. 2004). Through
the portal, users can access the required satellite data and
submit jobs to the computing resources of the InterGrid in
order to process satellite imagery. The workflow of the SAR
image processing steps in the Grid (such as transformation,
calibration, orthorectification, segmentation and classifica-
tion) is controlled by a Karajan engine (http://www.grid
workflow.org/snips/gridworkflow/space/Karajan).

The existing architecture of the InterGrid is shown in
Fig. 8.

In order to visualize the results of image processing in the
InterGrid environment, we use an OpenLayers framework
(http://www.openlayers.org) and UNM Mapserver v5. UNM
Mapserver supports the Open Geospatial Consortium (OGC)
Web Map Service (WMS) standard that enables the creation

Fig. 8 Architecture of the InterGrid infrastructure
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and display of registered and superimposed map-like views
of information that come simultaneously from multiple
remote and heterogeneous sources (Beaujardiere 2006).

The developed services for flood monitoring provide
access to the basic geospatial data VMap0 that is acquired

automatically via Internet using OGC WMS standard, raw
SAR imagery, and the derived flood extent. For each
region, we also created mosaics from optical Landsat-7/
ETM+. These services are accessible via Internet by
address http://floods.ikd.kiev.ua/. The examples of the

Fig. 9 Visualisation of the
results of image processing for
ERS-2/SAR data during flood-
ing on the river Tisza, Ukraine
(March 2001)

Fig. 10 Visualisation of the
results of image processing for
ENVISAT/ASAR WSM and
RADARSAT-1 data during
flooding on the river Huaihe,
China (July 2007)
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screenshots for the Ukrainian and Chinese case-study areas
are shown in Figs. 9 and 10.

Conclusions

In this paper we proposed a neural network approach to
flood extent extraction from SAR imagery. To segment
and classify SAR image, we applied self-organizing
Kohonen’s maps (SOMs) that possess such useful prop-
erties as ability to automatically discover statistically
salient features of pattern vectors in data set, and to find
clusters in training data pattern space which can be used
to classify new patterns. As inputs to neuron network, we
used a moving window of image pixels intensities. We ran
experiments to choose the best neuron network architec-
ture for each satellite sensor: for ERS-2 and RADARSAT-
1 the size of input was 7×7 and for ENVISAT/ASAR the
moving window was 3×3. The advantages of our
approach are as follows: (1) we apply moving window
to process the image and thus considering spatial
connection between pixels; (2) neural network’s weight
vectors are adjusted automatically by using training data;
(3) to determine flood extent, we need to process a single
SAR image. This enables implementation of our approach
in automatic services for flood monitoring. Considering
the selection of ground-truth pixels to calibrate the neuron
network, i.e. to assign each neuron one of the classes
(“Water” and “No water”), this process can be also
automated using geo-referenced information on water
bodies for the given region. We applied our approach to
determine flood extent from SAR images acquired by
three different sensors: ERS-2/SAR for the river Tisza,
Ukraine; ENVISAT/ASAR and RADARSAT-1 for the
river Huaihe, China. Classification rates for independent
testing data sets were 85.40%, 98.52% and 95.99%,
respectively. These results demonstrate the efficiency of
our approach.

We developed a parallel version of our method and
deployed it in the InterGrid infrastructure that integrates
computational and storage resources of the geographically
distributed organisations: the Space Research Institute
NASU-NSAU, the Institute of Cybernetics NASU and
the China’s Remote Sensing Satellite Ground Station of
CAS. The use of Grid technologies is motivated by the
need to make computations in the near real-time for fast
response to natural disasters and to manage large
volumes of satellite data. Currently, we are using a Grid
portal solution based on GridSphere framework to
integrate Grid systems with different middleware, such
as GT4 and gLite 3. In the future we plan to implement
a metascheduler approach based on a GridWay-like
system.
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