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2. Abstract 

In this paper, we present the Pipeline for Observational Data Processing, Analysis, and Collaboration 

(PODPAC) software.  PODPAC is an open-source Python library designed to enable widespread 
exploitation of NASA earth science data by enabling multi-scale and multi-windowed access, exploration, 

and integration of available earth science datasets to support analysis and analytics; automatic accounting 

for geospatial data formats, projections, and resolutions; simplified implementation and parallelization of 

geospatial data processing routines; standardized sharing of data and algorithms; and seamless transition 
of algorithms and data products from local development to distributed, serverless processing on 

commercial cloud computing environments.  We describe the key elements of PODPAC’s architecture, 

including Nodes for unified encapsulation of disparate scientific data sources; Algorithms for plug-and-
play processing and harmonization of multiple data source Nodes; and Lambda functions for serverless 

execution and sharing of new data products via the cloud.  We provide an overview of our open-source 

code implementation and testing process for development and deployment of PODPAC.  We describe our 
interactive, JupyterLab-based end-user documentation including quick-start examples and detailed use 

case studies.  We conclude with examples of PODPAC’s application to: encapsulate data sources 

available on Amazon Web Services (AWS) Open Data repository; harmonize processing of multiple earth 

science data sets for downscaling of NASA Soil Moisture Active Passive (SMAP) soil moisture data; and 
deploy a serverless SMAP-based drought monitoring application for use access from mobile devices.  We 

postulate that PODPAC will also be an effective tool for wrangling and standardizing massive earth 

science data sets for use in model training for machine learning applications. 

Keywords: Data harmonization, plug-and-play algorithms, reproducibility, serverless cloud computing, 

Python, JupyterLab, SMAP 

3. Introduction 

NASA requires new solutions to address the ever-growing volume and variety of observational and 

modeled data products
1,2

. NASA’s current and future observational platforms such as NASA-ISRO 

Synthetic Aperture Radar (NISAR), HyspIRI, JPSS-1, Landsat, and MODIS, as well as model-generated 
weather and climate data sets, commonly generate data products stored in repositories ranging from 

                                                   
1 https://cdn.earthdata.nasa.gov/conduit/upload/6803/EOSDIS_Update_Summer_2017.pdf  
2 http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS--

42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.p

df  

mailto:mpu@creare.com
https://cdn.earthdata.nasa.gov/conduit/upload/6803/EOSDIS_Update_Summer_2017.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.pdf
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terabytes (TB) to petabytes (PB) in size. NASA’s Earth Observing System Data and Information System 

(EOSDIS) archives currently manage ~20 PB of data with a growth rate of ~15 TB per day. Moreover, 
data storage needs will grow dramatically as the upcoming NISAR satellite mission will require EOSDIS 

to handle an additional 85 TB of data per day. EOSDIS distributes thousands of distinct scientific data 

products with significant differences in spatial footprints and resolution, temporal resolution, geospatial 

projections, data formats, and metadata. The heterogeneity of data products hinders additional product 
discovery and exploitation, in particular for integrated analysis and analytics across observational and 

modeled data products. 

To address data volume issues, NASA is actively investigating the use of commercial cloud services. For 
example, NASA’s Alaska Satellite Facility (ASF) DAAC, responsible for archiving and serving NISAR 

data, is evaluating the use of Amazon Web Services (AWS) for data storage under its Getting Ready for 

NISAR (GRFN) project.
3
 GRFN is part of the ongoing EOSDIS efforts to evolve NASA Earth observing 

data and EOSDIS services to the commercial cloud.  

Simply migrating data to cloud-based storage will not address all of NASA’s big data needs. NASA also 

requires a solution which addresses the issue of data variety. In a NASA report by Mehrotra et. al (2014), 

NASA researchers identified six key use cases for utilization of big observational data sets: (1) produce a 
derived dataset by processing NASA data, (2) find NASA data relevant to a scientific problem, (3) 

discover new characteristics/features in a NASA dataset, (4) assess the quality of a simulation dataset, (5) 

answer a scientific question through analysis or analytics on NASA data, and (6) provide the results of 
analysis/analytics to others. Existing NASA resources have been developed, such as the EOSDIS, NEX, 

and openNASA to help address Goal 2 (finding data) and Goal 6 (sharing data). However, the remaining 

goals, which deal primarily with analysis and analytics objectives, remain unaddressed—not only for “big 
data” applications, but even for “medium data” earth science problems. 

To address data variety challenges, earth science researchers typically employ legacy data analysis 

approaches that involve ad hoc combinations of data wrangling and custom code development in 

languages such as FORTRAN, MATLAB
®
, ENVI, and Python; NASA tools such as Earthdata and 

Giovanni, commercial and open-source geospatial software libraries such as GDAL, Shapely, PROJ.4, 

OSR, Rasterio and PostGIS; and GIS platforms such as QGIS, ArcGIS, and GRASS. However, these ad 

hoc solutions take significant effort to implement, are highly customized to specific tasks, and rarely 
replicable across different applications and other science programs. To perform even the simplest 

computation or comparison across two independent geospatial raster data sets, an analyst must use a 

combination of tools to read the different file formats, reproject the data to a common spatial projection, 

resample the data to the same resolution and consistent pixel centers, and deal with non-overlapping 
regions and no-data values.   

These unmet big data volume and variety challenges motivated the development of the Pipeline for 

Observational Data Processing Analysis and Collaboration (PODPAC) Python library.  PODPAC is 
designed to enable data analysis and analytics of large-scale earth observational data in an easy-to-use, 

plug-and-play manner that is approachable for typical earth science researchers, graduate students, and 

citizen scientists. It is a structured, modular framework that unifies the capabilities of diverse open-source 
geospatial software tools, harmonizes disparate geospatial data sources, facilitates collaboration and 

sharing of earth observation data processing pipelines, and streamlines the transition of geospatial data 

processing workflows to highly scalable serverless cloud deployments.  

Other efforts to create portable and reproducible scientific workflows include CyberGIS-Jupyter (Yin et. 
al. 2019), geoknife (Read et. al. 2016), geoKepler (Coward et. al. 2015), GeoJModelBuilder (Zhang and 

Yue 2013), Taverna (Missier et. al. 2010), and VisTrails (Bavoil et. al. 2005).   

                                                   
3 https://earthdata.nasa.gov/getting-ready-for-nisar  

https://earthdata.nasa.gov/getting-ready-for-nisar


      AUTHOR ACCEPTED MANUSCRIPT     

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature 

In the following sections, we will describe the design and implementation of PODPAC, present the results 

from several example applications of PODPAC, and discuss outlooks for its future development and 
usage. 

4. Design and Implementation 

4.1. Software Architecture 

4.1.1 Overview 
Figure 1 shows conceptually how PODPAC addresses the data variety and volume challenges faced by 
earth scientists. To address data variety challenges, the PODPAC Python library encapsulates data 

sources enabling automatic harmonization of disparate formats, geospatial projections, and data 

structures. This data encapsulation allows the development of plug-and-play algorithms where users can 
substitute a new data source within an established processing algorithm. PODPAC generates lightweight 

JSON representations that document these algorithms so users can share, publish, and reproduce an 

analysis. To address data volume challenges, PODPAC integrates tightly with AWS, allowing researchers 

to seamlessly transition workflows developed locally to the cloud.  PODPAC’s cloud implementation 
leverages AWS Lambda functions, a serverless technology that provides massive scalability (up to 1000 

concurrent invocation by default) with minimal maintenance, and reduced billing risks due to automatic 

timeout after a maximum of 15 minutes of computation. Not only can users leverage this cloud 
deployment for large computations, but it also provides a low-cost, low-effort approach for scientists to 

share their analysis through RESTful APIs and interactive websites.  

In PODPAC, Nodes represent the basic unit of computation. They retrieve input data (circles in middle of 

Figure 1), perform computations (diamonds in middle of Figure 1), and produce outputs (square in middle 
of Figure 1). Nodes have a common interface that allows users to assemble them to form reproducible 

processing pipelines. Pipelines are evaluated on-demand once a user specifies a set of geospatial 

coordinates. This pipeline design is modular, allowing scientists to use PODPAC for their applications by 
combining existing or custom developed Nodes.  

The following describes DataSource Nodes for encapsulating geospatial datasets, Algorithm Nodes for 

building processing pipelines, and the PODPAC Lambda Node for transitioning workflows to the AWS 
serverless cloud processing services.  

4.1.2 Nodes for Encapsulating Data Sources 
Currently, different scientists and analysts repeat efforts to develop scripts for downloading and 
interpreting data. Errors in data harmonization are also common due to the complexity of geospatial 

coordinate reference systems (CRSs). Moreover, users commonly have to interact with datasets on a file-

by-file level, instead via a single interface.  

The goals of PODPAC DataSource nodes are to: (1) eliminate the repetitive task of developing data 

access and interpretation scripts; (2) automatically harmonize disparate data sources without error; and (3) 

provide a single, common interface to entire datasets. PODPAC’s DataSource nodes interface with 
various geospatial data sources (i.e., HDF5 files, OpenDAP servers, Numpy arrays, Intake catalogues, 

OGC-compliant servers, etc.) that are stored locally or retrieved on demand from remote servers. 

Developers need to implement methods that tell PODPAC how to retrieve data from the source location 

and interpret the coordinates of the returned data structure. PODPAC will then automatically retrieve and 
cache data on-demand, project data into a common CRS, and interpolate data to the same grid. This 

architecture greatly reduces the data wrangling overhead and repetition common in earth science research.  

To accomplish these goals, we carefully developed the evaluation interface used by all PODPAC nodes, 
implemented a flexible method for specifying coordinates to cover a wide range of data structures, and 

integrated a wealth of open-source libraries to harmonize disparate datasets.  
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Interface. In order to access data through PODPAC, users need to evaluate the DataSource node as 

follows: 

data_source = podpac.DataSource(<parameters>)  # stages evaluation 

results = data_source.eval(data_source. coordinates)  # runs evaluation 

where “<parameters>” are specific to a particular data source, and “data_source. coordinates” are the 

geospatial coordinates that describe the source data. PODPAC will then retrieve the data from its source 
on-demand, and return it in a coordinate-aware podpac.UnitsDataArray container. Our 

podpac.UnitsDataArray object inherits from the xarray.DataArray object and contains all of the 

functionality provided by xarray along with basic unit checking capabilities and additional formats for 

saving results. The above example will retrieve the entire dataset in its native coordinate system, but users 
can also specify a completely custom set of Coordinates.  

Coordinate Specification. Scientists can use Coordinates to evaluate Nodes, and developers use them to 

define the coordinates of DataSources. We designed PODPAC Coordinates after xarray Coordinates, but 
ours are restricted to the dimensions [“lat”, “lon”, “time”, “alt”] while also allowing users to create more 

complex coordinate types. A major advantage of PODPAC lies in the generality of the Coordinates object 

to represent data structures spanning gridded arrays to unstructured spatial points to paths (Figure 2).  

PODPAC optimizes the storage of coordinates by taking advantage of structure in the data and the ability 
to separate dimensions. We can describe any geospatial data structure’s coordinates by specifying the 

[“lat”, “lon”, “time”, “alt”] coordinates for each point. However, this increases the amount of storage and 

memory: we have to keep track of up to four additional pieces of data for every point. For large datasets, 
this can be a significant storage burden. Moreover, it is more computationally expensive to interpolate 

between coordinate systems and to perform basic operations (such as determining if two different sets of 

coordinates overlap). Figure 2 shows three levels of optimized coordinates storage, starting with 1-D 
representations of coordinates along axes orthogonal to the coordinate system that describe a grid (least 

amount of storage), to specifying coordinates for each point describing a path (most amount of storage). 

The basic interface for specifying coordinates is as follows: 

c = Coordinates([coords_1, coords_2, …], [name_1, name_2, …], crs="crs") 

where “coords_*”, “name_*”, and “crs” are the values, names, and PROJ4 CRS string for the coordinates, 
respectively. Table 1 shows the interface for creating Coordinates representing the data structures shown 

in Figure 2. Note, in addition to Python tuples and lists, users can employ Numpy arrays for the 

coordinate values.  

Harmonization. PODPAC harmonizes data by automatically projecting and interpolating data based on 
the user’s requested Coordinates. PODPAC’s interpolation design is modular, flexible, and extensible, 

since there is a wide variety of different interpolation methods (and implementations of those methods) 

that users may want to use. Users can specify the interpolation method broadly, or with great specificity. 
With a basic specification (such as “nearest” or “bilinear”), PODPAC automatically decides which 

interpolation implementation to use. Alternatively, users can specifically control the interpolation method 

for each coordinate dimension for each DataSource Node by specifying a dictionary of parameters. 
PODPAC natively supports a number of Interpolators covering a wide range of use cases to interpolate 

between grid and point data using various methods. Internally, PODPAC leverages interpolation methods 

from xarray, Scipy, and Rasterio. 

4.1.3 Algorithms for Automated Harmonization and Plug-and-Play Processing 
Sharing, reproducing, and adapting analyses by earth scientists is challenging due to fragile processing 

scripts, undocumented data preprocessing procedures, and barriers to data access. The goal of PODPAC 
Algorithm nodes is to document geospatial data processing pipelines in a lightweight manner to address 

these challenges, describing the complete process, from raw data retrieval to producing the final product. 
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With data stored in the cloud or on publically accessible servers, this approach promises to make earth 

science more reproducible in general. In conjunction with automated data harmonization, it also enables 
plug-and-play substitution of new data into existing processing pipelines. Finally, the lightweight 

representation enables users to distribute PODPAC pipeline evaluation to heterogeneous compute 

architectures such as the cloud or local workstations.  

In Python, users assemble processing pipelines by instantiating Node objects and settings these as inputs 
to Algorithm Nodes. Internally, PODPAC keeps track of this assembly by recursively inspecting each 

Algorithm’s input Node and keeping track of the Node definitions. A set of tagged attributes define each 

Node, and our custom encoder serializes these to text using the JSON format. Moreover, users can create 
PODPAC Nodes from properly formatted JSON text using the Node.from_json method. As such, 

PODPAC serializes complete processing pipelines to human-readable JSON text, which provides a 

lightweight mechanism to share analysis. Because PODPAC can recreate Nodes from this JSON 
representation, the same computation can be distributed and run on heterogeneous compute architectures, 

such as the cloud.  

PODPAC Algorithm Nodes may manipulate the evaluation Coordinates or process the data directly. The 

former is useful for computing climatologies over complex time windows (such as the 8
th
 week of the 

year over the past 10 years). PODPAC implements a number of algorithms that include: (1) signal 

processing / convolution operations; (2) reduction algorithms for computing statistics such as mean, 

mode, and variance; (3) ways to modify coordinates such as expanding the evaluated coordinates to cover 
a wider region or substituting a different value for a dimension; (4) and generic algorithms that can 

evaluate arbitrary equations point-wise or run arbitrary Python code. Developers can also extend 

PODPAC’s capabilities by creating new classes that inherit from our Algorithm node. They then need to 
implement the algorithm(inputs) method, which takes a dictionary of harmonized input data sources as 

UnitsDataArrays. With this functionality, scientists create a wide range of processing pipelines that are 

easily sharable and reproducible across PODPAC installations.  

Our implementation of Algorithm Nodes supports multi-threading. While Python does not support native 
parallel computation via threads due to the Global Interpreter Lock (GIL), it does support parallel IO. As 

shown on the right of Figure 3, this capability ameliorates the main bottleneck associated with data 

retrieval in Algorithm Nodes. As shown on the left of Figure 3, without multi-threading each input 
DataSource Node would incur a latency penalty associated with accessing data (from cloud storage, for 

example). Our implementation allows users to limit the maximum number of threads spawned by 

PODPAC. Algorithm Nodes fall back to serial data retrieval once the process reaches the maximum 

number of threads.  

4.1.4 Seamless Serverless Cloud Transition 
The need for vendor-specific expertise and knowledge, administrative barriers associated with budgeting, 
and the non-trivial task of transitioning established workflows are major barriers to adoption of cloud 

computing by earth scientists. Meanwhile, cloud computing offers significant benefits, such as low cost 

and effort to access data stored on the cloud, on-demand access to massive compute resources, and lower 
maintenance costs. Moreover, to disseminate their analyses widely and in a reproducible manner, 

scientists can use cloud services. The goal of PODPAC’s AWS integration is to provide a seamless path 

to cloud computing that abstracts the major barriers identified above. We do this with a full PODPAC 

environment for AWS Lambda functions that scientists can easily deploy and use inside a Python 
console. We also provide an interface for tracking budgets. We implemented this capability within 

PODPAC’s Lambda Node.  

AWS Lambda functions are a serverless technology. This means that users do not need to provision, 
setup, maintain, and turn off a cloud server manually. Instead, users develop functions that can be 

“triggered.” When triggering a function, AWS automatically provisions a server, runs the desired 

function, and turns the server off upon completion. This alleviates the problem of server maintenance and 
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avoids the problem of budget overruns associated with accidently leaving servers turned on. It is also 

massively scalable, allowing a parallel computation over 1000 machines, by default. The downside to 
AWS Lambda functions come from restrictions imposed on the available memory, maximum runtime, 

operating system used for the deployment, and file size restrictions for dependencies. As a result, it can be 

very challenging to implement an AWS Lambda function for geospatial applications.  

PODPAC’s AWS Lambda function integration provides a general PODPAC environment that is easy to 
set up. We create and maintain this environment using a Docker container that generates the necessary zip 

files used to create the AWS Lambda function. We make these zip files publically available via an S3 

bucket so that PODPAC’s Lambda Node can automatically set up a user’s AWS account with a PODPAC 
AWS Lambda function. The only manual step required is for users to obtain an AWS login and generate 

an access key ID and secret access key through the following process: 

1. Log into console.aws.amazon.com 

2. Go to Services  IAM  users 

3. Click on username  

4. Click on the “Security credentials” tab 

5. Click on “Create access key” 

6. Save the “Access key ID” and “Secret access key”  

Once this is done, the following Python code will create the S3 Bucket, Lambda function, IAM roles, and 

API Gateway resources needed to run PODPAC pipelines in the cloud, and set up alarms to track 
spending: 

import podpac  

from podpac.managers import aws 

settings = podpac.settings.copy()  # Make a copy of the default settings 

# Add AWS Credentials, budget information, and resource base name to settings 

settings["AWS_ACCESS_KEY_ID"] =   # Users’s AWS access key id 

settings["AWS_SECRET_ACCESS_KEY"] =  # Users’s AWS secret access key 

settings["AWS_REGION_NAME"] =   # User’s AWS region name 

settings["AWS_BUDGET_AMOUNT"] =        # budget for AWS resources in USD/month 

settings["AWS_BUDGET_EMAIL"] =         # notification e-mail for budget alarms 

settings["FUNCTION_NAME"] =   # unique name of AWS Lambda function  

 

node = aws.Lambda(eval_settings=settings)  # create the Lambda Node 

node.describe()    # view the staged AWS resources 

node.build()     # automatically build AWS resources  

node.validate()    # returns True if AWS resource exist 

Once a user has created a PODPAC AWS Lambda function, they can use the Lambda Node to seamlessly 

transition from using PODPAC on a workstation to computation in the cloud, while tracking their 

spending. Figure 4 conceptualizes how PODPAC triggers the AWS Lambda function using the JSON 
definitions of the processing pipeline. It also shows how the user can optionally store the data in an S3 

bucket. As an example, the following code runs a PODPAC pipeline on a local workstation, and then 

transitions to the cloud: 

 

 

node.eval(coordinates)   # Runs on local workstation 

lambda_node = aws.Lambda(source=node) 

lambda_node.eval(coordinates)    # Runs on AWS 
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PODPAC’s AWS Lambda function includes a partial implementation of the OGC-compliant WMS/WCS 

standards. This allows users to display geospatial data using OGC-compliant clients such as the Leaflet 
JavaScript library.  To use this functionality, users need to provide query parameters as part of the URL to 

define the processing pipeline. Users can either embed the JSON pipeline definition in the URL, or 

specify a URL to a JSON pipeline definition. Figure 5 shows an example using the WMS capability in a 

webpage with the Leaflet JavaScript library. Here the API Gateway URL is provided through the 
PODPAC Lambda.describe() method, and the pipeline definition is stored at the indicated URL. This 

shows how scientists can easily develop a webpage to share their analyses through interactive maps.  

4.2. Software Development Approach 

PODPAC development involves an object-oriented design with quarterly release cycles, automated unit 

testing, code coverage reports, and automated documentation builds. It is version controlled using Git, 

with publically accessible source code available from https://github.com/creare-com/podpac, and 
documentation available at https://podpac.org.  

Releases and Versioning. PODPAC is released under the Apache 2.0 license. Releases are versioned 

using a major, minor, and bug fix version numbering scheme. Changes in major version mean that 

interfaces are not backwards compatible, changes in minor version mean new features are developed, and 
bug fix number indicates the number of critical bugs fixed for the specific major/minor version. 

Additionally, development versions have the Git hash appended.  

Code is released on GitHub, the Python Package Index (PYPI), and as a standalone distribution for 
Windows hosted on AWS S3. Releases include release notes that summarize major features, bug fixes, 

and backwards-incompatible changes. 

For each release, developers run the Jupyter Notebook examples to ensure they work as expected.  

Unit Testing. Unit testing ensures that small units of the code are correctly implemented. Thoroughly 

testing the code and automatically running tests on freshly installed environments is crucial for an open 

source project with external developers. It is also useful for preventing regression during major 

refactoring of the code, or while fixing complex bugs. As such, PODPAC uses “Travis CI” on GitHub 
with Python 3.5–3.8 Python environments and the latest versions of dependencies to automatically run 

unit tests after every commit. These unit tests are also supplemented by automated coverage reports using 

“Coveralls.”  

Unit tests are mandatory for all new major PODPAC features. As part of code reviews during merge 

requests, reviewers are expected to ensure there are sufficient and relevant unit tests in place. Moreover, 

upon discovering bugs in the code, it is expected that a unit test is written to cover this bug as part of 

fixing the problem. 

Code Coverage. Coverage reports aid with writing sufficient unit tests to cover all of the branches in the 

code. Coverage reports capture the lines of code executed by unit tests, and therefore indicate which lines 

of code are being tested. While coverage does increase the confidence that there is sufficient testing, it 
does not guarantee that the quality of testing is sufficient to ensure the results are correct. For example, 

running a function with a subset of possible inputs without checking the correctness of the result will still 

increase the coverage. As such, we aimed to write useful unit tests, using the coverage report as a 
guideline for focusing our efforts. Our goal is to maintain greater than 90% code coverage. Greater 

coverage than this is impractical due to a number of hard-to-test cases. For example, some of our code 

handles missing dependencies, but these dependencies are always present in our test environment. 

Documentation. Useful documentation and examples are crucial for promoting adoption of open source 
libraries by the community at large. This includes user documentation describing how to use the software, 

developer documentation describing how to contribute to the source code, and templates for bug reports 

and feature requests.  

https://github.com/creare-com/podpac
https://podpac.org/
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PODPAC developers are expected to document every function and class with Python Docstrings. In 

addition, we develop user guides using markdown, and use-case examples using Jupyter Notebooks. All 
of this documentation is automatically committed to a dedicated document repository 

(<https://github.com/creare-com/podpac-docs>) which is published via GitHub “pages” feature to 

https://podpac.org.  

Dependencies. PODPAC strives to leverage existing open source libraries to the maximum extent. 
However, not all users need all of PODPAC’s functionality. As such, PODPAC has a relatively small set 

of core dependencies, and additional dependencies are imported on-the-fly using the Lazy-Import Python 

package, which throw errors at runtime as soon as Python tries to use an unavailable package.  

One of PODPAC’s core dependencies is the Python package Traitlets. The main goal behind Traitlets is 

to implement type checking of Python variables. Type checking helps users use the code as intended by 

raising exceptions whenever a variable is set to an unexpected type. Traitlets also implements a number 
of additional features, including metadata tagging of variables, which PODPAC takes advantage of to 

automatically serialize processing pipelines into JSON text. Whenever a developer adds “.tag(attr=True)” 

to a Traitlets type, PODPAC includes that attribute as part of a Node definition.  

Besides Traitlets PODPAC’s core dependencies are Matplotlib, Numpy, Pint, Scipy, Xarray, Requests, 
Pyproj, Lazy-Import, and Psutil. To deal with different geospatial data sources, optional dependencies 

include H5py, Pydap, Rasterio, and Zarr. For AWS integration, PODPAC uses the AWSCLI, Boto3, and 

s3fs packages.  

Open Source Governance. PODPAC uses an open-source governance model similar to that of Linux, 

where contributions from the wider community are encouraged, but the ultimate control is maintained by 

a small group of dedicated developers.  

4.3. Training Materials 

To facilitate adoption of PODPAC by new users, we have developed Jupyter Notebooks in a separate 

repository that users can access and run using Binder (https://github.com/creare-com/podpac-examples). 

Binder is a service to run Jupyter Notebooks without any setup, and serves as a highly accessible way to 
evaluate PODPAC for specific applications. Jupyter is an open-source project developing a web-based 

programming user interface that combines code with rich display of text and media. Jupyter Notebooks 

are gaining popularity in the scientific community because they are easy to share and increase 
reproducibility. We developed notebooks to guide users through learning PODPAC’s concepts using 

simple examples, and to demonstrate PODPAC’s capabilities with use-case examples.  

  

https://github.com/creare-com/podpac-docs
https://podpac.org/
https://github.com/creare-com/podpac-examples
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Table 2 summarizes the simple example notebooks available in PODPAC version 1.3.0. In addition to 

these examples, we also have examples demonstrating data access through various interfaces, example 
processing pipelines, and detailed examples for developers. Finally, we have a systematic tutorial for 

deploying the Drought-Monitor application (see Section 5.3) suitable for novice users starting from no 

PODPAC experience.  

5. Results 

5.1. Encapsulation of Disparate Data Sources 

Version 1.3.0 of PODPAC implements interfaces for accessing: (1) SMAP data via OpenDAP; (2) SMAP 
data via the Earthdata Gateway Interface (EGI); (3) Global Forecast System (GFS) data stored on AWS 

S3; (4) digital terrain data stored on AWS S3; and (5) Intake catalogues. SMAP is a soil moisture product 

from the Soil Moisture Active Passive satellite mission, and the National Snow and Ice Data Center 

(NSIDC) Distributed Active Archive Center (DAAC) provides the data through the OpenDAP protocol, 
and the EGI endpoint. NOAA hosts their GFS model data output on Amazon’s S3 via a publically 

available bucket through the Amazon Open Data Registry. Similarly, MapZen provides digital terrain 

data through Amazon’s Open Data Registry.  

We implemented access to these sources as part of the podpac.datalib module. As a result, PODPAC 

users can easily access any of these data source in their desired coordinate system and CRS. As an 

example, the following code will access SMAP and terrain data over a 1 degree by 1 degree region 
centered over a (latitude, longitude) of (40, -100) on February 1

st
 of 2020: 

import podpac 

from podpac import datalib 

coords = podpac.Coordinates( 

 [podpac.clinspace(41, 39, 65), podpac.clinspace(-101, -99, 65), 

 '2020-02-01'], ['lat', 'lon', 'time']) 

smap = datalib.smap_egi.SMAP() 

terrain = datalib.terraintiles.TerrainTiles() 

smap_out = smap.eval(coords) 

terrain_out = terrain.eval(coords) 

We based these specific data source nodes on the following generic PODPAC Nodes shown in Table 3. 

Both the OpenDAP SMAP and TerrainTiles sources use PODPAC Compositors to assemble the many 

different files to give users a single interface into the data. The EGI SMAP data source uses the generic 
EGI node, which implements an interface to NASA’s API. Finally, the GFS data source uses the Rasterio 

node, and manually assembles various files together.  

5.2. Plug-and-Play Algorithms with Automated Data Harmonization 

To illustrate PODPAC’s plug-and-play algorithm development enabled by automatic data harmonization, 
we implemented a simple soil moisture downscaling model that combines multiple disparate data sources 

shown in Figure 6. Starting from coarse 9km-scale SMAP data, we compute high resolution 30m soil 

moisture using an approach based on TOPMODEL (Beven et. al., 1984). TOPMODEL requires the 
Topographic Wetness Index (TWI) as part of the computation. TOPMODEL also needs the Porosity and 

the wilting point of the soil. Finally, TOPMODEL needs a tuning parameter 𝜅 to specify the complete 

model:  

Θ = Θ𝑆𝑀𝐴𝑃 +
𝜌 − Θ𝑤
𝜅

(𝜆 − 𝜆̅) 
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Where Θ is the downscaled soil moisture, ΘSMAP is the coarse-scale soil moisture, ρ is the soil porosity, 

Θw is the soil wilting point, 𝜆 is the fine-scale TWI and  𝜆̅ is the coarse-scale TWI.   

The following code implements this model, and users can evaluate it using arbitrary PODPAC 

Coordinates: 

import podpac, podpac.datalib 

 

# Access data via OpenDAP from the National Snow and Ice Data Center (NSIDC) 

smap = podpac.datalib.smap.SMAP(interpolation='bilinear') 

wilt = podpac.datalib.smap.SMAPWilt(interpolation='bilinear') 

porosity = podpac.datalib.smap.SMAPPorosity(interpolation='bilinear') 

 

# Access TWI via OGS-compliant WCS endpoint 

twi = podpac.data.WCS( 

source='https://mobility.crearecomputing.com', 

 layer_name='dassp.main_map.topography.elevation' + \    

   '.TopographicWetnessIndexUSGSNED30m', 

 interpolation='nearest') 

 

# Re-project high resolution TWI onto SMAP grid. Note, the WCS endpoint  

# provides averaged data from pre-computed overviews for coarser requests 

twi_bar = podpac.data.ReprojectedSource( 

source=twi, 

   reprojected_coordinates=smap.shared_coordinates,        

    interpolation='bilinear') 

 

# Implement the downscaling algorithm 

downscaled_sm = podpac.algorithm.Arithmetic( 

    smap=smap, twi=twi, twi_bar=twi_bar, rho=porosity, wilt=wilt,  

    eqn='smap + (rho - wilt) / 13.0 * (twi - twi_bar)') 

 

# Evaluate at arbitrary coordinates and plot the results 

coordinates = podpac.Coordinates( 

[podpac.clinspace(41, 40.9, 916), 

podpac.clinspace(-77,-76.9, 916), 

'2017-09-03T12:00:00'], dims=['lat', 'lon', 'time']) 

out = downscaled_sm.eval(coordinates) 

out.plot(cmap='gist_earth_r') 
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Users can share this algorithm using its JSON definition. For example, the above example has the 

following JSON (where parts have been omitted for publication): 

{ 

    "SMAPPorosity": { 

        "node": "datalib.smap.SMAPPorosity", 

        "attrs": {"datakey": "Land_Model_Constants_Data_clsm_poros"}, 

        "source": "https://.../SMAP_L4_SM_lmc_00000000T000000_Vv4030_001.h5", 

        "interpolation": "bilinear" 

    }, 

    "SMAP_SPL4SMAU": { 

        "node": "datalib.smap.SMAP", 

        "attrs": {"base_url": "https://n5eil02u.ecs.nsidc.org/opendap/SMAP", 

            "product": "SPL4SMAU", "version": 4}, 

        "interpolation": "bilinear"}, 

    "TopographicWetnessIndexUSGSNED30m": { 

        "node": "core.data.ogc.WCS", 

        "attrs": {"crs": "EPSG:4326", "version": "1.0.0",  

  "layer_name": "...TopographicWetnessIndexUSGSNED30m"}, 

        "source": "https://mobility.crearecomputing.com/ogc", 

        "interpolation": "nearest"}, 

    "TopographicWetnessIndexUSGSNED30m_reprojected": { 

        "node": "core.data.reprojection.ReprojectedSource", 

        "attrs": {"reprojected_coordinates": {"coords": [ 

                    {"values": [ ... ], "name": "lat"} 

                    {"values": [ ... ], "name": "lon"}], "crs": "EPSG:4326"}, 

            "source_interpolation": "nearest"}, 

        "lookup_source": "TopographicWetnessIndexUSGSNED30m", 

        "interpolation": "bilinear"}, 

    "SMAPWilt": { 

        "node": "datalib.smap.SMAPWilt", 

        "attrs": {"datakey": "Land_Model_Constants_Data_clsm_wp"}, 

        "source": "https://.../SMAP_L4_SM_lmc_00000000T000000_Vv4030_001.h5", 

        "interpolation": "bilinear" 

    }, 

    "Arithmetic": { 

        "node": "core.algorithm.generic.Arithmetic", 

        "attrs": {"eqn": "smap + (rho - wilt) / 13.0 * (twi - twi_bar)"}, 

        "inputs": { 

            "rho": "SMAPPorosity", 

            "smap": "SMAP_SPL4SMAU", 

            "twi": "TopographicWetnessIndexUSGSNED30m", 

            "twi_bar": "TopographicWetnessIndexUSGSNED30m_reprojected", 

            "wilt": "SMAPWilt"}} 

} 

Before developing PODPAC, implementing this simple downscaling model required hundreds of lines of 

code to produce an output for a small set of data. With this PODPAC implementation, not only can users 
evaluate the node at arbitrary coordinates, they could substitute different soil moisture data, and host an 

interactive browser application via the PODPAC Lambda function implementation. Moreover, users do 

not have to manually download or stage data for this example to work. As a result, PODPAC-developed 
geospatial analysis should accelerate science by increasing reuse, reproducibility, and productivity. 



      AUTHOR ACCEPTED MANUSCRIPT     

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature 

5.3. Serverless Cloud Deployment of a New Drought Monitoring Index Based on 
Remote-Sensed SMAP Soil Moisture Data 

Timely monitoring of drought conditions is critical for agriculture, insurance, and government 

applications. The National Drought Mitigation Center (NDMC) publishes a widely used weekly national 

drought monitoring index
4
 (NDMI) which is authored by experts examining multiple remotely sensed 

data sources, in situ sensors, and local reports. However, more timely data at a higher spatial resolution 
would further help to mitigate the socio-economic effects of droughts. To demonstrate the use of 

PODPAC for deploying such an application using serverless cloud services, we developed a new drought 

index based on remotely sensed SMAP soil moisture data. SMAP is a satellite platform that estimates soil 
moisture at 9 km resolution with global coverage achieved approximately every 3 days.   

NDMI enumerates drought conditions in terms of five categories:  

1) D0 represents abnormally dry conditions (20-30% percentile probability) 
2) D1 represents moderate drought conditions (10-20% percentile probability) 

3) D2 represents severe drought conditions (5-10% percentile probability) 

4) D3 represents extreme drought conditions (2-5% percentile probability) 

5) D4 represents exceptional drought conditions (0-2% percentile probability) 

We defined analogous drought index categories using SMAP soil moisture estimates.  To implement this 

approach, we defined a PODPAC Algorithm pipeline that performs the following computations:  

1) For each date of the year, select all available SMAP soil moisture data within a 45-day window 
2) Divide SMAP volumetric soil moisture by porosity to convert to relative soil saturation 

3) Fit a beta distribution using maximum likelihood estimation to retrieve “a” and “b” parameters of 

distribution 
4) Assign the D0 to D4 drought categories according to their percentiles, and convert back to 

volumetric soil moisture by multiplying by porosity 

5) Convert SMAP soil moisture estimate to drought categories by thresholding using the D0-D4 

values 

We then deployed our SMAP drought monitoring index (DMI) as a PODPAC Lambda function with an 

HTTP gateway interface for WMS access from a web browser.  For the end-user application, we 

developed a static webpage which includes an interactive slippy map for display of NDMI, SMAP DMI 
(left panel of Figure 7), and SMAP soil moisture (right panel of Figure 7).  This end-user application is 

available at https://creare-com.github.io/podpac-drought-monitor/  

The top row in Figure 8 illustrates the underlying functionality of the deployed SMAP DMI application. 

A user accesses the application through a web browser on a desktop or mobile device platform. The 
application makes RESTful calls to the SMAP DMI Lambda function with the function parameters 

embedded as PODPAC pipeline JSON definitions. The SMAP DMI Lambda function retrieves the 

required SMAP data which is stored in a cloud-optimized Zarr format. The SMAP DMI Lambda function 
then transforms the raw data to drought categories, and depending on the request, returns the result as 

JSON text or PNG images via WMS. The bottom row in Figure 8 shows the basic mechanism for staging 

new SMAP data in a cloud-optimized format. Since SMAP data is not yet stored on the cloud, we use an 
AWS CloudWatch Event to check for new data daily via a second PODPAC Lambda function. This 

Lambda function downloads and stages the SMAP data in the cloud using a cloud-optimized storage 

format. 

Figure 9 shows a comparison between the new SMAP DMI Monitor with NDMC’s NDMI. The overall 
trends are similar, but the SMAP DMI provides higher temporal and spatial resolution and is developed 

using fully reproducible data processing approach using remote sensing SMAP data. The manual creation 

                                                   
4 https://droughtmonitor.unl.edu/ 

https://creare-com.github.io/podpac-drought-monitor/
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of NDMC’s NDMI uses multiple data sources, and this accounts for some of the differences in the 

comparison. Additional differences arise because drought category percentiles generated from SMAP use 
relatively recent data (since 2015). For example, our SMAP DMI may consider recent multi-year 

droughts as statistically likely leading to a “moderate drought” categorization, whereas an analysis with 

more years of data would categorize the same event as “extreme drought”. 

6. Discussion 

The current 1.3.0 implementation of PODPAC provides a strong foundation for an extensible geospatial 

analysis framework. Its data wrangling capability, plug-and-play algorithms, and AWS cloud 
implementation have accelerated our use and sharing of earth science data.  

PODPAC has greatly increased our productivity retrieving and wrangling datasets. Once a dataset was 

wrapped in PODPAC, we no longer needed to worry about the minutia of how the data was stored, which 

variables we need to consider, and how to avoid simple interpretation errors. For creating new datasets, 
we found the zarr format to be very beneficial when storing data in the cloud. It breaks up large datasets 

in chunks and handles operations such as concurrent writes and appending data seamlessly. We also 

discovered that remote servers sometimes go down or make unanticipated changes, causing a previously-
working dataset to no longer function while throwing a potentially incomprehensible error. In these cases, 

we improve the error message but we anticipate continued problems like this as community members start 

contributing DataSource nodes. We plan to continue wrapping high-value data sources stored in the cloud 
for our future applications. To sustain data wrapping activities, we plan to leverage our internal research 

projects, and we invite community members to contribute as well. 

PODPAC’s plug-and-play algorithms allow us to answer what-if questions in a matter of minutes instead 

of hours. Before PODPAC, we were frustrated by the difficulty and amount of coding needed to take a 
simple difference between two datasets. Now we analyze and visualize PODPAC outputs rapidly using 

powerful open source analysis libraries such as xarray and Scipy. We have found the grouping, 

windowing, and statistical operations by xarray particularly helpful, since PODPAC nodes output xarray-
compatible data containers. For initial development purposes, we found it helpful to retrieve data over a 

small region using PODPAC and then developing analyses in a Jupyter notebook. Once the analysis looks 

good for the small region, we found it helpful to go back and develop the full PODPAC processing 
pipeline to enable rapid processing of large regions or interactive visualization in the cloud.  

PODPAC’s easy AWS cloud integration has allowed us to iterate rapidly when developing a new 

applications such as the Drought-Monitor. We find the WMS capability most useful for rapidly analyzing 

a new data product interactively. Invariably there are aspects that we wish to change and improve, and 
since it is simple to deploy an AWS Lambda function, iteration takes minutes instead of hours or days. 

Navigating AWS services was non-trivial, and we found their interface across services was not consistent 

in surprising ways. To overcome the memory and maximum runtime restrictions of Lambda functions, we 
had to restrict the size of coordinates in our processing requests. The file size limit associated with the 

Lambda function was particularly difficult to deal with, and requires us to download additional 

dependencies on-the-fly. This issue precluded us from using existing libraries that facilitates AWS 

Lambda function deployments such as Serverless
5
 and Python-lambda.

6
 However, with the introduction 

of AWS Lambda Layers, some of our maintenance burden is relieved. At the time of writing, we also 

found that the traceback logs provided through PODPAC to be much more useable compared with those 

available from the AWS CloudWatch web console, which required a lot of scrolling and dynamic loading 
of data. This allowed us to optimize the execution speed of our Lambda function more rapidly for the 

Drought-Monitor, but this is an ongoing effort. Optimizing on-demand calculations on AWS Lambda 

                                                   
5 https://github.com/serverless/  
6 https://github.com/nficano/python-lambda  

https://github.com/serverless/
https://github.com/nficano/python-lambda
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functions for interactive browsing remains challenging, primarily due to application-specific data access 

patterns that drive specific cloud storage structures. 

While PODPAC targets AWS Lambda functions for cloud deployment, PODPAC is not restricted to run 

on this service with this provider. PODPAC provides a Docker file as a starting point for users to 

integrate with AWS Elastic Container Services (ECS) or other cloud providers such as Azure and Google 

Cloud. The difficulty of implementing PODPAC on other cloud architecture depends on the particulars of 
the application and the available services. The main challenges would involve installing dependencies, 

managing message interfaces (API endpoints), data access, and managing authentication. 

Future capability development of PODPAC includes: (1) increasing the robustness of the code by finding 
and correcting edge cases; (2) improving the functionality of compositors (for example to composite a 

folder full of tiled files automatically); (3) wrapping additional high-value data sources; (4) implementing 

additional algorithms; (5) increasing the capability and types of interpolation methods; (6) developing 
custom JupyterLab widgets for graphical interaction and rapid dashboard creation; (7) integrating 

seamlessly with other cloud services/providers; and (8) integrating with machine learning libraries such as 

TensorFlow. Since formatting and preprocessing data is a major challenge with machine learning 

applications, PODPAC is a natural candidate for improving and streamlining this process, reproducibly.  

7. Conclusions 

Widespread analysis and analytics of NASA and non-NASA earth science data currently face significant 
barriers to entry due to disparate geospatial data formats, large computational demands, and high data 

storage and bandwidth requirements.  To mitigate these barriers to entry, we have developed PODPAC 

for automated harmonization of earth science datasets, plug-and-play development of algorithmic 

processing pipelines, and seamless transition of scientific workflows to the serverless cloud by scientists 
with minimal experience (or interest) in managing the complexity of cloud computing environments.  

These capabilities are documented, readily demonstrated, and built upon through example JupyterLab 

notebooks which accompany the software. Moreover, our open-source software approach and explicit 
documentation of algorithm pipelines and data product provenance greatly facilitates sharable and 

reproducible scientific research. Finally, providing agile access to earth science data and tools for plug-

and-play geospatial analysis can revolutionize the productivity and effectiveness of everyday decision-
makers and citizen scientists from a variety of fields such as agriculture, aquaculture, disaster response, 

forestry, land management, and municipal planning, and outdoor recreation. 

8. Availability and Requirements 

PODPAC source code, examples, and documentation can be downloaded from the PODPAC website at 

https://podpac.org and its Git repository at https://github.com/creare-com/podpac.  All files and 

documentation are made freely available under the 2.0 version of the Apache License 

(https://www.apache.org/licenses/LICENSE-2.0).  The PODPAC software can be run on any 
computational hardware and operating system for which Python 3.6 (or later).  This includes most recent 

versions of the Microsoft Windows, Apple MacOS, and Linux operating systems.  Deployment of 

algorithms to Lambda serverless computing resources from PODPAC requires users to have an active 
AWS account and credentials. 

9. List of Abbreviations 

AWS Amazon Web Services 

CRS Coordinate Reference System 

https://podpac.org/
https://github.com/creare-com/podpac
https://www.apache.org/licenses/LICENSE-2.0
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DAAC Distributed Active Archive Center 

DEM Digital Elevation Mode 

JSON JavaScript Object Notation 

NASA  National Aeronautics and Space Administration 

NSIDC  National Snow and Ice Data Center 

PODPAC  Pipeline for Observational Data Processing Analysis and Collaboration 

SMAP Soil Moisture Active Passive 

TWI  Topographic Wetness Index 

WCS  Web Coverage Service 

WMS  Web Mapping Service 
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12. Figures and captions 

 

Figure 1. PODPAC’s Python library automatically harmonizes encapsulated data sources to enable plug-and-

play algorithm development (left). Lightweight JSON representations automatically document Algorithms, 

allowing them to be processed remotely (right) or shared for reproduction. PODPAC tightly integrates with 

AWS to provide a seamless transition from running on a workstation to running on the cloud.   
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Figure 2. Optimized storage of Coordinates in PODPAC. The top row represents the data structure used to 

store data, with coordinates indicated in green, and data points indicated in blue. The bottom row shows how 

the data maps spatially with notional data values indicated by various shades of blue. Left shows an example 

of raster data such as a digital elevation model, middle shows an example of a point collection recording data 

over time such as weather stations, and right shows data collected along a path from a roving sensor such as 

pressure recorded by a cellphone while the user is walking around.  

  



      AUTHOR ACCEPTED MANUSCRIPT     

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature 

 

Figure 3. PODPAC Algorithm Nodes are multi-threaded for parallel IO to reduce the time needed for 

retrieving multiple remotely stored data sources.  
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Figure 4. PODPAC Lambda function integration. The Node and Coordinates created on a user’s local 

workstation are serialized as JSON and used to trigger our generic PODPAC AWS Lambda function. This 

AWS Lambda function recreates the same Node and Coordinates from the JSON definition and evaluates it in 

the cloud. The output can be uploaded to an S3 bucket, or returned to the user’s local workstation. 
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Figure 5. Example WMS usage with PODPAC Lambda function. This JavaScript code creates the overlay in 

the map shown in the inset. 
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Figure 6. Example plug-and-play algorithm development enabled through automatic data harmonization. 
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Figure 7.  User interface of SMAP Drought Monitoring Index application developed using PODPAC. 
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Figure 8.  SMAP DMI application architecture deployed using POPDPAC Lambda functions. 
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Figure 9. Comparison of SMAP DMI Monitor Index with National Drought Mitigation Center's NDMI. 
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13. Tables and captions 

Table 1. Methods for Coordinate Creation in PODPAC. 

Example (grid size) Python Code 

Grid in Space (3, 2) Coordinates([(4, 2, 1), (-4, -0)], dims=['lat', 'lon']) 

Time Series at Points  

(31, 3) 

Coordinates([('2019-01-01', '2019-01-31'), ([1, 2], [2, 3])], 
  dims=['time', ('lat', 'lon')]) 

Path in Space-Time (3) Coordinates([([4, 2], [1, 2], ['2019-01-01', '2019-01-31'])], 
  dims=[('lat', 'lon', time')]) 
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Table 2. Basic examples introducing users to PODPAC. 

Notebook Example Description 

001-open-raster-file        Open a locally stored file containing raster data 

002-open-point-file Open a .CSV file stored locally 

003-combining-data-in-algorithm Combine local data sources in a processing algorithm 

004-load-array-data Create an in-memory data source 

010-retrieving-SMAP-data Retrieve remotely stored SMAP data from NSIDC DAAC 

020-using-coordinates Create and manipulate PODPAC Coordinates 

021-composite-array-datasources Create a new data source that merges multiple other sources 

100-analyzing-SMAP-data Use remotely stored SMAP data in a processing algorithm 

101-working-with-SMAP-Sentinel-data Discover where SMAP-Sentinel tiles are available 

200-running-on-aws-lambda Run a processing algorithm in the cloud 

300-parallel-processing Run algorithm over multiple processes in parallel 
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Table 3. Implementation of specific data source in PODPAC 

datalib Source Generic PODPAC Nodes File Storage Structure 

smap_egi.SMAP datalib.egi.EGI API query 

smap.SMAP compositor.OrderedCompositor, 

data.PyDAP 

date/globe_at_time.h5 

terraintiles.TerrainTiles compositor.OrderedCompositor, 
data.Rasterio 

tile_format/zoom/x/y.tif 

gfs.GFS data.Rasterio param/level/date/hour/forecast.grib2 

 

  



      AUTHOR ACCEPTED MANUSCRIPT     

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature 

14. Software files 

Source code for PODPAC can be downloaded from GitHub at https://github.com/creare-com/podpac. 

https://github.com/creare-com/podpac

