
Earth Sci Inform (2009) 2:141–155
DOI 10.1007/s12145-009-0021-z

RESEARCH ARTICLE

Efficient clustered server-side data analysis workflows
using SWAMP

Daniel L. Wang · Charles S. Zender · Stephen F. Jenks

Received: 25 July 2008 / Accepted: 23 February 2009 / Published online: 17 March 2009
© Springer-Verlag 2009

Abstract Technology continues to enable scientists to
set new records in data collection and production, in-
tensifying a need for large scale tools to efficiently
process and analyze the growing mountain of data. To
complement growth in the number of data centers and
the volume of data they store, we introduce our Script
Workflow Analysis for MultiProcessing (SWAMP) sys-
tem. Our system provides safe server-side process-
ing capabilities that allow scientists to reuse familiar
desktop-based analysis methods represented in shell-
scripts. Built-in script compilation isolates file accesses
and generates workflows, while a cluster-capable ex-
ecution engine partitions and executes the resulting
workflow. Benchmarks illustrate up to 20X perfor-
mance gains, as well as the importance of I/O consid-
erations which make other computation systems less
effective at geoscience data reduction.

Communicated by: H.A. Babaie

This work was supported by the National Science
Foundation under grant IIS-0431203.

D. L. Wang (B)
SLAC National Accelerator Laboratory,
2575 Sand Hill Road, M/S 97, Menlo Park, CA, USA
e-mail: danielw@slac.stanford.edu

C. S. Zender
Dept. of Earth System Science,
University of California, Irvine, Irvine, CA, USA

D. L. Wang · S. F. Jenks
Dept. of Elec. Engn. and Comp. Sci.,
University of California, Irvine, Irvine, CA, USA

Keywords Data management · Geoscience ·
Parallel computing · Script compilation

Introduction

While new technologies have spurred a glut in pro-
duced data, geoscience data utilization remains ham-
pered by the physical separation between producer and
user–data transfer and analysis is always too slow, too
expensive, or both. Suppose a researcher is interested in
a particular property X, which can be easily computed
over her terabyte dataset in a few minutes. Transfer
costs make computing over an overseas colleague’s
own terabyte dataset already cumbersome, and com-
puting over a consortium’s hundred terabyte collec-
tion practically impossible. In this paper, we explore
a method to make the former easy and the latter
possible. Our system provides a method of safely and
efficiently executing script-defined analyses on remote
data.

By making large scale geoscience data analysis and
reduction accessible to scientists with only modest
network and local computational capacity, our ap-
proach will enable geoscientists to evaluate more and
larger data sets, enhancing their research ability. Our
approach does not require such scientists to learn
new, complicated toolsets, but rather enhances script-
based data reduction and analysis in common use
today.

The rest of this paper will be organized as follows:
section “Problem” describes the problem, section
“Approach” describes our approach compared to exist-
ing systems, section “Design” describes the design of

142 Earth Sci Inform (2009) 2:141–155

our system, section “Performance-oriented architec-
ture” discusses performance issues, and section
“Experiment” explains our experimental setup and
results. We conclude and discuss future plans in section
“Conclusions and further study”.

Problem

The growing gap between the amount of data pro-
duced and the amount analyzed is a significant prob-
lem. Computing advances have made it possible for
individual scientists to run their own simulations with
their own parameters and data at wider scales and finer
resolutions, but data analysis remains hampered by the
difficulty of moving bulky data and the scarcity of soft-
ware tools that scale to large volumes. Observed data
from local and remote sensing has grown in volume
similarly, while presenting additional challenges such as
new sensing types, environments, and scales.

Most geoscience analysis and visualization tools, for
example, are designed to operate with single variables
or two-dimensional plots, but struggle when performing
larger, bulk data processing. With individual scientists
not uncommonly producing nearly 100 gigabytes in
single runs, handling large data volumes has become
increasingly important.

Large data volume

Although network bandwidth records are broken regu-
larly, dataset sizes have also grown, keeping data move-
ment a challenge. Because managing high volumes is so
difficult, scientists typically avoid the problem, execut-
ing high-resolution simulations infrequently, either as
followups to exhaustive lower-resolution testing or as
team efforts in larger collaborative experiments. Analy-
sis is done tediously, often using custom Fortran code to
analyze or to reduce the data to scales manageable by
other tools. For example, 100 gigabytes of data can be
generated in a few days of atmospheric simulation, but
such runs are infrequent due to the difficulty in man-
aging the results. Because each study is unique, each
corresponding body of processing code is frequently
unique and written with performance optimization as
a low priority. As a result, scientists’ work is hampered
by an implicit directive to keep data sizes small enough
for their workstations to handle. Geoscience analysis
and visualization tools often assume that the entire
dataset can be kept in random-access memory, aiming
for interactive usage rather than volume processing.

Even when large data volumes are produced and
centralized for larger collaborative studies such as those

undertaken by the Intergovernmental Panel on Cli-
mate Change (IPCC), usage is limited by the large
effort required for users to download and manage the
data. Working around this problem requires extreme
measures—the Sloan Digital Sky Survey (Szalay et al.
2002) distributed their 1.3 terabyte compressed dataset
by shipping complete computers. While the Internet2
Network and National LambdaRail do provide excep-
tionally large long-haul bandwidth, their connectivity is
limited to selected research and education centers. In
recognition of the problem of large scale data analy-
sis, F-TDS (Schweitzer et al. 2008) and GDS (Adams
2008), two geoscience data server projects, are imple-
menting rich server-side data analysis capabilities in
response to an already common user sentiment that
plain, subsetted, and aggregated data access are not
enough.

High data-intensity

Recent work on high-performance computing research
has recognized the importance of data-intensive work-
loads (Xue et al. 2008), but serious study remains
rare regarding high data-intensive workloads where
computation is small relative to data size. High data-
intensive workloads can be defined as having very low
(between 0 and 10) floating point operations per byte
of input data (flop/byte). For example, computing an
average, a common task in geoscience, requires less
than one flop/byte. In these workloads, computational
costs are small relative to data movement costs due
to disk or network I/O. Whereas traditional compute-
bound execution performance is at most influenced
by I/O considerations, performance is nearly defined
by I/O considerations in these high data-intensive
cases.

Approach

Our solution avoids the data movement problem by
enabling scientists to use existing desktop-oriented
analysis tools on remote data centers, and optimizes
execution with techniques sensitive to data movement.
This strategy moves data analysis and reduction opera-
tions to the remote data center where the data reside,
taking advantage of the computational, networking,
and storage infrastructure of the data center to perform
the I/O-centric data-intensive operations quickly and
efficiently. By exploiting locality and parallelism, our
system dramatically improves overall performance and
significantly reduces data transfer sizes, both of which
benefit both end users and the data centers.

Earth Sci Inform (2009) 2:141–155 143

File granularity

Many desktop analysis tools such as MATLAB
(Hanselman and Littlefield 2004) and GrADS (Doty
and Kinter 1995) are able to access and manipulate data
in terms of individual values at grid points. Comple-
mentary to these are those tools that work at larger
granularities, providing insights into trends and sta-
tistics in the data that help scientists decide when to
apply the fine-grained tools. The files exchanged in geo-
sciences represent logical datasets, and are frequently
broken apart to ease storage management or to cope
with technological limitations. Data operations of sig-
nificant intensity are well-matched to files or sets of
files. Granularities smaller than files are easily hyper-
slabbed from files. Files, therefore, are a logical level of
granularity for a system designed for bulk processing.

In some cases, files are aggregated into logical
datasets that are published by data servers such
as OPeNDAP (Cornillon 2003) or THREDDS
(Domenico et al. 2002). These help free scientists
from managing inconsistencies in file splitting used by
different colleagues. Fortunately, these aggregations
are easily mapped to files and are thus complementary
to file-based analysis.

Implicitly-defined workflows

Workflows are differentiated from other batch work-
loads through the interdependency of their constituent
parts. Because they contain internal dependencies, they
may perform poorly on generic grid frameworks de-
signed for large volumes of independent tasks. Work-
flows can be executed on grid workflow engines, which
can utilize the dependency information to provide max-
imum parallel performance over grid resources. How-
ever, careful work is required to design and specify each
workflow with each particular grid framework. With a
detailed specification, the workflow scheduler can then
provide an optimal schedule. Deelman et al. (2005)
describes a system that leverages job performance char-
acteristics to produce efficient execution plans.

Unfortunately, workflow specifications are too com-
plex for individual scientists to construct. While they
rarely possess grid workflow hardware, they commonly
perform workflow processing, that is, tasks composed
of interdependent components, in the form of custom
scripts that they execute on whatever data they are
interested in. Our approach directly leverages their
scripts to construct implicit workflows. Once converted,
scripts can benefit from workflow optimization, en-
abling additional parallelism beyond application-level
multithreading.

Shell interface

Instead of choosing a data-focused domain language
such as one used in GrADS (Doty and Kinter 1995) or
FERRET (Hankin et al. 1996), we chose shell language
(used by standard shell command interpreters). Shell
language is used to define an ordered sequence of
command invocations and operates naturally at the file-
level granularity mentioned above.

The choice of shell language offers three key ad-
vantages over the use of workflow languages: univer-
sal familiarity, applicability, and scalability. Familiarity
comes naturally, since nearly every user who processes
data of significant volume regularly utilizes shell scripts
of some form to automate processing. The remaining
users who do not are familiar with executing pro-
grams at command-lines. In leveraging these existing
scripts, our approach minimizes retraining, a common
and significant barrier of adoption in many computing
frameworks.

Shell language is applicable for a wide variety of
tasks, due to its ability as a glue language, which
connects programs written in other languages. Though
uniqueness in scientists’ usage is seen in custom For-
tran (or other language) code and in personal scripted
sequences, internet-scale collaboration has resulted in
common data formats and common toolsets for manip-
ulation. By supporting the netCDF Operators (NCO)
(Zender 2008), a popular tool set that supports process-
ing the most common format for exchanging geoscience
data, netCDF (Rew and Davis 1990), our approach
covers a wide variety of geoscience data analysis and
reduction tasks. Specifically, our decision to support the
Bourne shell (sh) syntax and its most common features
allows reuse of much of the existing body of shell scripts
without modification.

The choice of a shell language interface, specifically
one whose syntax mimics sh, distinguishes our ap-
proach from other distributed dataflow systems such
as DataCutter (Beynon et al. 2001) or comprehen-
sive data grid systems like Chimera (Foster et al.
2002). A system shell language like sh was never
intended to describe workflows, and lacks syntax to
define complex workflow topologies and configuration.
Workflows automatically created from these scripts
are inherently disadvantaged in attaining peak per-
formance. On the other hand, existing analysis tools
like NCO can be used without modification, and
existing shell scripts can be used (almost) without
modification—we believe this tradeoff in favor of us-
ability is sufficiently compelling. It explores how high
an individual’s existing workstation scripts can be
scaled, instead of providing interfaces for maximum

144 Earth Sci Inform (2009) 2:141–155

performance on petascale computations created by
collaborations.

Scalability is achieved primarily by paralleliza-
tion and data locality optimization. Script-detected
parallelization allows performance to scale with par-
allel hardware. This provides an additional level of
parallelization beyond the programs’ own use of par-
allel techniques such as OpenMP (Dagum and Menon
1998) and MPI (Gropp et al. 1999). Should the pro-
grams be optimized further for performance (Zender
and Mangalam 2007), a script based system benefits
automatically. Thus techniques for parallel I/O such as
MPI I/O or Parallel-netCDF (Li et al. 2003), specifically
for NCO’s netCDF layer, would have cumulative, not
conflicting benefits. Combining both script-level and
application-level parallelism better positions such a sys-
tem to exploit increasingly parallel hardware.

Grid-inspired

Grid technologies represent the latest promise in
high-performance computing. By flattening access to
disparate, homogeneous resources, grid technologies
should yield an abundance of raw computational power
that should be irresistible to anyone desiring high per-
formance computing. While grid projects such as Cui
et al. (2007), Natrajan et al. (2004), Tejedor and Badia
(2008), and Rubio-Solar et al. (2008) each enjoy success
in their own goals, no single implementation has dom-
inated. Though all aim for generality, all have features
that are tuned to their own application domains, and
are not generic enough for each other’s purposes. All
target large-scale computation, but only one maintains
an interface simple enough for lightweight tasks from
casual users (Tejedor and Badia 2008). The few that
are aware of data locality require specialized tools to
construct tasks.

In some ways, grid technologies are unsuitable to
computation that is largely data-bound instead of
compute-bound. Indeed, an underlying assumption is

that the availability of a larger computational pool
will enhance performance, an assumption that does
not hold when a task’s performance is dependent on
disk transfer rates rather than CPU speed. These data-
bound tasks are generally under-resourced, given that
high performance computing prizes teraflops rather
than secondary storage (disk) bandwidth. Lack of at-
tention to data-boundedness has led to low popularity
of data-bound tasks. This low popularity has led to a
lack of developer interest in data-bound issues, leading
to the development of programs that ignore data in-
tensity. Because programs which address data intensity
are so rare, there are few studies of data-bound perfor-
mance to be used by prospective researchers, leading to
the original problem, a lack of attention to data-bound
tasks. Some computational grid models consider data
movement costs and schedule data movement coupled
with computation (Xue et al. 2008), but still assume that
computation cost dominates.

Our solution borrows the grid concept of distributing
work among loosely coupled machines, but differs from
a grid computation service in two ways. First, it pro-
vides a computational service necessarily bound to data
locality, with an interface similar to grid computational
services, but tailored for data rather than computa-
tional performance. Second, its execution model groups
execution to minimize data movement. While scaling
to leverage computer cluster resources, it discards the
flexible resource mapping because its workload does
not benefit from the availability of remote computa-
tional resources. Its tasks can usually be completed in
less time than the time to stage the inputs to a large,
fast, but remote compute cluster.

Usage model

Because terascale data remains too cumbersome to
download, a practical solution must reduce or elimi-
nate the initial data download. This suggests that the
computation itself should be relocated to where the

Fig. 1 A sample script for mdl in ccma_cgcm3_1 ncar_ccsm3_0; do
ncwa -a lat,lon sresa1b_$mdl.ncavg_$mdl.nc
ncwa -d time,0,11 avg_$mdl.nc 2000_$mdl.nc
ncdiff avg_$mdl.nc 2000_$mdl.nc anm_$mdl.nc

done
Create model ensemble
ncea avg_*.nc sresa1b_avg.nc
Ensemble mean of year 2000
ncwa -d time,0,11 sresa1b_avg.ncsresa1b_avg_2k.nc
Create ensemble anomaly
ncdiff sresa1b_avg.ncsresa1b_avg_2k.ncsresa1b_anm.nc

Earth Sci Inform (2009) 2:141–155 145

data itself resides. Therefore, our solution implements
a computational service to complement existing data
access service. By re-interpreting unmodified desktop
analysis shell scripts, scientists’ own custom analyses
can be safely relocated to the data server, without
requiring user accounts, familiarity with foreign envi-
ronments, or parallel or advanced computing skill.

The sample script in Fig. 1 computes the time-
varying spatial mean and deviation from the year 2000
for two different climate models, along with the ensem-
ble average and its deviation. It executes unmodified on
a desktop as well as on our remote computing service.
Because the system re-interprets the script, it can en-
sure that only safe programs are referenced and only
permissible files are read, and that program outputs
are safely mapped to isolated areas. It is worth noting
that (Tejedor and Badia 2008) provides similarly simple
computational service, but requires tasks to be specified
in a custom Perl-like language (Wall et al. 2000).

Design

We designed our system, which we call SWAMP (Script
Workflow Analysis for MultiProcessing), as a compu-
tational service designed to be deployed alongside a
data service. SWAMP was initially implemented as a
plugin to a leading geoscience data server, OPeNDAP,
but outgrew the protocol and operating limitations in
OPeNDAP Server 3. Basic SWAMP operation is illus-
trated in the timeline diagram in Fig. 2. It outlines how
the SWAMP client program interacts with a frontend
instance and how the frontend interacts with worker
instances. The client communicates using a SOAP API,
which should ease implementation of alternate clients.
Users pass a script filename to the client program,
which simply passes the script contents, unmodified,
to a frontend instance, and polls the frontend for task
status. When the task completes, the client downloads
the task outputs over HTTP.

The frontend instance accepts scripts, compiles them
into workflows, partitions the results into logical clus-
ters, and manages cluster execution. Work is dispatched
to workers at cluster-granularity, but workers report
completion at command-granularity, enabling a depen-
dent cluster to be scheduled before the entirety of its
parent clusters complete. We describe execution in fur-
ther detail in the next section “Performance-oriented
architecture”.

Lightweight computation

SWAMP is distinguished from existing grid frame-
works and data servers in how and what sort of com-

Fig. 2 Simplified timeline for a SWAMP task

putational service it provides. By providing a scripting
interface, it offers analytical function beyond simple
subsetting that is provided by existing data servers.
While its simple, lightweight computational capability
may seem unjustified in an era of commodity high-
performance workstations, its capabilities are matched
towards providing access to scientific results from input
data that is too large to download. Its parallelization
capability enhances scalability, and its sandboxed and
lightweight execution make it more feasible for open-
access environments than generic grid computation sys-
tems. Scripts like the one illustrated in Fig. 1 can be
submitted to a SWAMP instance using a simple SOAP
(Box et al. 2000) or XML-RPC (Winer 1999) call, which
returns an identifying token to be used to check job
status and download results.

Shell language

Computation in SWAMP is specified with the same syn-
tax as ordinary command interpreters, shell language,
specifically the Bourne shell syntax (Bourne 1978). Di-
rect, unmodified re-use of existing user scripts is there-
fore possible in SWAMP. While other parallel systems
require users to explicitly annotate their code to exploit
parallelism, SWAMP reveals how much can be gained
in situations where the user does not. It intentionally

146 Earth Sci Inform (2009) 2:141–155

provides the analysis subset of a desktop environment
so that remote data can be processed just as simply.
Debugging a SWAMP script, for example, can usually
be done outside SWAMP using the operating system’s
own shell.

SWAMP supports most syntactical features used
by scientists in analysis scripts. Variables can be de-
fined and referenced. Control structures such as for-
loops and conditional branches can be used, easing
volume processing and portability. Safe shell “helper”
programs such as seq (from the GNU coreutils
package) and printf can be used, as can the filename
wildcards ? and *. Wildcards are intelligently expanded
using the script’s local context, properly accounting
for files written earlier. Parameter variables, i.e. those
referenced by $1 or $2, will be supported in a later
revision. For security and implementation tractability,
program selection is restricted to a set of programs
whose argument and file input/output semantics are
programmed into the system. Without semantic under-
standing, the system would not be able to detect inter-
command dependencies or to sandbox script execution.
In its current implementation the program set is com-
posed of the NCO tools, which are regularly used in the
geoscience domain.

The use of shell syntax allows the system broader
applicability than geosciences. The system can operate
in any domain where scripts are used by adding support
for its programs, given that the programs are well-
behaved, i.e. their inputs and outputs are files, and can
be determined solely by argument parsing. Once the
system is in place, parallel execution of scripts becomes
a question of “Why not?” rather than “Why?” As an
example, UNIX grep could be parallelized in such a
fashion without significant effort, once written in a
script as in Fig. 3.

Locality sensitivity

Without a locality-sensitive design, a system cannot
provide computational service to large datasets, be-
cause large data sizes make input pre-staging and out-
put post-staging too expensive to be practical. An initial
design goal of our system is to enable user analyses
to scale to large data volumes. Because long-haul net-
work bandwidth will always fall short with respect to
data volumes produced from observation or simulation,
any solution for providing computation on such data

Fig. 3 A parallelizable script
that searches for a
parametrized string

for f in *; do
grep $1 $f

done

must not move data unless absolutely necessary. Such
is the primary motivation for providing computational
service at a data repository. Additionally, SWAMP’s
execution engine dispatches processes with locality sen-
sitivity in two ways. First, it partitions workflows into
clusters with reduced inter-cluster dependencies. This
minimizes communication between worker nodes. Sec-
ondly, clusters are preferentially dispatched to nodes to
minimize the need for input file staging. Without these
methods, data-intensive performance scales poorly.

Administration

SWAMP has a number of features that ease its deploy-
ment both at data centers and lab group installations.
The server is implemented in the Python language as
a self-contained, standalone daemon accessible over
SOAP or XML-RPC protocols. It can operate in clus-
tered configurations and is able to add and remove
worker instances without restarting. Each installation
is configured by editing one file or two files in the case
of clustered instances. For enhanced I/O performance,
it can exploit ramdisks on machines with abundant
physical memory. Built-in logging facilities can be used
for troubleshooting or usage tracking. It is dependent
only on a few widely available Python libraries, such as
Twisted (Fettig 2006), and NCO and operates without
an existing web server, making it simple to install and
setup. SWAMP may increase load on the storage sub-
system, due to the additional interface it provides for
accessing and computing over datasets, but the increase
in storage traffic is accompanied by a generally far more
drastic decrease in external network bandwidth for the
variety of analysis tasks supported.

Security

Because our system is designed to provide computation
access as widely as plain data access, security issues
must be considered. SWAMP resists overall system
intrusion by using an interpreted language that resists
buffer overflows, and by restricting scripts to accessing
a small set of well-understood programs. Program argu-
ments must pass basic validation tests, and invocations
occur directly without implicit subshell use, making it
difficult to invoke untrusted programs. Filenames in
scripts are remapped first to logical filenames in static
single assignment form (Alpern et al. 1988), a feature
which also enhances execution parallelism. Virtualizing
filenames in such a manner not only isolates tasks from
each other, but also from accessing system files. Scripts
are also executed one at a time, which allows a long-
running script to monopolize resources and potentially

Earth Sci Inform (2009) 2:141–155 147

deny service, but prevents a flood of requests from
overloading and crashing the system.

Dynamic scheduling

Our system schedules tasks on-demand as process-
ing resources are available, whereas other workflow
frameworks schedule tasks statically before beginning
execution. This choice reflects the practical realities
of accepting script-specified user workflows. Static
scheduling can create better workflow schedules whose
end-to-end execution times, i.e. makespans, are closer
to the minimum times, but relies heavily on accurate
performance prediction. In operational environments,
where workflows are used as part of a well-defined
processing pipeline, tasks have approximately deter-
ministic execution times, and their performance can
thus be predicted for future iterations. However, while
each scientist may focus on a limited number of scripts,
the number of scripts used by the larger community
is large. Therefore, the execution times of the con-
tained commands cannot be predicted without support
in each command for some sort of “dry run” mode
where its predicted performance is computed (Zender
and Mangalam 2007), along with sufficient metadata
to allow dependent programs to predict performance.
Such a feature is difficult to implement, and may not
be possible for all prospective programs. With this in
mind, the more reactive approach, dynamic scheduling,
is more appropriate.

The current implementation dispatches script com-
mands for execution on nodes according to each node’s
configurable maximum parallel processes per node
(PPN). Maximum performance is normally achieved
when the number of parallel processes equals the num-
ber of physical processors, with an important excep-
tion described in section “I/O dependence”. Another
attractive possibility, given the system’s target of data-
bottlenecked scripts, is to schedule according to I/O
load. By limiting parallel disk access, seek frequency
can be reduced to bring disk bandwidth higher to its
theoretical maximum sustained read rate.

Performance-oriented architecture

By providing computation at the data source, our sys-
tem avoids the primary problem in using large scale
remote data: the lengthy data download time. Figure 4
illustrates the contribution of data transfer to overall
task execution time for our two benchmarks (see sec-
tion “Setup”). In both cases it is clear that transfer cost
is just as important, if not more important than compu-

Fig. 4 Components of total wall-clock time for the benchmarks

tation cost. Additional performance benefits come from
the following areas.

Compilation

By parsing command semantics, our system is able to
transform an otherwise serial script into a directed-
acyclic-graph workflow. Each command-line becomes
a graph node, and its parent and child nodes are de-
termined by matching input and output filenames. The
parser derives these filenames through code that is
customized for the supported executables, the netCDF
Operators. Because it is intractable to determine ar-
gument semantics for all arbitrary programs automat-
ically, support is restricted to programs common in a
domain, and thus make the required custom code more
tractable. NCO tools are easily combined in scripts
to form useful geoscience data reduction and analysis
tasks, and support for their semantics alone yields a rich
computational capability.

By treating filenames as variable names and com-
mands as basic operators, more traditional compiler
techniques can be applied. Live variable analysis allows
the system to intelligently guess which files are results
and which are intermediate “temporary” files. “Dead”
files can be allocated to memory instead of disk, re-
ducing disk contention during execution and bandwidth
when returning results to clients.

Partitioning

Multi-computer performance in earlier implemen-
tations suffered from high synchronization overhead
between master and worker nodes. Commands were

148 Earth Sci Inform (2009) 2:141–155

dispatched individually, promoting an even balance
of commands on available worker nodes, but limiting
scalability due to the frequency of updating the master
node with command progress. To reduce this problem,
the workflow is partitioned into groups of nodes, while
minimizing the dependency between groups. By dis-
patching work in these partitions, multi-node execution
avoids unnecessary data transfer and required master-
worker communication overhead, at the risk of work
imbalance from the coarser scheduling granularity.

The partitioning algorithm is as follows. Consider a
directed graph G = (V, E) with the set of vertices V
(representing script commands) and the set of directed
edges E (representing derived dependencies between
the commands). Let x ≺ y signify that a vertex x is a
direct predecessor (parent) of a vertex y.

Define a root of a set of vertices S (S is a subset of
G), to be a vertex r that has no predecessors in S, i.e.
r ∈ S, ∅ = {v : v ∈ S, v ≺ r}.
– Compute roots of G. Let nr be the number of roots.
– For each root ri, compute its corresponding root

cluster Cri , the set including the root and all of its
direct and indirect successors.

Cri = ri ∪ {v : v ∈ V, ri ≺ v} (1)

– For each root cluster Cri , compute its intersections
with other root clusters, resulting in intersection
clusters Cri, j .

Cri, j = Cri ∩ Cr j (2)

(Note that for Eq. 2, computing Cri, j for i, j ∈
[0, nr], i < j is sufficient since Cri, j = Cr j,i and we are
not interested in Cri,i = Cri .)

– Construct C′
ri

by removing descendants shared with
other root clusters. These modified root clusters can
be dispatched independently, in parallel.

C′
ri

= {v : v ∈ Cri v �∈ Cri, j∀ j} (3)

– Construct C′
ri, j

, by removing elements shared with
other intersection clusters. These modified inter-
section clusters can be dispatched independently of
other intersection clusters, but may have dependen-
cies on root clusters.

C′
ri, j

=
⎧
⎨

⎩
v : v ∈ Cri, j

v �∈ Crx,y∀x, y : (x < i)or(x = i, y < j)

⎫
⎬

⎭

(4)

This provides nr + |C′
ri, j

| clusters, with nr initial par-
allel clusters to execute, and up to nr × (nr − 1) non-
root independent clusters. If additional parallelism is

needed, C′
ri, j

can be recursively split according to the
original algorithm, since they may have multiple roots.
Otherwise if there is only one root, the cluster may be
split by cutting the cluster after the first (smallest depth)
command that has multiple successors. The algorithm
avoids cutting between a parent node and its only-child,
because that confers no parallelization benefit and risks
penalties from file staging delays if the child were to be
scheduled outside its parent’s node.

This algorithm has performed adequately in our
benchmarks, although standard bi-partitioning or k-
partitioning algorithms were considered. These alter-
nate partitioning algorithms operate on flow networks
and are common in the computer-aided design (CAD)
community for integrated circuit layout purposes.
Though attractive in algorithmic complexity, their mini-
mization constraints were found to be unsuitable. They
are designed to balance nodes between partitions for
physical layout, while our algorithm focuses solely on
branching and “fan-out” points.

Execution

Attaining maximum performance for compute-
intensive workloads is a well-researched topic in high-
performance computing. Our system was designed to
reduce or eliminate the prohibitive transfer time cost
for scientific data analysis, and since our workloads are
correspondingly I/O rather than compute-intensive,
maximizing their performance involves different issues.

We define I/O intensive workloads as those with
relatively low floating point operation (flop) counts per
input byte. For these workloads, parallel performance
is limited by data transfer between worker nodes in a
cluster, disk contention, and overall disk bandwidth.
Management overhead (compilation, scheduling, and
dispatch) is an additional bottleneck, but is only impor-
tant after I/O optimization.

Figure 5 illustrates our simple execution model.
Scripts enter the system through a web service RPC
interface, and are queued for execution. If no other
script is in progress, the script is prepared for execution
by parsing, validation, verification, workflow genera-
tion, and cluster partitioning. The resultant workflow
clusters are then dispatched to the available workers in
round-robin fashion, until the list of ready clusters is
exhausted or each worker has a number of dispatched
clusters equal to its number of processes per node
(PPN). Each worker then executes ready commands
from its set of clusters, favoring most-recently-ready
commands whose inputs have just become available.
This most-recently-ready policy exploits cache hotness

Earth Sci Inform (2009) 2:141–155 149

Job preparation

Execution

SOAP/XML-RPC
Frontend

Queue job

Parse commands,
Convert to SSA

Partition into clusters

Dispatch ready cluster
to non-busy worker

Idle workers?

Respond to workers
Dispatch to free workers

All-busy or
No more ready clusters

Dispatch ready cluster
to data-local node

Move data from workers
to public area

Work finished
(or error abort)

Fig. 5 Simplified flowchart

for performance and shortens temporary file lifetimes
so that space in the in-memory filesystem can be re-
claimed earlier. As workers complete commands, they
report results to the master, except for commands
without children outside the cluster–their results are
batched and reported when their parent cluster com-
pletes. This trades off some accuracy in workflow state
by only allowing critical messages that affect global
execution scheduling (by causing command clusters to
become ready) to be reported synchronously. Batching
and deferring less important events drastically reduces
master-worker synchronization overhead.

Disk parallelism

In Wang et al. (2007) we showed the sensitivity of
data-intensive workloads on disk performance. In those

cases, we found that simply parallelizing execution did
not improve performance—rather performance was pe-
nalized due to the increasing disk seek rate.

Two techniques have been implemented to improve
I/O performance in our system. The first, introduced in
Wang et al. (2007), improves performance by convert-
ing a significant fraction (in some cases, the majority)
of disk accesses to memory accesses. While single pro-
gram executions in isolation are difficult to optimize—
input data must be fetched and output data must be
written—workflows contain much more promise. Inter-
nal edges between nodes in the workflow graph (pro-
gram invocations) denote data that are produced and
consumed during workflow execution. While a general-
purpose operating system would certainly perform file
buffering, our system explicitly avoids disk writing in
those cases by utilizing a large in-memory filesystem.
Our execution engine remaps command output files
to memory while free space is available, spilling to
disk when memory is almost full. Because in-memory
filesystem space is so precious, intermediate files there
are deleted as soon as they are dead (unneeded for
future commands).

The second technique for improving I/O perfor-
mance is enabled through multi-computer execution
and replication. While many cluster installations uti-
lize centralized head-node storage or storage-area net-
works (SANs), our results show that maintaining input
data replicas on cluster nodes yields far greater perfor-
mance, with aggregate read performance closer to the
total available disk bandwidth. By splitting execution
among multiple computers, the system can also write
output data using the aggregate disk write bandwidth
available, rather than contending for write bandwidth
on centralized storage.

Despite this advantage, practical installations may
find difficulty in providing cluster nodes with private
data replicas. In those cases, we believe that aggressive
opportunistic caching of data on node-local storage can
provide good performance by minimizing concurrent
access to a centralized storage system.

Disk reorganization may also improve performance.
While magnetic disks have historically been treated
as random access devices compared to sequential de-
vices such as tape media, processor clock frequencies
have increased and memory latencies have dropped,
increasing the relative latency for random access and
making disks seem more like sequential media. Hsu has
proposed a system (Hsu et al. 2005) for reorganizing
disk data layout to bring average random read per-
formance closer to sequential read performance. We
expect implementation of such a system would also

150 Earth Sci Inform (2009) 2:141–155

help our workloads, although performance would still
be limited to disk bandwidth.

Experiment

We began development with the hypothesis that there
would be significant process-level parallelism inherent
in scientific scripts, but without a quantitative estimate.
Intuitively, we predicted that eliminating input data
download would make the greatest difference, but we
expected that exploiting parallelism would have some
impact as well.

Setup

We tested our system using two benchmark scripts in
both standalone and clustered configurations. The first
subsamples high temporal-resolution global wind pre-
dictions to obtain the predictions closest to twice-daily
satellite overpasses (Capps and Zender 2008), while the
second normalizes surface air temperature predictions
from sixteen different models for intercomparison. Re-
sults from the first are pending publishing, but both are
used for climate research.

The first benchmark resample, is conceptually shown
in Fig. 6. Its 2MB script of 14,640 unique command-
lines represents a practical upper-bound on the length
of script expected and can be considered a “stress-
test.” The second benchmark ipcc, shown in Fig. 7 illus-
trates a task that was one of the motivating problems
for this work. The task generates global temperature
anomaly trends from 19 different simulations from the
World Climate Research Programme’s (WCRP’s) Cou-
pled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset and compares each trend versus
the mean trend of the entire data ensemble. Requiring
approximately 30GB of input data this workflow is
computationally simple, and results in roughly 500kB of
output data. ipcc output data can be processed further
to create a temperature trend chart similar to that
shown in Fig. 8, which differs in showing the temper-
ature trends for California rather than the entire earth.

The benchmarks were tested on a cluster of dual
Opteron 270s with 16 GB of memory and dual 500 GB
SATA drives, running CentOS 4.3 Linux. We tested ex-
ecution with one master and one, two, or three worker
worker nodes, all configured identically. We varied the
number of parallel processes per node (PPN) allowed
on each node in order to study the benefit of using more
cores (four available per-node) versus the increased
I/O contention. Multi-node performance is compared

Fig. 6 Benchmark 1: resample—data resample

in configurations with and without cluster partitioning
in order to better understand scheduling overhead.

Performance is compared with a control setup
where the same script is executed at the GNU bash
command line. We computed the baseline wall-clock
script-execution time including the estimated time
to download the input data set. Transfer times are
estimated assuming 3MiBytes/s (3 ∗ 220) bandwidth,
based on NPAD pathdiag (Mathis et al. 2003) measure-
ment of 30Mbits/s bandwidth between our workstation
at UCI and the National Center for Atmospheric Re-
search(NCAR).

These benchmarks are highly parallelizable, but are
not “embarrassingly parallel” in the classical sense.
Many of the individual operations, e.g. simple averag-
ing, could be considered “embarrassingly parallel,”, but

Earth Sci Inform (2009) 2:141–155 151

Fig. 7 Benchmark 2:
ipcc—data intercomparison

parallelization at that fine granularity is independent
to our method (and can have debatable benefit due to
movement costs). Our contribution to parallelism does

Fig. 8 Plot of ipcc data(refined, California area)

not consider the semantics of each executable except
for its file I/O, and parallelizes execution similarly as
machine instructions can be parallelized on superscalar
CPUs.

Ideal performance

In general, the greatest possible speedup of a paral-
lelized implementation relative to a serial imple-
mentation of the same algorithm can be computed by
applying Amdahl’s law (Amdahl 1967): 1

S+ 1−S
N

, where S

is the fraction of time spent in serial (or non-parallel)
execution and N is the number of parallel processors
applied. For resample, the entire workflow is paralleliz-
able into 10 independent flows, and each flow contains
a stage where 730 independent subtasks are available.
Thus the maximum possible speedup, ignoring I/O, for
N ≤ 10 is N, and somewhat less for N > 10 (a small
portion can exploit 730 × 10 parallelism).

For ipcc, the workflow contains a non-parallelizable
portion, which should account for approximately 1/20
of execution time. If we assume S = 0.05, then the
maximum speedup should be 1

0.05+ 0.95
N

, or approximately

3.5, 5.9, 7.7, and 9.1, for N={4, 8, 12, 16}, respectively.

152 Earth Sci Inform (2009) 2:141–155

Overall performance

Both benchmarks show significant benefits from
SWAMP. Comparing SWAMP’s performance in a 4-
node × 4 core configuration versus the baseline non-
SWAMP case, we find that overall end-to-end time can
be reduced from approximately 99 min to about 10 min
in the resampling case, and from 165 min to 3 min in the
IPCC case, giving roughly 10× and 64× reductions, re-
spectively. Eliminating transfer time alone accounts for
roughly 2×, and 22×, with efficient parallel execution
accounting for the remaining savings.

Raw computational performance is shown in
Table 1, excluding transfer time and job preparation
overhead (parsing, compilation, and workflow gener-

Table 1 Computational performance sorted by CPU count

CPUs # Nodes PPN tcompute s Input Rate Speedup
MB/s

resample
1 1 1 3202.36 2.69 1
2 1 2 1703.97 5.06 1.88
2 2 1 1710.29 5.05 1.87
3 1 3 1264.77 6.82 2.53
3 3 1 1264.53 6.82 2.53
4 1 4 1022.67 8.44 3.13
4 2 2 987.24 8.74 3.24
4 4 1 1052.91 8.2 3.04
6 2 3 694.84 12.42 4.61
6 3 2 744.33 11.59 4.3
8 2 4 584.29 14.77 5.48
8 4 2 687.97 12.54 4.65
9 3 3 487.03 17.72 6.58
12 3 4 432.41 19.96 7.41
12 4 3 383.83 22.49 8.34
16 4 4 317.68 27.17 10.08

ipcc
1 1 1 455.55 65.38 1
2 1 2 494.60 60.22 0.92
2 2 1 232.57 128.07 1.96
3 1 3 496.58 59.98 0.92
3 3 1 152.59 195.2 2.99
4 1 4 520.33 57.24 0.88
4 2 2 246.67 120.75 1.85
4 4 1 138.62 214.86 3.29
6 2 3 326.07 91.35 1.4
6 3 2 181.50 164.1 2.51
8 2 4 323.72 92.01 1.41
8 4 2 139.00 214.28 3.28
9 3 3 252.2 118.1 1.81
12 3 4 235.91 126.26 1.93
12 4 3 154.98 192.19 2.94
16 4 4 152.72 195.03 2.98

(Input Rate= Input size
tcompute

. tcompute does not include parse/workflow

generation overhead: ≈ 300 s for resample and ≈ 0.5 s for ipcc)

ation), which are both dependent on static workload
and not on execution configuration.

Clustered and multi-core scalability

Figure 9a and b show plots of speedup versus node
counts for resample and ipcc respectively. For com-
pletely CPU-bound workloads, ideal scalability should
be reflected in linear speedup in the total number of
CPUs, without regard to the number of CPUs per node.
In both benchmarks, speedup increases linearly with
the number of nodes but only in resample does speedup
increase with the number of CPUs (see Subsection
“I/O dependence”). From these results, we infer that
larger systems with more processor cores per node, or
more physical nodes, will have proportionally greater
performance, except for extremely I/O bound work-
flows, where performance benefits come only with more
physical nodes that can provide more read and write
disk bandwidth.

In Fig. 10, we compare performance in three dif-
ferent cluster configurations while the total number
of CPUs is held constant to 4. For resample, we see
that performance is roughly constant, meaning that
performance is effectively dependent on CPU count
and is unaffected by master-worker management ef-
fects or resource contention. The 2 × 2 configuration
seemed best, likely due to the increase in available disk
bandwidth from 1 × 4 combined with low file dispersion
(which impacts the 4 × 1 configuration). In contrast,
ipcc performance is clearly dependent on node count
rather than CPU count for reasons elaborated in Sub-
section “I/O dependence”.

Clustered partitioning

In an earlier implementation (Wang et al. 2008), exe-
cution performance suffered from communication
between master and worker nodes. As expected, per-
formance improved by using a coarser-grained sched-
uler, which guaranteed that blocks of commands could
execute without data staging and thus significantly re-
duced worker synchronization requirements. Without
batching, we observed that while data traffic was re-
duced, scheduling traffic increased with the higher ex-
ecution throughput, which limited scalability. In some
cases, workers reported results to the master scheduler
at an aggregate bandwidth of 500 kB/s.

In Wang et al. (2008) where a non-partitioned im-
plementation was tested, we observed increasing
performance as more worker nodes participated, but
maximum speedup in a 4-PPN, 3 node configuration
was limited to 3.5 (tcompute =906 s). With partitioning,

Earth Sci Inform (2009) 2:141–155 153

Fig. 9 Speedup by node
count for PPN ∈ {1,2,3,4}
(a, b)

(a) resample (b) ipcc

the same configuration yields a speedup of 7.4, which
is significantly closer to the theoretical ideal speedup,
which should be close to 12 (see Subsection “Ideal
performance”).

I/O dependence

Because our workloads are far more data-intensive
than compute-intensive, overall performance should be
highly influenced by I/O performance, and this expec-
tation is well supported by our tests. Intuitively, highly
data-intensive computation (with less than one flop per
input-byte) is usually bottlenecked by bandwidth to
the disk (or other subsystems), and benefits little from
increased processor core counts.

In Wang et al. (2007), we demonstrated the bene-
fits of redirecting file I/O to an in-memory filesystem
for single-machine installations, showing mild speedup
(1.2 for resample) even without parallelization, and
more significant speedup (1.5 for resample) with four
parallel processes, relative to using only an on-disk
filesystem. We observed similar results in testing the
current system with and without using the in-memory
filesystem. High data-intensive workloads thus incur a
drastic penalty as processor parallelism increases with-
out corresponding increases in parallelism of the I/O

Fig. 10 Speedup in three cluster configurations

subsystems. For resample, redirecting file I/O to an in-
memory filesystem proved effective, because of the ma-
jority of file I/O occurred on intermediate (temporary)
files rather than input files.

The ipcc benchmark illustrates I/O dependence
more clearly. Consider Figs. 9b and 11, which plot the
same speedup data for ipcc showing speedup versus
node count and PPN, respectively. For ipcc, perfor-
mance is almost completely dependent on the machine
count rather than the processor-count. Note that the
Input Rate, or the average read bandwidth to the input,
ranges between 48 MB/s and 65 MB/s, which is close to
the disk manufacturer’s specified maximum sustained
transfer rate of 65 MB/s (Seagate Technology 2006).
Indeed, additional process-parallelism without chang-
ing disk count reduces performance slightly, which is
consistent with the expectation that additional disk con-
tention lowers overall disk read bandwidth. In this case,
disk access patterns were voluminous, but sequential,
and OS buffering seems to have limited the penalty
from contention.

Overhead and limitations

The parsing stage incurs significant overhead in the
resampling benchmark, due to shell and environment

Fig. 11 ipcc speedup by PPN for various cluster configurations

154 Earth Sci Inform (2009) 2:141–155

variable handling in pure Python code. The excessive
script length of 14,000 commands in 22,000 lines trans-
lates to roughly 5 min of overhead, pointing to a need
for optimization in the parsing and command gener-
ation code, should such lengthy scripts become com-
monplace. The parsing overhead can be also reduced to
insignificance for long scripts by implementing an early
start mechanism that dispatches commands as soon as
they are discovered as ready, before parsing completes.
We expect that with tasks that are mostly or completely
I/O bound, an early start mechanism would have the
same effect on performance (or, in some cases, greater)
as a fast parser.

Conclusions and further study

The high costs of data transport and large data volume
mean that the traditional separation of data archival
and user analysis is a barrier to scaling up data-
intensive scientific analysis and exploration. We have
addressed this problem by introducing a system that
leverages familiar shell-script interfaces and NCO tools
to specify safe computation on remote data. Although
these analysis workloads have required low amounts
of computational power and routinely perform less
than one floating point operation per byte of input,
their large data sizes (≈30–100 GB) has made them
cumbersome to execute using other methods. Our im-
plementation has made such computation efficient, by
compiling scripts into implicit workflows, partitioning
the workflows to reduce overhead and minimize data
transfer, and scheduling execution according to data
locality. Because of the minimal dependence on ap-
plication semantics, our approach can be applied to
provide some parallelism where it is not practical to
modify or reimplement existing tools. Future work is
aimed at implementing more advanced syntax support
in the parser, and coarser work delegation for bet-
ter performance where input data resides at multiple
locations. SWAMP is scheduled to be tested at the
National Center for Atmospheric Research (NCAR) as
a method to provide server-side analysis capability for
their community data portal. The SWAMP website is
located at http://code.google.com/p/swamp.

Acknowledgements We acknowledge the modeling groups, the
Program for Climate Model Diagnosis and Intercomparison
(PCMDI) and the WCRP’s Working Group on Coupled Mod-
elling (WGCM) for their roles in making available the WCRP
CMIP3 multi-model dataset. Support of this dataset is provided
by the Office of Science, U.S. Department of Energy.

References

Adams JM (2008) Ensemble handling in GrADS and GDS:
working with TIGGE data. In: Proceedings of the 7th global
organization for earth system science portal (GO-ESSP)
workshop, Seattle, 17–19 September 2008

Alpern B, Wegman MN, Zadeck FK (1988) Detecting equal-
ity of variables in programs. In: POPL ’88: proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on princi-
ples of programming languages, pp 1–11. ACM, New York.
doi:10.1145/73560.73561

Amdahl GM (1967) Validity of the single processor approach
to achieving large scale computing capabilities. AFIPS Conf
Proc 30(8):483–485

Beynon M, Kurc T, Catalyurek U, Chang C, Sussman A, Saltz
J (2001) Distributed processing of very large datasets with
datacutter. Parallel Comput 27(11):1457–1478

Box D, Ehnebuske D, Kakivaya G, Layman A, Mendelsohn
N, Nielsen HF, Thatte S, Winer D (2000) Simple object
access protocol (SOAP) 1.1. Tech. rep., W3C. http://www.
w3.org/TR/2000/NOTE-SOAP-20000508/

Bourne S (1978) An introduction to the UNIX shell. Bell Syst
Tech J 57(6):1971–1990

Capps SB, Zender CS (2008) Observed and CAM3 GCM sea sur-
face wind speed distributions: characterization, comparison,
and bias reduction. J. Climate 21(24):6569

Cornillon P (2003) OPeNDAP: accessing data in a distributed,
heterogeneous environment. Data Sci J 2:164–174

Cui Y, Moore R, Olsen K, Chourasia A, Maechling P, Minster B,
Day S, Hu Y, Zhu J, Majumdar A (2007) Enabling very-large
scale earthquake simulations on parallel machines. In: Proc
intl conf computational science, part I, vol 4487. Springer,
Berlin Heidelberg New York, pp 46–53

Dagum L, Menon R (1998) OpenMP: an industry standard API
for shared-memory programming. IEEE Comput Sci Eng
5(1):46–55 (see also Comput Sci Eng)

Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C,
Mehta G, Vahi K, Berriman GB, Good J, Laity A, Jacob
JC, Katz DS (2005) Pegasus: a framework for mapping com-
plex scientific workflows onto distributed systems. Sci Prog
13(3):219–238

Domenico B, Caron J, Davis E, Kambic R, Nativi S (2002)
Thematic real-time environmental distributed data services
(THREDDS): incorporating interactive analysis tools into
NSDL. J Digit Inf 2(4):2002–2005

Doty BE, Kinter III JL (1995) Geophysical data analysis and
visualization using GrADS. Visualization techniques in
space and atmospheric sciences. In: Szuszczewicz EP,
Bredekamp JH (eds) NASA. Washington, D.C., pp 209–219

Fettig A (2006) Twisted network programming essentials.
O’Reilly Media, Sebastopol

Foster I, Voeckler J, Wilde M, Zhao Y (2002) Chimera: a virtual
data system for representing, querying, and automating data
derivation. In: Proceedings of the 14th conference on scien-
tific and statistical database management, Edinburgh, 24–26
July 2002, pp 37–46

Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable par-
allel programming with the message-passing interface. MIT,
Cambridge

Hankin S, Harrison DE, Osborne J, Davison J, O’Brien K (1996)
A strategy and a tool, ferret, for closely integrated visualiza-
tion and analysis. J Vis Comput Animat 7(3):149–157

Hanselman DC, Littlefield BL (2004) Mastering matlab 7. Pren-
tice Hall, Englewood Cliffs

http://code.google.com/p/swamp
http://dx.doi.org/10.1145/73560.73561
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Earth Sci Inform (2009) 2:141–155 155

Hsu WW, Smith AJ, Young HC (2005) The automatic im-
provement of locality in storage systems. ACM Trans
Comput Syst 23(4):424–473. doi:10.1145/1113574.1113577

Li J, Liao K-W, Choudhary AN, Ross RB, Thakur R, Gropp W,
Latham R, Siegel A, Gallagher B, Zingale M (2003) Parallel
netcdf: a high-performance scientific i/o interface. In: SC.
ACM, New York, p 39

Mathis M, Heffner J, Reddy R (2003) Web100: extended
tcp instrumentation for research, education and diag-
nosis. SIGCOMM Comput Commun Rev 33(3):69–79.
doi:10.1145/956993.957002

Natrajan A, Crowley M, Wilkins-Diehr N, Humphrey MA, Fox
AD, Grimshaw AS, Brooks III CL (2004) Studying pro-
tein folding on the grid: experiences using charmm on
npaci resources under legion. Concurr Comput Pract Exper
16(4):385–397

Rew RK, Davis GP (1990) NetCDF: an interface for scientific
data access. IEEE Comput Graph Appl 10(4):76–82

Rubio-Solar M, Vega-Rodríguez MA, Pérez JMS, Gómez-
Iglesias A, Cárdenas-Montes M (2008) A FPGA opti-
mization tool based on a multi-island genetic algorithm
distributed over grid environments. In: Cluster comput-
ing and the grid, 2008. 8th IEEE international sympo-
sium on CCGRID ’08, pp 65–72. doi:10.1109/CCGRID.
2008.96

Schweitzer R, Manke A, Hankin S (2008) Server-side OPeNDAP
analysis—concrete steps toward a generalized frame-
work via a reference implementation using F-TDS. In:
Proceedings of the 7th global organization for earth sys-
tem science portal (GO-ESSP) workshop, Seattle, 17–19
September 2008

Seagate Technology (2006) Barracuda 7200.9 Serial ATA prod-
uct manual, rev. d edn

Szalay A, Gray J, Thakar A, Kunszt P, Malik T, Raddick J,
Stoughton C (2002) The SDSS skyserver: public access to
the sloan digital sky server data. In: Proceedings of the 2002
ACM SIGMOD international conference on management
of data, Madison, 3–6 June 2002, pp 570–581

Tejedor E, Badia RM (2008) COMP superscalar: bringing GRID
superscalar and GCM together. In: Cluster computing and
the grid, 2008. 8th IEEE International Symposium on CC-
GRID ’08, pp 185–193. doi:10.1109/CCGRID.2008.104

Wall L, Christiansen T, Orwant J (2000) Programming perl, 3rd
edn. O’Reilly Media, Sebastopol

Wang DL, Zender CS, Jenks SF (2007) Server-side parallel data
reduction and analysis. In: Advances in grid and pervasive
computing: 2nd international conference, GPC 2007, Paris,
France, May 2–4, 2007. Proceedings, lecture notes in com-
puter science, vol 4459. Springer, Heidelberg, pp 744–750

Wang DL, Zender CS, Jenks SF (2008) Cluster workflow execu-
tion of retargeted data analysis scripts. In: Cluster computing
and the grid, 2008. 8th IEEE international symposium on
CCGRID ’08, pp 449–458. IEEE Computer Society, Lyon.
doi:10.1109/CCGRID.2008.69

Winer D (1999) XML-RPC specification. http://www.xmlrpc.
com/spec

Xue Y, Wan W, Li Y, Guang J, Bai L, Wang Y, Ai J (2008)
Quantitative retrieval of geophysical parameters using satel-
lite data. Computer 41(4):33–40. doi:10.1109/MC.2008.132

Zender CS (2008) Analysis of self-describing gridded geoscience
data with netCDF operators (NCO). Environ Modell Softw
23(10):1338–1342. doi:10.1016/j.envsoft.2008.03.004

Zender CS, Mangalam HJ (2007) Scaling properties of
common statistical operators for gridded datasets. Int J High
Perform Comput Appl 21(4):458–498. doi:10.1177/109434
2007083,802

http://dx.doi.org/10.1145/1113574.1113577
http://dx.doi.org/10.1145/956993.957002
http://dx.doi.org/10.1109/CCGRID.2008.96
http://dx.doi.org/10.1109/CCGRID.2008.96
http://dx.doi.org/10.1109/CCGRID.2008.104
http://dx.doi.org/10.1109/CCGRID.2008.69
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://dx.doi.org/10.1109/MC.2008.132
http://dx.doi.org/10.1016/j.envsoft.2008.03.004
http://dx.doi.org/10.1177/1094342007083,802
http://dx.doi.org/10.1177/1094342007083,802

	Efficient clustered server-side data analysis workflows using SWAMP
	Abstract
	Introduction
	Problem
	Large data volume
	High data-intensity

	Approach
	File granularity
	Implicitly-defined workflows
	Shell interface
	Grid-inspired
	Usage model

	Design
	Lightweight computation
	Shell language
	Locality sensitivity
	Administration
	Security
	Dynamic scheduling

	Performance-oriented architecture
	Compilation
	Partitioning
	Execution
	Disk parallelism

	Experiment
	Setup
	Ideal performance
	Overall performance
	Clustered and multi-core scalability
	Clustered partitioning
	I/O dependence
	Overhead and limitations

	Conclusions and further study
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

