
MIT Open Access Articles

PODPAC: open-source Python software for enabling
harmonized, plug-and-play processing of disparate
earth observation data sets and seamless transition

onto the serverless cloud by earth scientists

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s12145-020-00506-0

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/131933

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131933
http://creativecommons.org/licenses/by-nc-sa/4.0/

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

PODPAC: Open-source Python software for enabling harmonized, plug-and-

play processing of disparate earth observation data sets and seamless

transition onto the serverless cloud by earth scientists

Cite this article as: Mattheus P. Ueckermann, Jerry Bieszczad, Dara Entekhabi, Marc L. Shapiro, David

R. Callendar, David Sullivan, Jeffrey Milloy, PODPAC: Open-source Python software for enabling

harmonized, plug-and-play processing of disparate earth observation data sets and seamless transition
onto the serverless cloud by earth scientists, Earth Science Informatics, doi: 10.1007/s12145-020-00506-0

This Author Accepted Manuscript is a PDF file of a an unedited peer-reviewed manuscript that has been

accepted for publication but has not been copyedited or corrected. The official version of record that is
published in the journal is kept up to date and so may therefore differ from this version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms.

http://www.springer.com/gb/open-access/authors-rights/aam-terms-v1

https://doi.org/10.1007/s12145-020-00506-0
http://www.springer.com/gb/open-access/authors-rights/aam-terms-v1

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

1. Title

PODPAC: Open-source Python software for enabling harmonized, plug-and-play processing of disparate

earth observation data sets and seamless transition onto the serverless cloud by earth scientists

Authors:

Mattheus P. Ueckermann
1
, Jerry Bieszczad

1
, Dara Entekhabi

2
, Marc L. Shapiro

1
, David R. Callendar

1
,

David Sullivan
1
, Jeffrey Milloy

1

Affiliations:

1
Creare LLC, Hanover, NH, 03755

2
Massachusetts Institute of Technology, Cambridge, MA 02139

Corresponding Author:

M. P. Ueckermann (mpu@creare.com)

2. Abstract

In this paper, we present the Pipeline for Observational Data Processing, Analysis, and Collaboration

(PODPAC) software. PODPAC is an open-source Python library designed to enable widespread
exploitation of NASA earth science data by enabling multi-scale and multi-windowed access, exploration,

and integration of available earth science datasets to support analysis and analytics; automatic accounting

for geospatial data formats, projections, and resolutions; simplified implementation and parallelization of

geospatial data processing routines; standardized sharing of data and algorithms; and seamless transition
of algorithms and data products from local development to distributed, serverless processing on

commercial cloud computing environments. We describe the key elements of PODPAC’s architecture,

including Nodes for unified encapsulation of disparate scientific data sources; Algorithms for plug-and-
play processing and harmonization of multiple data source Nodes; and Lambda functions for serverless

execution and sharing of new data products via the cloud. We provide an overview of our open-source

code implementation and testing process for development and deployment of PODPAC. We describe our
interactive, JupyterLab-based end-user documentation including quick-start examples and detailed use

case studies. We conclude with examples of PODPAC’s application to: encapsulate data sources

available on Amazon Web Services (AWS) Open Data repository; harmonize processing of multiple earth

science data sets for downscaling of NASA Soil Moisture Active Passive (SMAP) soil moisture data; and
deploy a serverless SMAP-based drought monitoring application for use access from mobile devices. We

postulate that PODPAC will also be an effective tool for wrangling and standardizing massive earth

science data sets for use in model training for machine learning applications.

Keywords: Data harmonization, plug-and-play algorithms, reproducibility, serverless cloud computing,

Python, JupyterLab, SMAP

3. Introduction

NASA requires new solutions to address the ever-growing volume and variety of observational and

modeled data products
1,2

. NASA’s current and future observational platforms such as NASA-ISRO

Synthetic Aperture Radar (NISAR), HyspIRI, JPSS-1, Landsat, and MODIS, as well as model-generated
weather and climate data sets, commonly generate data products stored in repositories ranging from

1 https://cdn.earthdata.nasa.gov/conduit/upload/6803/EOSDIS_Update_Summer_2017.pdf
2 http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS--

42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.p

df

mailto:mpu@creare.com
https://cdn.earthdata.nasa.gov/conduit/upload/6803/EOSDIS_Update_Summer_2017.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-42/2_Tuesday%20(9.20)/2016.09.20_14.10_Assessing_Applications_of_Cloud_Computing_to_NASAs_EOSDIS.pdf

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

terabytes (TB) to petabytes (PB) in size. NASA’s Earth Observing System Data and Information System

(EOSDIS) archives currently manage ~20 PB of data with a growth rate of ~15 TB per day. Moreover,
data storage needs will grow dramatically as the upcoming NISAR satellite mission will require EOSDIS

to handle an additional 85 TB of data per day. EOSDIS distributes thousands of distinct scientific data

products with significant differences in spatial footprints and resolution, temporal resolution, geospatial

projections, data formats, and metadata. The heterogeneity of data products hinders additional product
discovery and exploitation, in particular for integrated analysis and analytics across observational and

modeled data products.

To address data volume issues, NASA is actively investigating the use of commercial cloud services. For
example, NASA’s Alaska Satellite Facility (ASF) DAAC, responsible for archiving and serving NISAR

data, is evaluating the use of Amazon Web Services (AWS) for data storage under its Getting Ready for

NISAR (GRFN) project.
3
 GRFN is part of the ongoing EOSDIS efforts to evolve NASA Earth observing

data and EOSDIS services to the commercial cloud.

Simply migrating data to cloud-based storage will not address all of NASA’s big data needs. NASA also

requires a solution which addresses the issue of data variety. In a NASA report by Mehrotra et. al (2014),

NASA researchers identified six key use cases for utilization of big observational data sets: (1) produce a
derived dataset by processing NASA data, (2) find NASA data relevant to a scientific problem, (3)

discover new characteristics/features in a NASA dataset, (4) assess the quality of a simulation dataset, (5)

answer a scientific question through analysis or analytics on NASA data, and (6) provide the results of
analysis/analytics to others. Existing NASA resources have been developed, such as the EOSDIS, NEX,

and openNASA to help address Goal 2 (finding data) and Goal 6 (sharing data). However, the remaining

goals, which deal primarily with analysis and analytics objectives, remain unaddressed—not only for “big
data” applications, but even for “medium data” earth science problems.

To address data variety challenges, earth science researchers typically employ legacy data analysis

approaches that involve ad hoc combinations of data wrangling and custom code development in

languages such as FORTRAN, MATLAB
®
, ENVI, and Python; NASA tools such as Earthdata and

Giovanni, commercial and open-source geospatial software libraries such as GDAL, Shapely, PROJ.4,

OSR, Rasterio and PostGIS; and GIS platforms such as QGIS, ArcGIS, and GRASS. However, these ad

hoc solutions take significant effort to implement, are highly customized to specific tasks, and rarely
replicable across different applications and other science programs. To perform even the simplest

computation or comparison across two independent geospatial raster data sets, an analyst must use a

combination of tools to read the different file formats, reproject the data to a common spatial projection,

resample the data to the same resolution and consistent pixel centers, and deal with non-overlapping
regions and no-data values.

These unmet big data volume and variety challenges motivated the development of the Pipeline for

Observational Data Processing Analysis and Collaboration (PODPAC) Python library. PODPAC is
designed to enable data analysis and analytics of large-scale earth observational data in an easy-to-use,

plug-and-play manner that is approachable for typical earth science researchers, graduate students, and

citizen scientists. It is a structured, modular framework that unifies the capabilities of diverse open-source
geospatial software tools, harmonizes disparate geospatial data sources, facilitates collaboration and

sharing of earth observation data processing pipelines, and streamlines the transition of geospatial data

processing workflows to highly scalable serverless cloud deployments.

Other efforts to create portable and reproducible scientific workflows include CyberGIS-Jupyter (Yin et.
al. 2019), geoknife (Read et. al. 2016), geoKepler (Coward et. al. 2015), GeoJModelBuilder (Zhang and

Yue 2013), Taverna (Missier et. al. 2010), and VisTrails (Bavoil et. al. 2005).

3 https://earthdata.nasa.gov/getting-ready-for-nisar

https://earthdata.nasa.gov/getting-ready-for-nisar

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

In the following sections, we will describe the design and implementation of PODPAC, present the results

from several example applications of PODPAC, and discuss outlooks for its future development and
usage.

4. Design and Implementation

4.1. Software Architecture

4.1.1 Overview
Figure 1 shows conceptually how PODPAC addresses the data variety and volume challenges faced by
earth scientists. To address data variety challenges, the PODPAC Python library encapsulates data

sources enabling automatic harmonization of disparate formats, geospatial projections, and data

structures. This data encapsulation allows the development of plug-and-play algorithms where users can
substitute a new data source within an established processing algorithm. PODPAC generates lightweight

JSON representations that document these algorithms so users can share, publish, and reproduce an

analysis. To address data volume challenges, PODPAC integrates tightly with AWS, allowing researchers

to seamlessly transition workflows developed locally to the cloud. PODPAC’s cloud implementation
leverages AWS Lambda functions, a serverless technology that provides massive scalability (up to 1000

concurrent invocation by default) with minimal maintenance, and reduced billing risks due to automatic

timeout after a maximum of 15 minutes of computation. Not only can users leverage this cloud
deployment for large computations, but it also provides a low-cost, low-effort approach for scientists to

share their analysis through RESTful APIs and interactive websites.

In PODPAC, Nodes represent the basic unit of computation. They retrieve input data (circles in middle of

Figure 1), perform computations (diamonds in middle of Figure 1), and produce outputs (square in middle
of Figure 1). Nodes have a common interface that allows users to assemble them to form reproducible

processing pipelines. Pipelines are evaluated on-demand once a user specifies a set of geospatial

coordinates. This pipeline design is modular, allowing scientists to use PODPAC for their applications by
combining existing or custom developed Nodes.

The following describes DataSource Nodes for encapsulating geospatial datasets, Algorithm Nodes for

building processing pipelines, and the PODPAC Lambda Node for transitioning workflows to the AWS
serverless cloud processing services.

4.1.2 Nodes for Encapsulating Data Sources
Currently, different scientists and analysts repeat efforts to develop scripts for downloading and
interpreting data. Errors in data harmonization are also common due to the complexity of geospatial

coordinate reference systems (CRSs). Moreover, users commonly have to interact with datasets on a file-

by-file level, instead via a single interface.

The goals of PODPAC DataSource nodes are to: (1) eliminate the repetitive task of developing data

access and interpretation scripts; (2) automatically harmonize disparate data sources without error; and (3)

provide a single, common interface to entire datasets. PODPAC’s DataSource nodes interface with
various geospatial data sources (i.e., HDF5 files, OpenDAP servers, Numpy arrays, Intake catalogues,

OGC-compliant servers, etc.) that are stored locally or retrieved on demand from remote servers.

Developers need to implement methods that tell PODPAC how to retrieve data from the source location

and interpret the coordinates of the returned data structure. PODPAC will then automatically retrieve and
cache data on-demand, project data into a common CRS, and interpolate data to the same grid. This

architecture greatly reduces the data wrangling overhead and repetition common in earth science research.

To accomplish these goals, we carefully developed the evaluation interface used by all PODPAC nodes,
implemented a flexible method for specifying coordinates to cover a wide range of data structures, and

integrated a wealth of open-source libraries to harmonize disparate datasets.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Interface. In order to access data through PODPAC, users need to evaluate the DataSource node as

follows:

data_source = podpac.DataSource(<parameters>) # stages evaluation

results = data_source.eval(data_source. coordinates) # runs evaluation

where “<parameters>” are specific to a particular data source, and “data_source. coordinates” are the

geospatial coordinates that describe the source data. PODPAC will then retrieve the data from its source
on-demand, and return it in a coordinate-aware podpac.UnitsDataArray container. Our

podpac.UnitsDataArray object inherits from the xarray.DataArray object and contains all of the

functionality provided by xarray along with basic unit checking capabilities and additional formats for

saving results. The above example will retrieve the entire dataset in its native coordinate system, but users
can also specify a completely custom set of Coordinates.

Coordinate Specification. Scientists can use Coordinates to evaluate Nodes, and developers use them to

define the coordinates of DataSources. We designed PODPAC Coordinates after xarray Coordinates, but
ours are restricted to the dimensions [“lat”, “lon”, “time”, “alt”] while also allowing users to create more

complex coordinate types. A major advantage of PODPAC lies in the generality of the Coordinates object

to represent data structures spanning gridded arrays to unstructured spatial points to paths (Figure 2).

PODPAC optimizes the storage of coordinates by taking advantage of structure in the data and the ability
to separate dimensions. We can describe any geospatial data structure’s coordinates by specifying the

[“lat”, “lon”, “time”, “alt”] coordinates for each point. However, this increases the amount of storage and

memory: we have to keep track of up to four additional pieces of data for every point. For large datasets,
this can be a significant storage burden. Moreover, it is more computationally expensive to interpolate

between coordinate systems and to perform basic operations (such as determining if two different sets of

coordinates overlap). Figure 2 shows three levels of optimized coordinates storage, starting with 1-D
representations of coordinates along axes orthogonal to the coordinate system that describe a grid (least

amount of storage), to specifying coordinates for each point describing a path (most amount of storage).

The basic interface for specifying coordinates is as follows:

c = Coordinates([coords_1, coords_2, …], [name_1, name_2, …], crs="crs")

where “coords_*”, “name_*”, and “crs” are the values, names, and PROJ4 CRS string for the coordinates,
respectively. Table 1 shows the interface for creating Coordinates representing the data structures shown

in Figure 2. Note, in addition to Python tuples and lists, users can employ Numpy arrays for the

coordinate values.

Harmonization. PODPAC harmonizes data by automatically projecting and interpolating data based on
the user’s requested Coordinates. PODPAC’s interpolation design is modular, flexible, and extensible,

since there is a wide variety of different interpolation methods (and implementations of those methods)

that users may want to use. Users can specify the interpolation method broadly, or with great specificity.
With a basic specification (such as “nearest” or “bilinear”), PODPAC automatically decides which

interpolation implementation to use. Alternatively, users can specifically control the interpolation method

for each coordinate dimension for each DataSource Node by specifying a dictionary of parameters.
PODPAC natively supports a number of Interpolators covering a wide range of use cases to interpolate

between grid and point data using various methods. Internally, PODPAC leverages interpolation methods

from xarray, Scipy, and Rasterio.

4.1.3 Algorithms for Automated Harmonization and Plug-and-Play Processing
Sharing, reproducing, and adapting analyses by earth scientists is challenging due to fragile processing

scripts, undocumented data preprocessing procedures, and barriers to data access. The goal of PODPAC
Algorithm nodes is to document geospatial data processing pipelines in a lightweight manner to address

these challenges, describing the complete process, from raw data retrieval to producing the final product.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

With data stored in the cloud or on publically accessible servers, this approach promises to make earth

science more reproducible in general. In conjunction with automated data harmonization, it also enables
plug-and-play substitution of new data into existing processing pipelines. Finally, the lightweight

representation enables users to distribute PODPAC pipeline evaluation to heterogeneous compute

architectures such as the cloud or local workstations.

In Python, users assemble processing pipelines by instantiating Node objects and settings these as inputs
to Algorithm Nodes. Internally, PODPAC keeps track of this assembly by recursively inspecting each

Algorithm’s input Node and keeping track of the Node definitions. A set of tagged attributes define each

Node, and our custom encoder serializes these to text using the JSON format. Moreover, users can create
PODPAC Nodes from properly formatted JSON text using the Node.from_json method. As such,

PODPAC serializes complete processing pipelines to human-readable JSON text, which provides a

lightweight mechanism to share analysis. Because PODPAC can recreate Nodes from this JSON
representation, the same computation can be distributed and run on heterogeneous compute architectures,

such as the cloud.

PODPAC Algorithm Nodes may manipulate the evaluation Coordinates or process the data directly. The

former is useful for computing climatologies over complex time windows (such as the 8
th
 week of the

year over the past 10 years). PODPAC implements a number of algorithms that include: (1) signal

processing / convolution operations; (2) reduction algorithms for computing statistics such as mean,

mode, and variance; (3) ways to modify coordinates such as expanding the evaluated coordinates to cover
a wider region or substituting a different value for a dimension; (4) and generic algorithms that can

evaluate arbitrary equations point-wise or run arbitrary Python code. Developers can also extend

PODPAC’s capabilities by creating new classes that inherit from our Algorithm node. They then need to
implement the algorithm(inputs) method, which takes a dictionary of harmonized input data sources as

UnitsDataArrays. With this functionality, scientists create a wide range of processing pipelines that are

easily sharable and reproducible across PODPAC installations.

Our implementation of Algorithm Nodes supports multi-threading. While Python does not support native
parallel computation via threads due to the Global Interpreter Lock (GIL), it does support parallel IO. As

shown on the right of Figure 3, this capability ameliorates the main bottleneck associated with data

retrieval in Algorithm Nodes. As shown on the left of Figure 3, without multi-threading each input
DataSource Node would incur a latency penalty associated with accessing data (from cloud storage, for

example). Our implementation allows users to limit the maximum number of threads spawned by

PODPAC. Algorithm Nodes fall back to serial data retrieval once the process reaches the maximum

number of threads.

4.1.4 Seamless Serverless Cloud Transition
The need for vendor-specific expertise and knowledge, administrative barriers associated with budgeting,
and the non-trivial task of transitioning established workflows are major barriers to adoption of cloud

computing by earth scientists. Meanwhile, cloud computing offers significant benefits, such as low cost

and effort to access data stored on the cloud, on-demand access to massive compute resources, and lower
maintenance costs. Moreover, to disseminate their analyses widely and in a reproducible manner,

scientists can use cloud services. The goal of PODPAC’s AWS integration is to provide a seamless path

to cloud computing that abstracts the major barriers identified above. We do this with a full PODPAC

environment for AWS Lambda functions that scientists can easily deploy and use inside a Python
console. We also provide an interface for tracking budgets. We implemented this capability within

PODPAC’s Lambda Node.

AWS Lambda functions are a serverless technology. This means that users do not need to provision,
setup, maintain, and turn off a cloud server manually. Instead, users develop functions that can be

“triggered.” When triggering a function, AWS automatically provisions a server, runs the desired

function, and turns the server off upon completion. This alleviates the problem of server maintenance and

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

avoids the problem of budget overruns associated with accidently leaving servers turned on. It is also

massively scalable, allowing a parallel computation over 1000 machines, by default. The downside to
AWS Lambda functions come from restrictions imposed on the available memory, maximum runtime,

operating system used for the deployment, and file size restrictions for dependencies. As a result, it can be

very challenging to implement an AWS Lambda function for geospatial applications.

PODPAC’s AWS Lambda function integration provides a general PODPAC environment that is easy to
set up. We create and maintain this environment using a Docker container that generates the necessary zip

files used to create the AWS Lambda function. We make these zip files publically available via an S3

bucket so that PODPAC’s Lambda Node can automatically set up a user’s AWS account with a PODPAC
AWS Lambda function. The only manual step required is for users to obtain an AWS login and generate

an access key ID and secret access key through the following process:

1. Log into console.aws.amazon.com

2. Go to Services  IAM  users

3. Click on username

4. Click on the “Security credentials” tab

5. Click on “Create access key”

6. Save the “Access key ID” and “Secret access key”

Once this is done, the following Python code will create the S3 Bucket, Lambda function, IAM roles, and

API Gateway resources needed to run PODPAC pipelines in the cloud, and set up alarms to track
spending:

import podpac

from podpac.managers import aws

settings = podpac.settings.copy() # Make a copy of the default settings

Add AWS Credentials, budget information, and resource base name to settings

settings["AWS_ACCESS_KEY_ID"] = # Users’s AWS access key id

settings["AWS_SECRET_ACCESS_KEY"] = # Users’s AWS secret access key

settings["AWS_REGION_NAME"] = # User’s AWS region name

settings["AWS_BUDGET_AMOUNT"] = # budget for AWS resources in USD/month

settings["AWS_BUDGET_EMAIL"] = # notification e-mail for budget alarms

settings["FUNCTION_NAME"] = # unique name of AWS Lambda function

node = aws.Lambda(eval_settings=settings) # create the Lambda Node

node.describe() # view the staged AWS resources

node.build() # automatically build AWS resources

node.validate() # returns True if AWS resource exist

Once a user has created a PODPAC AWS Lambda function, they can use the Lambda Node to seamlessly

transition from using PODPAC on a workstation to computation in the cloud, while tracking their

spending. Figure 4 conceptualizes how PODPAC triggers the AWS Lambda function using the JSON
definitions of the processing pipeline. It also shows how the user can optionally store the data in an S3

bucket. As an example, the following code runs a PODPAC pipeline on a local workstation, and then

transitions to the cloud:

node.eval(coordinates) # Runs on local workstation

lambda_node = aws.Lambda(source=node)

lambda_node.eval(coordinates) # Runs on AWS

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

PODPAC’s AWS Lambda function includes a partial implementation of the OGC-compliant WMS/WCS

standards. This allows users to display geospatial data using OGC-compliant clients such as the Leaflet
JavaScript library. To use this functionality, users need to provide query parameters as part of the URL to

define the processing pipeline. Users can either embed the JSON pipeline definition in the URL, or

specify a URL to a JSON pipeline definition. Figure 5 shows an example using the WMS capability in a

webpage with the Leaflet JavaScript library. Here the API Gateway URL is provided through the
PODPAC Lambda.describe() method, and the pipeline definition is stored at the indicated URL. This

shows how scientists can easily develop a webpage to share their analyses through interactive maps.

4.2. Software Development Approach

PODPAC development involves an object-oriented design with quarterly release cycles, automated unit

testing, code coverage reports, and automated documentation builds. It is version controlled using Git,

with publically accessible source code available from https://github.com/creare-com/podpac, and
documentation available at https://podpac.org.

Releases and Versioning. PODPAC is released under the Apache 2.0 license. Releases are versioned

using a major, minor, and bug fix version numbering scheme. Changes in major version mean that

interfaces are not backwards compatible, changes in minor version mean new features are developed, and
bug fix number indicates the number of critical bugs fixed for the specific major/minor version.

Additionally, development versions have the Git hash appended.

Code is released on GitHub, the Python Package Index (PYPI), and as a standalone distribution for
Windows hosted on AWS S3. Releases include release notes that summarize major features, bug fixes,

and backwards-incompatible changes.

For each release, developers run the Jupyter Notebook examples to ensure they work as expected.

Unit Testing. Unit testing ensures that small units of the code are correctly implemented. Thoroughly

testing the code and automatically running tests on freshly installed environments is crucial for an open

source project with external developers. It is also useful for preventing regression during major

refactoring of the code, or while fixing complex bugs. As such, PODPAC uses “Travis CI” on GitHub
with Python 3.5–3.8 Python environments and the latest versions of dependencies to automatically run

unit tests after every commit. These unit tests are also supplemented by automated coverage reports using

“Coveralls.”

Unit tests are mandatory for all new major PODPAC features. As part of code reviews during merge

requests, reviewers are expected to ensure there are sufficient and relevant unit tests in place. Moreover,

upon discovering bugs in the code, it is expected that a unit test is written to cover this bug as part of

fixing the problem.

Code Coverage. Coverage reports aid with writing sufficient unit tests to cover all of the branches in the

code. Coverage reports capture the lines of code executed by unit tests, and therefore indicate which lines

of code are being tested. While coverage does increase the confidence that there is sufficient testing, it
does not guarantee that the quality of testing is sufficient to ensure the results are correct. For example,

running a function with a subset of possible inputs without checking the correctness of the result will still

increase the coverage. As such, we aimed to write useful unit tests, using the coverage report as a
guideline for focusing our efforts. Our goal is to maintain greater than 90% code coverage. Greater

coverage than this is impractical due to a number of hard-to-test cases. For example, some of our code

handles missing dependencies, but these dependencies are always present in our test environment.

Documentation. Useful documentation and examples are crucial for promoting adoption of open source
libraries by the community at large. This includes user documentation describing how to use the software,

developer documentation describing how to contribute to the source code, and templates for bug reports

and feature requests.

https://github.com/creare-com/podpac
https://podpac.org/

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

PODPAC developers are expected to document every function and class with Python Docstrings. In

addition, we develop user guides using markdown, and use-case examples using Jupyter Notebooks. All
of this documentation is automatically committed to a dedicated document repository

(<https://github.com/creare-com/podpac-docs>) which is published via GitHub “pages” feature to

https://podpac.org.

Dependencies. PODPAC strives to leverage existing open source libraries to the maximum extent.
However, not all users need all of PODPAC’s functionality. As such, PODPAC has a relatively small set

of core dependencies, and additional dependencies are imported on-the-fly using the Lazy-Import Python

package, which throw errors at runtime as soon as Python tries to use an unavailable package.

One of PODPAC’s core dependencies is the Python package Traitlets. The main goal behind Traitlets is

to implement type checking of Python variables. Type checking helps users use the code as intended by

raising exceptions whenever a variable is set to an unexpected type. Traitlets also implements a number
of additional features, including metadata tagging of variables, which PODPAC takes advantage of to

automatically serialize processing pipelines into JSON text. Whenever a developer adds “.tag(attr=True)”

to a Traitlets type, PODPAC includes that attribute as part of a Node definition.

Besides Traitlets PODPAC’s core dependencies are Matplotlib, Numpy, Pint, Scipy, Xarray, Requests,
Pyproj, Lazy-Import, and Psutil. To deal with different geospatial data sources, optional dependencies

include H5py, Pydap, Rasterio, and Zarr. For AWS integration, PODPAC uses the AWSCLI, Boto3, and

s3fs packages.

Open Source Governance. PODPAC uses an open-source governance model similar to that of Linux,

where contributions from the wider community are encouraged, but the ultimate control is maintained by

a small group of dedicated developers.

4.3. Training Materials

To facilitate adoption of PODPAC by new users, we have developed Jupyter Notebooks in a separate

repository that users can access and run using Binder (https://github.com/creare-com/podpac-examples).

Binder is a service to run Jupyter Notebooks without any setup, and serves as a highly accessible way to
evaluate PODPAC for specific applications. Jupyter is an open-source project developing a web-based

programming user interface that combines code with rich display of text and media. Jupyter Notebooks

are gaining popularity in the scientific community because they are easy to share and increase
reproducibility. We developed notebooks to guide users through learning PODPAC’s concepts using

simple examples, and to demonstrate PODPAC’s capabilities with use-case examples.

https://github.com/creare-com/podpac-docs
https://podpac.org/
https://github.com/creare-com/podpac-examples

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Table 2 summarizes the simple example notebooks available in PODPAC version 1.3.0. In addition to

these examples, we also have examples demonstrating data access through various interfaces, example
processing pipelines, and detailed examples for developers. Finally, we have a systematic tutorial for

deploying the Drought-Monitor application (see Section 5.3) suitable for novice users starting from no

PODPAC experience.

5. Results

5.1. Encapsulation of Disparate Data Sources

Version 1.3.0 of PODPAC implements interfaces for accessing: (1) SMAP data via OpenDAP; (2) SMAP
data via the Earthdata Gateway Interface (EGI); (3) Global Forecast System (GFS) data stored on AWS

S3; (4) digital terrain data stored on AWS S3; and (5) Intake catalogues. SMAP is a soil moisture product

from the Soil Moisture Active Passive satellite mission, and the National Snow and Ice Data Center

(NSIDC) Distributed Active Archive Center (DAAC) provides the data through the OpenDAP protocol,
and the EGI endpoint. NOAA hosts their GFS model data output on Amazon’s S3 via a publically

available bucket through the Amazon Open Data Registry. Similarly, MapZen provides digital terrain

data through Amazon’s Open Data Registry.

We implemented access to these sources as part of the podpac.datalib module. As a result, PODPAC

users can easily access any of these data source in their desired coordinate system and CRS. As an

example, the following code will access SMAP and terrain data over a 1 degree by 1 degree region
centered over a (latitude, longitude) of (40, -100) on February 1

st
 of 2020:

import podpac

from podpac import datalib

coords = podpac.Coordinates(

 [podpac.clinspace(41, 39, 65), podpac.clinspace(-101, -99, 65),

 '2020-02-01'], ['lat', 'lon', 'time'])

smap = datalib.smap_egi.SMAP()

terrain = datalib.terraintiles.TerrainTiles()

smap_out = smap.eval(coords)

terrain_out = terrain.eval(coords)

We based these specific data source nodes on the following generic PODPAC Nodes shown in Table 3.

Both the OpenDAP SMAP and TerrainTiles sources use PODPAC Compositors to assemble the many

different files to give users a single interface into the data. The EGI SMAP data source uses the generic
EGI node, which implements an interface to NASA’s API. Finally, the GFS data source uses the Rasterio

node, and manually assembles various files together.

5.2. Plug-and-Play Algorithms with Automated Data Harmonization

To illustrate PODPAC’s plug-and-play algorithm development enabled by automatic data harmonization,
we implemented a simple soil moisture downscaling model that combines multiple disparate data sources

shown in Figure 6. Starting from coarse 9km-scale SMAP data, we compute high resolution 30m soil

moisture using an approach based on TOPMODEL (Beven et. al., 1984). TOPMODEL requires the
Topographic Wetness Index (TWI) as part of the computation. TOPMODEL also needs the Porosity and

the wilting point of the soil. Finally, TOPMODEL needs a tuning parameter 𝜅 to specify the complete

model:

Θ = Θ𝑆𝑀𝐴𝑃 +
𝜌 − Θ𝑤
𝜅

(𝜆 − 𝜆̅)

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Where Θ is the downscaled soil moisture, ΘSMAP is the coarse-scale soil moisture, ρ is the soil porosity,

Θw is the soil wilting point, 𝜆 is the fine-scale TWI and 𝜆̅ is the coarse-scale TWI.

The following code implements this model, and users can evaluate it using arbitrary PODPAC

Coordinates:

import podpac, podpac.datalib

Access data via OpenDAP from the National Snow and Ice Data Center (NSIDC)

smap = podpac.datalib.smap.SMAP(interpolation='bilinear')

wilt = podpac.datalib.smap.SMAPWilt(interpolation='bilinear')

porosity = podpac.datalib.smap.SMAPPorosity(interpolation='bilinear')

Access TWI via OGS-compliant WCS endpoint

twi = podpac.data.WCS(

source='https://mobility.crearecomputing.com',

 layer_name='dassp.main_map.topography.elevation' + \

 '.TopographicWetnessIndexUSGSNED30m',

 interpolation='nearest')

Re-project high resolution TWI onto SMAP grid. Note, the WCS endpoint

provides averaged data from pre-computed overviews for coarser requests

twi_bar = podpac.data.ReprojectedSource(

source=twi,

 reprojected_coordinates=smap.shared_coordinates,

 interpolation='bilinear')

Implement the downscaling algorithm

downscaled_sm = podpac.algorithm.Arithmetic(

 smap=smap, twi=twi, twi_bar=twi_bar, rho=porosity, wilt=wilt,

 eqn='smap + (rho - wilt) / 13.0 * (twi - twi_bar)')

Evaluate at arbitrary coordinates and plot the results

coordinates = podpac.Coordinates(

[podpac.clinspace(41, 40.9, 916),

podpac.clinspace(-77,-76.9, 916),

'2017-09-03T12:00:00'], dims=['lat', 'lon', 'time'])

out = downscaled_sm.eval(coordinates)

out.plot(cmap='gist_earth_r')

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Users can share this algorithm using its JSON definition. For example, the above example has the

following JSON (where parts have been omitted for publication):

{

 "SMAPPorosity": {

 "node": "datalib.smap.SMAPPorosity",

 "attrs": {"datakey": "Land_Model_Constants_Data_clsm_poros"},

 "source": "https://.../SMAP_L4_SM_lmc_00000000T000000_Vv4030_001.h5",

 "interpolation": "bilinear"

 },

 "SMAP_SPL4SMAU": {

 "node": "datalib.smap.SMAP",

 "attrs": {"base_url": "https://n5eil02u.ecs.nsidc.org/opendap/SMAP",

 "product": "SPL4SMAU", "version": 4},

 "interpolation": "bilinear"},

 "TopographicWetnessIndexUSGSNED30m": {

 "node": "core.data.ogc.WCS",

 "attrs": {"crs": "EPSG:4326", "version": "1.0.0",

 "layer_name": "...TopographicWetnessIndexUSGSNED30m"},

 "source": "https://mobility.crearecomputing.com/ogc",

 "interpolation": "nearest"},

 "TopographicWetnessIndexUSGSNED30m_reprojected": {

 "node": "core.data.reprojection.ReprojectedSource",

 "attrs": {"reprojected_coordinates": {"coords": [

 {"values": [...], "name": "lat"}

 {"values": [...], "name": "lon"}], "crs": "EPSG:4326"},

 "source_interpolation": "nearest"},

 "lookup_source": "TopographicWetnessIndexUSGSNED30m",

 "interpolation": "bilinear"},

 "SMAPWilt": {

 "node": "datalib.smap.SMAPWilt",

 "attrs": {"datakey": "Land_Model_Constants_Data_clsm_wp"},

 "source": "https://.../SMAP_L4_SM_lmc_00000000T000000_Vv4030_001.h5",

 "interpolation": "bilinear"

 },

 "Arithmetic": {

 "node": "core.algorithm.generic.Arithmetic",

 "attrs": {"eqn": "smap + (rho - wilt) / 13.0 * (twi - twi_bar)"},

 "inputs": {

 "rho": "SMAPPorosity",

 "smap": "SMAP_SPL4SMAU",

 "twi": "TopographicWetnessIndexUSGSNED30m",

 "twi_bar": "TopographicWetnessIndexUSGSNED30m_reprojected",

 "wilt": "SMAPWilt"}}

}

Before developing PODPAC, implementing this simple downscaling model required hundreds of lines of

code to produce an output for a small set of data. With this PODPAC implementation, not only can users
evaluate the node at arbitrary coordinates, they could substitute different soil moisture data, and host an

interactive browser application via the PODPAC Lambda function implementation. Moreover, users do

not have to manually download or stage data for this example to work. As a result, PODPAC-developed
geospatial analysis should accelerate science by increasing reuse, reproducibility, and productivity.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

5.3. Serverless Cloud Deployment of a New Drought Monitoring Index Based on
Remote-Sensed SMAP Soil Moisture Data

Timely monitoring of drought conditions is critical for agriculture, insurance, and government

applications. The National Drought Mitigation Center (NDMC) publishes a widely used weekly national

drought monitoring index
4
 (NDMI) which is authored by experts examining multiple remotely sensed

data sources, in situ sensors, and local reports. However, more timely data at a higher spatial resolution
would further help to mitigate the socio-economic effects of droughts. To demonstrate the use of

PODPAC for deploying such an application using serverless cloud services, we developed a new drought

index based on remotely sensed SMAP soil moisture data. SMAP is a satellite platform that estimates soil
moisture at 9 km resolution with global coverage achieved approximately every 3 days.

NDMI enumerates drought conditions in terms of five categories:

1) D0 represents abnormally dry conditions (20-30% percentile probability)
2) D1 represents moderate drought conditions (10-20% percentile probability)

3) D2 represents severe drought conditions (5-10% percentile probability)

4) D3 represents extreme drought conditions (2-5% percentile probability)

5) D4 represents exceptional drought conditions (0-2% percentile probability)

We defined analogous drought index categories using SMAP soil moisture estimates. To implement this

approach, we defined a PODPAC Algorithm pipeline that performs the following computations:

1) For each date of the year, select all available SMAP soil moisture data within a 45-day window
2) Divide SMAP volumetric soil moisture by porosity to convert to relative soil saturation

3) Fit a beta distribution using maximum likelihood estimation to retrieve “a” and “b” parameters of

distribution
4) Assign the D0 to D4 drought categories according to their percentiles, and convert back to

volumetric soil moisture by multiplying by porosity

5) Convert SMAP soil moisture estimate to drought categories by thresholding using the D0-D4

values

We then deployed our SMAP drought monitoring index (DMI) as a PODPAC Lambda function with an

HTTP gateway interface for WMS access from a web browser. For the end-user application, we

developed a static webpage which includes an interactive slippy map for display of NDMI, SMAP DMI
(left panel of Figure 7), and SMAP soil moisture (right panel of Figure 7). This end-user application is

available at https://creare-com.github.io/podpac-drought-monitor/

The top row in Figure 8 illustrates the underlying functionality of the deployed SMAP DMI application.

A user accesses the application through a web browser on a desktop or mobile device platform. The
application makes RESTful calls to the SMAP DMI Lambda function with the function parameters

embedded as PODPAC pipeline JSON definitions. The SMAP DMI Lambda function retrieves the

required SMAP data which is stored in a cloud-optimized Zarr format. The SMAP DMI Lambda function
then transforms the raw data to drought categories, and depending on the request, returns the result as

JSON text or PNG images via WMS. The bottom row in Figure 8 shows the basic mechanism for staging

new SMAP data in a cloud-optimized format. Since SMAP data is not yet stored on the cloud, we use an
AWS CloudWatch Event to check for new data daily via a second PODPAC Lambda function. This

Lambda function downloads and stages the SMAP data in the cloud using a cloud-optimized storage

format.

Figure 9 shows a comparison between the new SMAP DMI Monitor with NDMC’s NDMI. The overall
trends are similar, but the SMAP DMI provides higher temporal and spatial resolution and is developed

using fully reproducible data processing approach using remote sensing SMAP data. The manual creation

4 https://droughtmonitor.unl.edu/

https://creare-com.github.io/podpac-drought-monitor/

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

of NDMC’s NDMI uses multiple data sources, and this accounts for some of the differences in the

comparison. Additional differences arise because drought category percentiles generated from SMAP use
relatively recent data (since 2015). For example, our SMAP DMI may consider recent multi-year

droughts as statistically likely leading to a “moderate drought” categorization, whereas an analysis with

more years of data would categorize the same event as “extreme drought”.

6. Discussion

The current 1.3.0 implementation of PODPAC provides a strong foundation for an extensible geospatial

analysis framework. Its data wrangling capability, plug-and-play algorithms, and AWS cloud
implementation have accelerated our use and sharing of earth science data.

PODPAC has greatly increased our productivity retrieving and wrangling datasets. Once a dataset was

wrapped in PODPAC, we no longer needed to worry about the minutia of how the data was stored, which

variables we need to consider, and how to avoid simple interpretation errors. For creating new datasets,
we found the zarr format to be very beneficial when storing data in the cloud. It breaks up large datasets

in chunks and handles operations such as concurrent writes and appending data seamlessly. We also

discovered that remote servers sometimes go down or make unanticipated changes, causing a previously-
working dataset to no longer function while throwing a potentially incomprehensible error. In these cases,

we improve the error message but we anticipate continued problems like this as community members start

contributing DataSource nodes. We plan to continue wrapping high-value data sources stored in the cloud
for our future applications. To sustain data wrapping activities, we plan to leverage our internal research

projects, and we invite community members to contribute as well.

PODPAC’s plug-and-play algorithms allow us to answer what-if questions in a matter of minutes instead

of hours. Before PODPAC, we were frustrated by the difficulty and amount of coding needed to take a
simple difference between two datasets. Now we analyze and visualize PODPAC outputs rapidly using

powerful open source analysis libraries such as xarray and Scipy. We have found the grouping,

windowing, and statistical operations by xarray particularly helpful, since PODPAC nodes output xarray-
compatible data containers. For initial development purposes, we found it helpful to retrieve data over a

small region using PODPAC and then developing analyses in a Jupyter notebook. Once the analysis looks

good for the small region, we found it helpful to go back and develop the full PODPAC processing
pipeline to enable rapid processing of large regions or interactive visualization in the cloud.

PODPAC’s easy AWS cloud integration has allowed us to iterate rapidly when developing a new

applications such as the Drought-Monitor. We find the WMS capability most useful for rapidly analyzing

a new data product interactively. Invariably there are aspects that we wish to change and improve, and
since it is simple to deploy an AWS Lambda function, iteration takes minutes instead of hours or days.

Navigating AWS services was non-trivial, and we found their interface across services was not consistent

in surprising ways. To overcome the memory and maximum runtime restrictions of Lambda functions, we
had to restrict the size of coordinates in our processing requests. The file size limit associated with the

Lambda function was particularly difficult to deal with, and requires us to download additional

dependencies on-the-fly. This issue precluded us from using existing libraries that facilitates AWS

Lambda function deployments such as Serverless
5
 and Python-lambda.

6
 However, with the introduction

of AWS Lambda Layers, some of our maintenance burden is relieved. At the time of writing, we also

found that the traceback logs provided through PODPAC to be much more useable compared with those

available from the AWS CloudWatch web console, which required a lot of scrolling and dynamic loading
of data. This allowed us to optimize the execution speed of our Lambda function more rapidly for the

Drought-Monitor, but this is an ongoing effort. Optimizing on-demand calculations on AWS Lambda

5 https://github.com/serverless/
6 https://github.com/nficano/python-lambda

https://github.com/serverless/
https://github.com/nficano/python-lambda

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

functions for interactive browsing remains challenging, primarily due to application-specific data access

patterns that drive specific cloud storage structures.

While PODPAC targets AWS Lambda functions for cloud deployment, PODPAC is not restricted to run

on this service with this provider. PODPAC provides a Docker file as a starting point for users to

integrate with AWS Elastic Container Services (ECS) or other cloud providers such as Azure and Google

Cloud. The difficulty of implementing PODPAC on other cloud architecture depends on the particulars of
the application and the available services. The main challenges would involve installing dependencies,

managing message interfaces (API endpoints), data access, and managing authentication.

Future capability development of PODPAC includes: (1) increasing the robustness of the code by finding
and correcting edge cases; (2) improving the functionality of compositors (for example to composite a

folder full of tiled files automatically); (3) wrapping additional high-value data sources; (4) implementing

additional algorithms; (5) increasing the capability and types of interpolation methods; (6) developing
custom JupyterLab widgets for graphical interaction and rapid dashboard creation; (7) integrating

seamlessly with other cloud services/providers; and (8) integrating with machine learning libraries such as

TensorFlow. Since formatting and preprocessing data is a major challenge with machine learning

applications, PODPAC is a natural candidate for improving and streamlining this process, reproducibly.

7. Conclusions

Widespread analysis and analytics of NASA and non-NASA earth science data currently face significant
barriers to entry due to disparate geospatial data formats, large computational demands, and high data

storage and bandwidth requirements. To mitigate these barriers to entry, we have developed PODPAC

for automated harmonization of earth science datasets, plug-and-play development of algorithmic

processing pipelines, and seamless transition of scientific workflows to the serverless cloud by scientists
with minimal experience (or interest) in managing the complexity of cloud computing environments.

These capabilities are documented, readily demonstrated, and built upon through example JupyterLab

notebooks which accompany the software. Moreover, our open-source software approach and explicit
documentation of algorithm pipelines and data product provenance greatly facilitates sharable and

reproducible scientific research. Finally, providing agile access to earth science data and tools for plug-

and-play geospatial analysis can revolutionize the productivity and effectiveness of everyday decision-
makers and citizen scientists from a variety of fields such as agriculture, aquaculture, disaster response,

forestry, land management, and municipal planning, and outdoor recreation.

8. Availability and Requirements

PODPAC source code, examples, and documentation can be downloaded from the PODPAC website at

https://podpac.org and its Git repository at https://github.com/creare-com/podpac. All files and

documentation are made freely available under the 2.0 version of the Apache License

(https://www.apache.org/licenses/LICENSE-2.0). The PODPAC software can be run on any
computational hardware and operating system for which Python 3.6 (or later). This includes most recent

versions of the Microsoft Windows, Apple MacOS, and Linux operating systems. Deployment of

algorithms to Lambda serverless computing resources from PODPAC requires users to have an active
AWS account and credentials.

9. List of Abbreviations

AWS Amazon Web Services

CRS Coordinate Reference System

https://podpac.org/
https://github.com/creare-com/podpac
https://www.apache.org/licenses/LICENSE-2.0

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

DAAC Distributed Active Archive Center

DEM Digital Elevation Mode

JSON JavaScript Object Notation

NASA National Aeronautics and Space Administration

NSIDC National Snow and Ice Data Center

PODPAC Pipeline for Observational Data Processing Analysis and Collaboration

SMAP Soil Moisture Active Passive

TWI Topographic Wetness Index

WCS Web Coverage Service

WMS Web Mapping Service

10. Acknowledgements

This research is supported by NASA under SBIR Phase II Contract No. 80NSSC18C0061. We gratefully
acknowledge the developers of the open source software libraries on which PODPAC depends, in

particular Anaconda, GDAL, JupyterLab, numpy, proj4J, rasterio, scipy and xarray. The SMAP data

used in this study can be downloaded from https://nsidc.org/data/smap/smap-data.html. The global digital
elevation model (DEM) data used in this study can be downloaded from

http://viewfinderpanoramas.org/dem3.html. The TWI data used in this study can be downloaded via

WCS from https://mobility.crearecomputing.com/ogc?

11. References

Bavoil L, Callahan S, Scheidegger C, Vo H, Crossno P, Silva C, Freire J (2005) Vistrails: enabling

interactive multiple-view visualizations. IEEE visualization 135–142

Beven KJ, Kirkby MJ, Schofield N, Tagg AF. (1984) Testing a physically-based flood forecasting model

(TOPMODEL) for three UK catchments. Journal of Hydrology, 10; 69(1-4):119-43.

Cowart, C., Block, J., Crawl, D., Graham, J., Gupta, A., Nguyen, de Callafon, M., R. Smarr, L. and
Altintas, I. (2015). geoKepler Workflow Module for Computationally Scalable and Reproducible

Geoprocessing and Modeling. AGUFM, 2015, NH43B-1887.

Mehrotra, P., Pryor, LH., Bailey RF. and Cotnoir, M. (2014) NASA Technical Report NAS-2014-02.

NASA Ames, Moffett Field, CA.
http://www.nas.nasa.gov/assets/pdf/papers/NAS_Technical_Report_NAS-2014-02.pdf. Accessed 12

August 2020.

Missier P, Soiland-Reyes S, Owen S, Tan W, Nenadic A, Dun-lop I, Williams A, Oinn T, Goble

CA. (2010) Taverna, reloaded. SSDBM, 471–481.

Read, J. S., Walker, J. I., Appling, A. P., Blodgett, D. L., Read, E. K., & Winslow, L. A. (2016).

geoknife: reproducible web‐processing of large gridded datasets. Ecography, 39(4), 354-360.

Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X., Padmanabhan, A., & Wang, S. (2019). CyberGIS‐Jupyter

for reproducible and scalable geospatial analytics. Concurrency and Computation: Practice and

Experience, 31(11), e5040.

https://nsidc.org/data/smap/smap-data.html
http://viewfinderpanoramas.org/dem3.html
https://mobility.crearecomputing.com/ogc
http://www.nas.nasa.gov/assets/pdf/papers/NAS_Technical_Report_NAS-2014-02.pdf

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Zhang, M., & Yue, P. (2013). GeoJModelBuilder: A java implementation of model-driven approach for

geoprocessing workflows. In 2013 Second International Conference on Agro-Geoinformatics (Agro-
Geoinformatics) (pp. 393-397). IEEE.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

12. Figures and captions

Figure 1. PODPAC’s Python library automatically harmonizes encapsulated data sources to enable plug-and-

play algorithm development (left). Lightweight JSON representations automatically document Algorithms,

allowing them to be processed remotely (right) or shared for reproduction. PODPAC tightly integrates with

AWS to provide a seamless transition from running on a workstation to running on the cloud.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 2. Optimized storage of Coordinates in PODPAC. The top row represents the data structure used to

store data, with coordinates indicated in green, and data points indicated in blue. The bottom row shows how

the data maps spatially with notional data values indicated by various shades of blue. Left shows an example

of raster data such as a digital elevation model, middle shows an example of a point collection recording data

over time such as weather stations, and right shows data collected along a path from a roving sensor such as

pressure recorded by a cellphone while the user is walking around.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 3. PODPAC Algorithm Nodes are multi-threaded for parallel IO to reduce the time needed for

retrieving multiple remotely stored data sources.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 4. PODPAC Lambda function integration. The Node and Coordinates created on a user’s local

workstation are serialized as JSON and used to trigger our generic PODPAC AWS Lambda function. This

AWS Lambda function recreates the same Node and Coordinates from the JSON definition and evaluates it in

the cloud. The output can be uploaded to an S3 bucket, or returned to the user’s local workstation.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 5. Example WMS usage with PODPAC Lambda function. This JavaScript code creates the overlay in

the map shown in the inset.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 6. Example plug-and-play algorithm development enabled through automatic data harmonization.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 7. User interface of SMAP Drought Monitoring Index application developed using PODPAC.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 8. SMAP DMI application architecture deployed using POPDPAC Lambda functions.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Figure 9. Comparison of SMAP DMI Monitor Index with National Drought Mitigation Center's NDMI.

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

13. Tables and captions

Table 1. Methods for Coordinate Creation in PODPAC.

Example (grid size) Python Code

Grid in Space (3, 2) Coordinates([(4, 2, 1), (-4, -0)], dims=['lat', 'lon'])

Time Series at Points

(31, 3)

Coordinates([('2019-01-01', '2019-01-31'), ([1, 2], [2, 3])],
 dims=['time', ('lat', 'lon')])

Path in Space-Time (3) Coordinates([([4, 2], [1, 2], ['2019-01-01', '2019-01-31'])],
 dims=[('lat', 'lon', time')])

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Table 2. Basic examples introducing users to PODPAC.

Notebook Example Description

001-open-raster-file Open a locally stored file containing raster data

002-open-point-file Open a .CSV file stored locally

003-combining-data-in-algorithm Combine local data sources in a processing algorithm

004-load-array-data Create an in-memory data source

010-retrieving-SMAP-data Retrieve remotely stored SMAP data from NSIDC DAAC

020-using-coordinates Create and manipulate PODPAC Coordinates

021-composite-array-datasources Create a new data source that merges multiple other sources

100-analyzing-SMAP-data Use remotely stored SMAP data in a processing algorithm

101-working-with-SMAP-Sentinel-data Discover where SMAP-Sentinel tiles are available

200-running-on-aws-lambda Run a processing algorithm in the cloud

300-parallel-processing Run algorithm over multiple processes in parallel

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Table 3. Implementation of specific data source in PODPAC

datalib Source Generic PODPAC Nodes File Storage Structure

smap_egi.SMAP datalib.egi.EGI API query

smap.SMAP compositor.OrderedCompositor,

data.PyDAP

date/globe_at_time.h5

terraintiles.TerrainTiles compositor.OrderedCompositor,
data.Rasterio

tile_format/zoom/x/y.tif

gfs.GFS data.Rasterio param/level/date/hour/forecast.grib2

 AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

14. Software files

Source code for PODPAC can be downloaded from GitHub at https://github.com/creare-com/podpac.

https://github.com/creare-com/podpac

