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Abstract 23 

Support Vector Regression (SVR) combined with Invasive Weeds Optimization (IWO), standalone SVR, 24 

and Radial Basis Function Neural Networks (RBFNNs) are applied to estimate channel sinuosity in 25 

perennial rivers. With this aim, a dataset with 132 sinuosity data and related geomorphologic data, 26 

corresponding to 119 perennial streams, is considered. Bayesian Mutual Information theory is used to 27 

determine the parameters affecting channel sinuosity to reveal that bankfull depth affects sinuosity the most. 28 

Seven input parameter combinations for sinuosity prediction are considered, and in both training and testing 29 

stages, the SVR-IWO model ( 𝑅𝑇𝑟𝑎𝑖𝑛 = 0.959 , 𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 = 0.072,𝑀𝐴𝐸𝑇𝑟𝑎𝑖𝑛 = 0.037, 𝑅𝑡𝑒𝑠𝑡 =30 

0.892, 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡 = 0.103,𝑀𝐴𝐸𝑇𝑒𝑠𝑡 = 0.065)  shows the best prediction performance while the 31 

standalone SVR model generated the results with performances of  (𝑅𝑇𝑟𝑎𝑖𝑛 = 0.792 , 𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 =32 

0.158,𝑀𝐴𝐸𝑇𝑟𝑎𝑖𝑛 = 0.141, 𝑅𝑡𝑒𝑠𝑡 = 0.704, 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡 = 0.163,𝑀𝐴𝐸𝑇𝑒𝑠𝑡 = 0.151) . Model prediction 33 

uncertainty is quantified in terms of entropy for the three models considered, further confirming that the 34 

sinuosity set predicted by the SVR-IWO model is the closest to the observed set.  35 

Keywords: channel sinuosity, perennial rivers, prediction, Bayesian Mutual Information theory, Meta-36 

Heuristic Algorithms 37 

 38 

 39 

 40 

1. Introduction 41 

Channel sinuosity measures the deviation of a stream route from a straight downstream route, calculated as 42 

the ratio between the stream length and the corresponding length measured along a straight route. For a 43 

straight channel, sinuosity is equal to one; meandering channels and, in general, channels with bends have 44 
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a sinuosity larger than one. As meandering rivers migrate because of bank erosion, sinuosity changes in 45 

time (Ahmed et al., 2019; Dente et al., 2019; Van den Berg, 1995; Woolderink et al., 2021). 46 

The sinuosity of alluvial channels depends on topographic, geologic, and hydraulic conditions. Studies on 47 

river sinuosity and, more generally, meander migration have been conducted using numerical or analytical 48 

models, laboratory experiments, and field observations. The specific focus of this paper is on sinuosity and 49 

the improvement of "classic" empirically-based regression equations expressing sinuosity as a function of 50 

parameters such discharge, channel geometry, and sediment characteristics, measured with field 51 

observations (Deike and White, 1969; Ferguson, 1977; Leopold and Wolman, 1957; Moody-Stuart, 1966; 52 

Schumm, 1963). Several attempts were made to determine the influential factors on sinuosity in alluvial 53 

meandering channels, i.e., flow conditions and stream power, bed material, and topography (Ghosh, 2000; 54 

Hooke, 1975; Le Roux, 1992; Lewin and Brewer, 2001; Nanson and Hickin, 1983; Smith, 1998; Van den 55 

Berg, 1995). 56 

Nowadays, there is a strong demand for finding cost-effective approaches to solve different and complex 57 

problems in hydrology, geoscience, hydraulic, and various fields of earth sciences. (Haghbin et al., 2021, 58 

2020; Jamei et al., 2020; Sharafati et al., 2021b, 2020). SC models are well-known alternatives that are 59 

quite practical in prediction and classification problems (Jamei and Ahmadianfar, 2020; Pourrajab et al., 60 

2020; Sharafati et al., 2021a). However, in some complex issues, these types of approaches are trapped in 61 

local solutions, to solve this weakness, researchers are conducted different ways to improve the 62 

performance and reliability of existing modes by combining them with different evolutionary or stochastic 63 

models (Diop et al., 2020; Naganna et al., 2019; Tao et al., 2021b, 2021a).  64 

In the past two decades, soft computing methods have been increasingly applied in engineering problems 65 

such as analyzing alluvial channels and, specifically, meandering rivers (Waszczyszyn, 2010). 66 

One of the first studies was carried out by (Javaheri et al., 2008), who applied fuzzy clustering methods to 67 

determine the geomorphologic characteristics of the Karoon River in Iran. (Sahu et al., 2011) used a Back-68 

Propagation Neural Network (BPNN) approach for estimating flow velocity in meandering rivers as a better 69 
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alternative to "classic" regression models. (Riahi-Madvar et al., 2011) showed the potential of Artificial 70 

Neural Networks (ANNs) in predicting the geometry of alluvial channels, considering parameters such as 71 

discharge, width, depth, and median diameter of the bed material. Other soft computing models, namely 72 

Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS), were used for the 73 

prediction of alluvial channel patterns and their roughness coefficients (Beechie and Imaki, 2014; Moharana 74 

and Khatua, 2014). Several studies adopting soft computing approaches in alluvial channels focused on 75 

prediction of the flow field in curved channels, the stable river profile, and width, and the threshold channel 76 

bank profile (Baghalian et al., 2012; Bonakdari et al., 2019; Gholami et al., 2019a, 2019b, 2018; Shaghaghi 77 

et al., 2017; Tahershamsi et al., 2012). Another study (Pham et al., 2019) assessed the variation of the river 78 

in Da  Dien Estuary, Vietnam using different techniques such as Logistic Regression, Neural Networks, 79 

Bootstrap AdaBoost, LogitBoost, bagging, and random subspace. Their finding revealed that random 80 

subspace could provide more reliable results in comparison with others. In line with this study for applying 81 

SC models in river engineering, (Gholami et al., 2020) employed Feed Forward Neural Networks (FFNN), 82 

Extreme Learning Machine (ELM), and their combined types (FFNN-ELM) for assessing the bank profile 83 

morphology in different rivers, They reported that their new hybrid version could generate superior results 84 

in comparison of standalone models.  85 

Together, all these studies show that soft computing models can reliably estimate alluvial channel properties 86 

and fluvial conditions. However, no research has been conducted so far regarding their performance in 87 

estimating channel sinuosity, which is the primary goal of this study. This investigation focuses on the 88 

application of Support Vector Regression (SVR) "tuned" by Invasive Weed Optimization (IWO), 89 

standalone SVR, and Radial Basis Function (RBF) algorithms. It identifies the best metaheuristic model 90 

for improving the performance of a standalone SVR model in predicting channel sinuosity and quantifies 91 

the relative uncertainty. It also presents a new model that can be applied in alluvial channels to estimate 92 

channel sinuosity as an alternative to the "classic" regression-based approaches. 93 

 94 
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2. Methodology 95 

This section includes an overview of soft computing models, dataset, input combinations, performance 96 

indices, and uncertainty approaches, which were employed in our study.   97 

2.1 Channel Sinuosity Prediction Models 98 

Soft computing models can overcome the limitations (over or underestimated results) of classic empirical 99 

relations for complex or non-linear problems. The following sections provide a brief background on the 100 

soft computing models used in this study.  101 

2.1.1 Support Vector Regression (SVR) 102 

The concept of SVR originates from Support Vector Machine (SVM), which is a supervised learning 103 

approach used in classification or regression problems. SVM is widely used in different application areas, 104 

such as assessing scouring, sea surface temperature, and water quality (Liu et al., 2019).  105 

The SVR method is a type of SVM suitable for regression problems. Unlike SVM, which is based on 106 

transforming the original finite-dimensional space into a higher-dimensional space for classification 107 

problems, the SVR provides a regression without the primary restrictions, for instance, generating 108 

inaccurate results when the number of input parameters is increased in the datasets, or there are noisy ones 109 

which linear models are usually suffered from them. The SVR regression expression that maps the input 110 

vector to a higher dimension of solution pace is as follows: 111 

F(x⃗ , ω⃗⃗ ) = ∑ωj

m

j=1

gj(x⃗ ) (1) 

where g(x⃗ ) is non-linear transformation function, ω⃗⃗  is norm vector, and m is the number of samples. 112 

Figure 1 contains a schematic view of linear regression achieved after mapping the input vector to a high 113 

dimensional space through non-linear transformation. The interval of non-approximation error is limited 114 

with dashed lines. The initial step of SVR is to determine a loss function used to assess the error while the 115 
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regression process is performed. There are different types of loss functions, such as quadratic, Huber, and 116 

ε-insensitive. The most common loss function is ε-insensitive, which can be determined as below: 117 

Ls(y, F(x⃗ , ω⃗⃗ )) = {
0    if |y − F(x,ω)| < ε

|y − F(x, ω)| − ε  otherwise
 (2) 

 118 

The next step of SVR is an optimization problem, which consists of finding the most appropriate vector �⃗⃗�  119 

which satisfies the specific error restriction given in Equation (2).  This translates into the following 120 

expression: 121 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ min
1

2
||  �⃗⃗�  ||2 

Subjected to  

yi − F(xi⃗⃗⃗  , ω⃗⃗ ) ≤ ε 

F(xi⃗⃗⃗  , ω⃗⃗ ) − yi ≤ ε 

(3) 

 122 

By considering slack variables, the objective function and its associated constraints are modified as follows: 123 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ min
1

2
||  �⃗⃗�  ||2 + 𝐶 ∑ (𝑛

𝑖=1  𝜀𝑖 − 𝜀𝑖
∗) 

Subjected to  

yi − F(xi⃗⃗⃗  , ω⃗⃗ ) ≤ εi − εi
∗ 

F(xi⃗⃗⃗  , ω⃗⃗ ) − yi ≤ εi − εi
∗ 

(4) 

 124 

These new constraints present that the value of ε as loss function should not exceed more than 𝜀𝑖 − 𝜀𝑖
∗. In 125 

addition, C is determined as a constant coefficient. Finally, the dual is achieved to solve the problem again, 126 

and the final result is determined as the solution of the following objective function: 127 

Max F(x⃗ ) = ∑(αi

i

i=1

− αi
∗)k(xi, xj) + b 

Subjected to 

0 ≤ αi
∗ ≤ C 

0 ≤ αi ≤ C 

(5) 

 128 



7 
 

where αi
∗ 𝑎𝑛𝑑 αi are Lagrange multipliers, C is a coefficient measuring the trade-off between weights and 129 

approximation error, k(xi, xj) is the kernel function, and b is a constant value. Kernel functions such as 130 

Radial Basis and polynomial are employed to calculate 𝑔𝑗(𝑥) and optimize the calculations in high 131 

dimension spaces. The obtained non-linear regression with kernel function is determined as bellows: 132 

k(xi, xj) = exp (−||xi − xj||/𝜎
2|| (6) 

 133 

where 𝜎 denotes the kernel parameters. 134 

[Figure 1] 135 

2.1.2 Invasive Weed Optimization (IWO) 136 

(Mehrabian and Lucas, 2006) presented Invasive Weed Optimization (IWO) as a metaheuristic soft 137 

computing approach for solving different engineering problems. It is inspired by the process of making 138 

colonies by weeds and finding a suitable place for growth and reproducing. IWO is made of four steps, and 139 

a flow chart of IWO is shown in Figure 2. The first step is the random initialization of the first population 140 

(primary solution): 141 

𝑋 = [𝑋1𝑋2, … , 𝑋𝑚] (7) 
 142 

The second step is reproduction, where a seed population is generated by each of the members of the initial 143 

population. The number of seeds produced by each member depends on the value of its fitness function, as 144 

follows  145 

𝑊𝑒𝑒𝑑 = floor (
𝑓 − 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
) (𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) + 𝑠𝑚𝑖𝑛 (8) 

 146 

where the floor, f, 𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥 , 𝑠𝑚𝑖𝑛   𝑎𝑛𝑑 𝑠𝑚𝑎𝑥 are the round down operator, fitness, minimum and 147 

maximum fitness values, and minimum and maximum number of seeds, respectively. 148 
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The third step is spatial dispersal, where the newly generated seeds spread over and search space. The level 149 

of difference between each member of the population and its offspring is quantified as the distance between 150 

the parent plant and where the seed falls on the ground. The distance is described using a normal distribution 151 

with a certain standard deviation, which in each iteration is decreased as follows 152 

𝜎𝑖𝑡𝑒𝑟 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)𝑛

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)𝑛
(𝜎𝑖𝑛𝑖𝑡𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) + 𝜎𝑓𝑖𝑛𝑎𝑙 (9) 

 153 

where 𝜎𝑖𝑡𝑒𝑟, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝜎𝑖𝑛𝑖𝑡𝑎𝑙 and 𝜎𝑓𝑖𝑛𝑎𝑙 are standard deviation for the present iteration, maximum number 154 

of iterations, and initial and final standard deviations. 155 

The fourth step is competitive exclusion, where a new population is produced for the next iteration by 156 

selecting the best-adapted individual in the neighborhood of each solution member based on fitness. 157 

[Figure 2] 158 

 Algorithm 1:  Invasive Weed Optimization 

Input: 

Maximum iterations 

Number of population 

Minimum and maximum number of seeds 

Variance reduction exponent  

Initial and final values of standard deviation 

Output: IWO input structure  

1. (Step 1) Initialization  

2. (Step1.1) Initialize population members. 

3. (Step 1.2) Create, evaluate and sort the population  

4.(Step1.3) Initialize the best solution ever found 

5 (Step2) Update for i =1 ,…., nPop do; 

6.(Step2.1) compute standard deviation, Initialize off springs population, reproduction 

7.(Step 2.2) Evaluate, sort, deleting extra members, merge new population  

8.(Step 2.3) Update worst cost, Truncation, and store the best solution. 

9.(Step 3) Stopping Criterion. If the stopping criterion is satisfied, then stop and output. 

otherwise, go Step 2. 
 159 

 160 

 161 
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2.1.3 Coupled SVR-IWO 162 

Optimizing a SVR model by "tuning" (finding the best combination of) its parameters is essential (Fattahi 163 

and Babanouri, 2017). The IWO algorithm can be used to tune the SVR model parameters, namely the 164 

regularization parameter C, the error margin 𝜀 and the RBF kernel parameter 𝜎. Figure 3 shows a flow chart 165 

of the optimization of the SVR parameters using IWO. 166 

[Figure 3]  167 

2.1.4 Radial Basis Functions Neural Networks (RBFNNs) 168 

Radial Basis Function Neural Networks (RBFNNs) are neural networks of the feed-forward type and are 169 

often utilized for multi-variable regression in complex problems (Chen et al., 2016). A flow chart of 170 

RBFNN is shown in Figure 4. In a RBFNN model, neurons are arranged in three layers. The first layer 171 

contains the input nodes; the second layer is a hidden layer, and it includes tuned units using a radial basis 172 

function, and the third layer is the output layer that can be computed as follows 173 

𝑦 = 𝑓(𝑥) = ∑ 𝑤𝑘

𝑁

𝑘=1

𝜑𝑘(||𝑥 − 𝑐𝑘||) (10) 

 174 

where y, 𝑥,𝑁,𝑤𝑘 , 𝜑𝑘  𝑎𝑛𝑑 𝑐𝑘 are output, input vector, number of neurons in the hidden layer, weights of 175 

output obtained from the previous layer, radial basis function, and center of the radial basis function, 176 

respectively. The term  ||𝑥 − 𝑐𝑘|| expresses the Euclidean distance between inputs and the center of the 177 

radial basis function.  178 

Multi-quadratic and Gaussian functions are widely used as the radial basis function. Previous studies 179 

reported that outputs are generally not sensitive to the type of radial basis function selected (Chen et al., 180 

2016; Li et al., 2008; Yang and Paindavoine, 2003). In this study, the Gaussian function is used. It is 181 

expressed as follows 182 
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𝜑(||𝑥 − 𝑐||) = exp (−
||𝑥 − 𝑐||2

𝑟2
) (11) 

 183 

where c and r represent the center and radius of the Gaussian function, respectively.  184 

Choosing appropriate centers is the main challenge in the application of this method. In this regard, an 185 

Orthogonal Least Squares (OLS) approach can be used to explore the optimal number of centers during the 186 

training phase. An overview of this approach is discussed in (Ham and Kostanic, 2001). 187 

[Figure 4] 188 

2.2 Dataset and Input Parameters 189 

To carry out this study, 132 sinuosity data, corresponding to 119 perennial streams (Table 1), were obtained 190 

from (Van den Berg, 1995). The main features of the streams selected are described as follows (Kleinhans 191 

and van den Berg, 2011; Van den Berg, 1995): the stream planform characteristics are not affected by man-192 

made activity such as dams, dredging, and jetties; no artificial cut-offs; perennial flow regime; and no roads 193 

near the streams.  194 

[Table 1] 195 

Seven parameters were considered for channel sinuosity prediction: valley slope (𝑆𝑣), bankfull depth (𝑑), 196 

bankfull width (𝑤), bankfull discharge (𝑄𝑏𝑓), median bed sediment grain size (𝐷50), potential specific 197 

stream power (𝜔𝑣) and potential specific stream power at the transition between single and thread channel 198 

(𝜔𝑣,𝑡). The parameters 𝑆𝑣 , 𝑑, 𝑤, 𝑄𝑏𝑓 𝑎𝑛𝑑 𝐷50  were directly obtained from the field observations gathered 199 

by (Van den Berg, 1995); the remaining two parameters, 𝜔𝑣 and 𝜔𝑣,𝑡, were computed with the formulations 200 

suggested by (Van den Berg, 1995) as follows: 201 

(12) Sand bed river: 𝜔𝑣 = 2.1𝑆𝑣√𝑄𝑏𝑓 

(13) Gravel bed river: 𝜔𝑣 = 3.3𝑆𝑣√𝑄𝑏𝑓 

(14) 𝜔𝑣,𝑡 = 900𝐷50
0.42 

 202 
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The dataset was divided randomly into the training data ( 60% of data)  and the remaining ( 40% of data) 203 

for the testing data. The range of values for the seven parameters in the dataset considered is shown in Table 204 

2. 205 

[Table 2] 206 

2.3 Mutual Information Theory for Input Variable Combination Selection 207 

Information theory or entropy of information is recognized as a tool for measuring uncertainties due to lack 208 

of knowledge and chaos and was first presented by (Shannon and Weaver, 1949). Mutual Information 209 

theory is a useful statistical tool in engineering for measuring the degree of dependency of an event on 210 

certain parameters (Archer et al., 2013; Hlaváčková-Schindler et al., 2007; Rényi, 1959) and is a widely 211 

used approach for the selection of variables and determination of flow of information (Singh, 2014). The 212 

Mutual Information between two random variables, X and Y, is expressed as follow 213 

I(X, Y) = H(X) − H(X|Y) (15) 
 214 

where I(X, Y) represents the mutual information (entropy) or dependency degree of the variables X and Y. 215 

H(X)  is the entropy of the random variable X, with possible values {X1, X2, … , XN}. It is about the 216 

information in the variable X and the uncertainty associated with it, and it is expressed as follows 217 

H(X) = −∑P(Xi) log P(Xi)

N

i=1

 (16) 

 218 

where P(Xi) are the probability values associated to the values Xi. The term H(X|Y) denotes the conditional 219 

entropy for X given Y and is computed as follows 220 

H(X|Y) = −∑∑P(Xi

M

j=1

N

i=1

, Yj) log P(Xi |Yj) (17) 

 221 
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In the above relation, P(Xi|Yj) expresses the conditional probability of X on Y. Equation (15) is affected 222 

bias for small datasets (Archer et al., 2013). To tackle this problem, researchers have been using Bayesian 223 

inference to measure H (Hutter, 2002; Hutter and Zaffalon, 2002). Bayesian inference employs Dirichlet 224 

prior and posterior probabilities to fit a multinomial distribution to variables.  The mathematical expressions 225 

of the Dirichlet prior and posterior probabilities are shown below 226 

Dir(α) ≜ Dir(α1, α2, … , aK) =
Γ(Ka)

Γ(α)K
∏πi

α−1

K

i=1

 

Dir(α) ≜ Dir(α1 + 𝑛1, … , α + 𝑛𝐾) = Γ(𝐾𝑎 + 𝑁) = ∏
𝜋𝑖

𝑛𝑖+𝛼−1

Γ(𝑎 + 𝑛𝑖)

𝐾

𝑖=1

 

(18) 

 227 

where α, K, πi, N and nK denote the Dirichlet concentration coefficient, numbers of the defined bin in the 228 

distribution, the probability that data sample X is placed in the ith bin, number of all samples, and number 229 

of samples places in the ith bin. By applying the Dirichlet distribution to the Mutual Information expression, 230 

its new expression is obtained: 231 

Bayesian Mutual Information =
1

𝑙𝑛2
(𝜓0(𝑁 + 𝐾𝑎 + 1) −

∑
𝑛𝑖,𝑗+𝛼

(𝑁+𝛼𝐾)𝑖,𝑗 [𝜓0(𝑛𝑥𝑖
+ 𝛼𝐾𝑦 + 1) + 𝜓0(𝑛𝑦𝑖 + 𝛼𝐾𝑥 + 1) − 𝜓0(𝑛𝑖𝑗 + 𝛼 + 1)) 

 

(19) 

 232 

In the above relation, all parameters are the same as for Equation (18) and 𝜓0 denotes the digamma function. 233 

A detailed overview of this approach is discussed in (Hutter, 2002; Hutter and Zaffalon, 2002). 234 

The formulation in Equation (19) is used in this study to compute the Bayesian Mutual Information 235 

associated with sinuosity for each of the seven input variables considered. This informs the selection of the 236 

input variable combinations for the prediction of sinuosity. 237 

 238 

 239 
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2.4 Prediction Performance Indices 240 

The sinuosity prediction performance of the models considered in this study was quantified using three 241 

indices, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Correlation 242 

(R). They are computed as follows 243 

(20) 

√
∑ (𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1

𝑛
 

Root Mean 

Square 

Error 

(RMSE) 

(21) ∑ |𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑|
𝑛
𝑖=1

𝑛
 

Mean 

Absolute 

Error 

(MAE) 

(22) 𝑛(∑𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) − (∑𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)(∑𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

√[𝑛 ∑(𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 ) − (∑𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2][𝑛 ∑(𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

2 ) − (∑𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2]

 
Coefficient 

of 

Correlation 

(R) 
 

 244 

where 𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are observed and predicted values, and 𝑛 is the number of 245 

observed/predicted values. 246 

2.5 Model Prediction Uncertainty  247 

There are two types of uncertainty, aleatory and epistemic. The aleatory uncertainty is due to the inherent 248 

randomness in physical phenomena, with the variable values that a probability distribution can describe. 249 

The epistemic uncertainty is the uncertainty in the modeling of the physical processes. The idealization on 250 

which models or mathematical expressions rely is linked to epistemic uncertainty. The epistemic (model) 251 

uncertainty is the subject of this section. 252 

As seen in Section 2.3, in information theory, the "randomness" or "uncertainty" of a variable, such as a 253 

sinuosity, can be evaluated in terms of entropy. Five methods are considered here to compute it, one 254 

"classic" - Maximum Likelihood (ML) – and the other four of Bayesian type - Jeffrey, Laplace, Schurmann-255 

Grassberger (SG), and Minimax. The difference between these methods resides in the way the value of  𝛼 256 
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in the Dirichlet priors is computed. Its value is zero in the ML method, which reduces this method to 257 

measure entropy to the "classic" entropy definition seen in Equation (16). The value of 𝛼 is 0.5, 1,  258 

1

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 
, and √

𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
  for Jeffrey, Laplace, SG, and 259 

Minimax methods, respectively. 260 

3. Results and Discussion 261 

3.1 Bayesian Mutual Information and Input Variable Combination 262 

The Mutual Information associated with sinuosity for each of the seven input variables considered for the 263 

dataset used in this study is shown in Table 3 and Figure 5. The variables affecting sinuosity the most and 264 

the least are bankfull depth and valley slope, respectively. 265 

[Table 3] 266 

[Figure 5] 267 

Based on the analysis above, seven input variable combinations for the prediction of sinuosity are selected, 268 

as shown in Table 4. 269 

[Table 4] 270 

3.2 Model Prediction Performance 271 

The sinuosity prediction performance of SVR-IWO, standalone SVR, and RBF models was compared, 272 

based on the performance indices RMSE, MAE, and R. Table 5 summarizes the best-obtained results for 273 

each of the estimators (i.e., the results obtained for the best performing input variable combination for each 274 

model), for training and testing stages. In the training stage, the SVR-IWO-M2 model sinuosity prediction 275 

are the most accurate, producing the minimum MAE (0.037) and the maximum R (0.959). The standalone 276 

SVR-M2 still generates acceptable results, while RBF-M1 produces the highest prediction error. Similar 277 

findings are obtained in the testing stage, where the SVR-IWO-M2 model generates the minimum sinuosity 278 
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prediction error (RMSE = 0.103, MAE = 0.065, and R=0.892). The standalone SVR-M2 (RMSE = 0.163, 279 

MAE = 0.151 and R = 0.704) performs slightly better than RBF-M1 (RMSE = 0.236, MAE = 0.177 and R 280 

= 0.462).  281 

[Table 5]  282 

The prediction performance of the different models is visualized for training and testing stages in the form 283 

of heat maps (Figure 6), scatter plots (Figure 7), and boxplots (Figure 8). In all plots, the best input 284 

parameter combination is considered for each model. 285 

In the heat map diagrams, the prediction performance indices are normalized (standardized) with respect to 286 

the difference between the maximum and minimum value of each performance index. The larger the value 287 

of the normalized index, the better the prediction performance. The heat maps in Figure 6 clearly show that 288 

the SVR-IWO model has the best prediction performance among the three models considered for both the 289 

training and testing stages. 290 

[Figure 6] 291 

From the scatter plots in Figure 7, the RBF model produces the results with the minimum linear correlation 292 

between observed and estimated sinuosity (𝑅𝑡𝑒𝑠𝑡 = 0.462), while the SVR-IWO model  provides the 293 

highest correlation (𝑅𝑡𝑒𝑠𝑡 = 0.892). 294 

[Figure 7] 295 

Boxplots (Figure 8) illustrate the variability of observed and predicted sinuosity values. The SVR-IWO 296 

model shows the range (IQR = 0.336) that is the closest to the range of the observed data (IQR = 0.301) in 297 

the training stage. The same applies in the testing stage, with modeled IQR of 0.287 against an observed 298 

IQR of 0.308.  299 

[Figure 8] 300 
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A sensitive analysis is conducted to evaluate the influence of each input variable on the variation of the 301 

output variable. In this regard, a new index named relative coefficient variation (RCV) presented by 302 

(Tafarojnoruz and Sharafati, 2020) is used in this study. The RCV is expressed as follows: 303 

𝑅𝐶𝑉(𝑥𝑖, 𝑦) =
𝐶𝑉𝑦

𝐶𝑉𝑥𝑖

 
(23) 

 304 

Where 𝑥𝑖 is the ith input variable, 𝑦 is the output variable, and CV is the coefficient of determination. The 305 

input variable with the highest RCV is the impactful variable. Results show that the RCV values of 𝑆𝑣 , 𝑑,306 

𝑤, 𝑄𝑏𝑓 , 𝐷50 , 𝜔𝑣 and 𝜔𝑣,𝑡 are 0.16, 0.18, 0.04, 0.01, 0.15, 0.15, 0.42, respectively. Hence, the potential 307 

specific stream power at the transition between single and thread channel (RCV=0.425) is most impactful 308 

variable. 309 

 310 

3.3 Uncertainty Analysis  311 

The model uncertainty (epistemic uncertainty) is assessed for the three different models considered (SVR-312 

IWO, standalone SVR, and RBF), each for their best performing input variable combination. The Entropy 313 

Package within the R software is used to compute entropy using the ML, Jeffrey, Laplace, SG, and Minimax 314 

methods (Hausser et al., 2015). 315 

Results are summarized in Table 6 and visualized in Figure 9. For both training and testing stages, the 316 

entropy of the sinuosity values predicted by the SWR-IWO model is the closest to the entropy of the 317 

observed values (percent difference of 𝑀𝐿 = 0.0443, 𝐽𝑒𝑓𝑓𝑒𝑟𝑦 = 0, 𝑆𝐺,𝑀𝑖𝑛𝑖𝑚𝑎𝑥 𝑎𝑛𝑑 𝐿𝑎𝑝𝑙𝑎𝑐𝑒0.0221) 318 

for training stage and (𝑀𝐿 = 0.246, 𝐽𝑒𝑓𝑓𝑒𝑟𝑦 = 0.0273, 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 = 0.0546, 𝑆𝐺 𝑎𝑛𝑑 𝑀𝑖𝑛𝑖𝑚𝑎𝑥 = 0)for 319 

testing stage). In other words, the information content of the sinuosity set produced by the SVR-IWO model 320 

is the most similar to that of the observed sinuosity data. This further confirms that the SVR-IWO model is 321 

the most reliable in predicting sinuosity among the three models considered.  322 
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[Figure 9] 323 

[Table 6] 324 

 325 

Overall, prior studies attempt to determine the sinuosity of channels by dividing thalweg length to 326 

length of valley length (Flor et al., 2010). However, this way of determining sinuosity is flawed 327 

due to ignoring the impacts of several essential parameters such as river bed material properties 328 

and river discharge (Van den Berg, 1995). These parameters play vital roles in the sinuosity of 329 

channels. However, this study attempts to present a novel model for determining channel sinuosity, 330 

including the parameters mentioned above and applicable for different rivers worldwide. 331 

Moreover, we employed new methods for assessing channel sinuosity in various case studies with 332 

different flow and bed material conditions. The results revealed the employed models are reliable 333 

for evaluating channel sinuosity in other case studies.  334 

4. Conclusion  335 

In this paper, a Support Vector Regression (SVR) model is combined with a metaheuristic model, the 336 

Invasive Weed Optimization (IWO), to estimate sinuosity in perennial rivers and compared with standalone 337 

SVR and RBF models. Seven parameters for prediction are considered  (𝑆𝑣 , 𝑑, 𝑤, 𝑄𝑏𝑓 , 𝐷50, 𝜔𝑣 , 𝜔𝑣,𝑡), with 338 

seven possible input combinations (M1 to M7), obtained via Bayesian Mutual Information analysis,  which 339 

identifies the degree of dependency channel sinuosity on the seven aforementioned parameters. The dataset 340 

from Van den Berg (1995) is used for the analysis. 341 

Three prediction performance indices (RMSE, MAE, and R) are employed to assess the accuracy of the 342 

estimators in both training and testing stages, in addition to diagrams (heat map, scatter plots, and boxplots). 343 
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Overall, the SVR-IWO model, with M2 input parameter combination (𝑑,𝑤, 𝑄𝑏𝑓 , 𝐷50, 𝜔𝑣 , 𝜔𝑣,𝑡) shows the 344 

best prediction performance, both in training stage (MAE = 0.037, RMSE = 0.072 and R = 0.959) and 345 

testing stage (MAE = 0.103, RMSE = 0.103 and R = 0.892) among the models considered in this study. In 346 

addition, the uncertainty analysis was conducted by using different types of entropies. The results revealed 347 

that the entropy values obtained by the SWR-IWO model are close to the entropy of the observations in 348 

both training and testing stages.  349 
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  510 

Figure 1: Schematic view of linear regression in Support Vector Regression (SVR). 511 
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 513 

Figure 2: Flow chart of Invasive Weed Optimization (IWO). 514 
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 517 

Figure 3: Flow chart of the optimization of the SVR model parameters.  518 
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 521 

Figure 4: Flow chart of a Radial Basis Functions Neural Network (RBFNN). 522 
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 525 

 526 

Figure 5: Mutual Information (MIF) between inputs and output (sinuosity). 527 
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 532 

 533 

Figure 6: Performance heat map for (a) training stage and (b) testing stage. 534 
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Figure 7: Scatter plot for (a) training stage and (b) testing stages. 538 
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 540 

 541 

Figure 8: Boxplot for (a) training stage and (b) testing stage. 542 
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 544 

 545 

Figure 9: Model uncertainty for (a) training stage and (b) testing stage. 546 
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Table 1: Streams included in the channel sinuosity dataset. 552 

Stream Names Number of 

Streams 

Country  

Barwon, Butchers, Clarence, Derwert, S. Ashburton, Stanley, 

Swan, Wye 

8 Australia 

Dry Wood, East Prairie, Forks, Fraser, Grey, Assiniboine, 

Athabasca, Bow, Chalk, Crows Nest, Klondike, Knee Hills, 

Lesser Slave, Little Paddle, Little Red Deer, Little Smokey, 

Medicine, N. Saskatchewan, Paddle, Pembina, Pipestone, 

Vermillion, West Prairie 

23 Canada 

Sinu 1 Colombia 

Asker, Ceiriog, Chittern, Churnet, Eden, Esk, Hamps 

Kielderburn, Lugg, Pinsley, Ribble, Rookhope Severn, 

Teign, Wylye, Wyre  

16 England 

Danube 1 European 

Countries  

Irishman 1 Ireland 

Ahuriri, Arrow, Buller, Cobb, Gimmerburn, Glen Roy, 

Gowan, Hakataramea, Hokitika, Hurunui, Inangahua, 

Kakanui, Kyeburn, Loganburn, Maerwhenua, Makarewa, 

Mangles, Mataura, Maruia, Maryburn, Matakitaki, Mataura, 

Motueka, Nobles, Ohau, Opihi, Opuha, Orari, Otapiri, 

Otekaieke, Otematata, Pomahaka, Rangitata, Riwaka, Selwyn, 

Taieri, Twizel, Waiau-uha, Waihopai, Waimakiriri, Wairau 

41 New Zealand 

Eachaig 1 Scotland 

Thomas 1 South Africa 

Beaver, Blacks Fork, Branch, Learwater, Crystal, East Inlet, 

Elk, Glen, Halfmoon, Lake Fork, Little Grizzly, Little Muddy, 

Little Snake, Lleddam, Mississippi, North Platte, Otter, 

Stillwater, Taylor, Tomi Chi, White, William Fork, Willow  

23 United states 

Afon, Lwyd, Irfon, Usk 3 Wales 
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Table 2: Range of values for the seven parameters considered for the estimation of sinuosity. 555 

Testing Stage Training Stage  Parameter 

4.2-390 5.21-375 𝑤 (𝑚) 

0.33-7.2 0.29-5 𝑑 (𝑚) 

1.71-1200 1.87-1372 
𝑄𝑏𝑓 (

𝑚3

𝑆
) 

0.15-118.7 0.27-145 𝐷50 (𝑚𝑚) 

0.05-28.3 0.22-22 𝑆𝑣 × 1000 

0.00155-0.940 0.004-0.915 𝜔𝑣 (
𝑘𝑊

𝑚2
) 

22.294-446.752 28.537-399.96 
𝜔𝑣,𝑡(

𝑘𝑊

𝑚2
) 

1.0545-2.142 1-2.196 𝑃 

 556 

 557 

  558 



37 
 

Table 3: Mutual Information between inputs and output (sinuosity).  559 

Input Variable Mutual Information 

𝑺𝑽 0.0014 

𝑫𝟓𝟎 0.0039 

𝝎𝒗 0.0285 

𝒅 0.0365 

𝑸𝒃𝒇 0.0074 

𝝎𝒗,𝒕 0.00148 

𝒘 0.0129 

 560 
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Table 4: Input variable combinations considered for channel sinuosity prediction, selected based on 562 

Bayesian Mutual Information theory. 563 

𝒘 𝝎𝒗,𝒕 𝑸𝒃𝒇 𝒅 𝝎𝒗 𝑫𝟓𝟎 𝑺𝑽  

✓ ✓ ✓ ✓ ✓ ✓ ✓ M1 

✓ ✓ ✓ ✓ ✓ ✓ - M2 

✓ - ✓ ✓ ✓ ✓ - M3 

✓ - ✓ ✓ ✓ - - M4 

✓ - - ✓ ✓ - - M5 

- - - ✓ ✓ - - M6 

- - - ✓ - - - M7 

 564 
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Table 5: Summary of the prediction performance indices for the model considered.  566 

Training Stage 

Model RMSE MAE R 

SVR-IWO-M2 0.072 0.037 0.959 

SVR-M2 0.158 0.141 0.792 

RBF-M1 0.260 0.198 0.404 

Testing Stage 

Model RMSE MAE R 

SVR-IWO-M2 0.103 0.065 0.892 

SVR-M2 0.163 0.151 0.704 

RBF-M1 0.236 0.177 0.462 
 567 

 568 

  569 



40 
 

Table 6: Model uncertainty for training and testing stages. Entropy values are shown. 570 

Training Stage 

Model ML Jeffrey Laplace SG Minimax 
SVR-IWO 4.516 4.523 4.527 4.516 4.518 

SVR 4.528 4.53 4.531 4.528 4.528 

RBF 4.524 4.528 4.53 4.524 4.525 

Observed 4.514 4.523 4.526 4.515 4.517 

Testing Stage 

Model ML Jeffrey Laplace SG Minimax 
SVR-IWO 3.640 3.656 3.656 3.65 3.652 

SVR 3.660 3.660 3.662 3.661 3.661 

RBF 3.654 3.658 3.660 3.655 3.656 

Observed 3.649 3.655 3.658 3.650 3.652 

 571 

 572 



  1 

Figure 1: Schematic view of linear regression in Support Vector Regression (SVR). 2 

  3 



 4 

Figure 2: Flow chart of Invasive Weed Optimization (IWO). 5 
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 8 

Figure 3: Flow chart of the optimization of the SVR model parameters.  9 
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 12 

Figure 4: Flow chart of a Radial Basis Functions Neural Network (RBFNN). 13 
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Figure 5: Mutual Information (MIF) between inputs and output (sinuosity). 18 
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 23 

 24 

Figure 6: Performance heat map for (a) training stage and (b) testing stage. 25 
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Figure 7: Scatter plot for (a) training stage and (b) testing stages. 29 
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 32 

Figure 8: Boxplot for (a) training stage and (b) testing stage. 33 
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 35 

 36 

Figure 9: Model uncertainty for (a) training stage and (b) testing stage. 37 
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Table 1: Streams included in the channel sinuosity dataset. 1 

Stream Names Number of 

Streams 

Country  

Barwon, Butchers, Clarence, Derwert, S. Ashburton, Stanley, 

Swan, Wye 

8 Australia 

Dry Wood, East Prairie, Forks, Fraser, Grey, Assiniboine, 

Athabasca, Bow, Chalk, Crows Nest, Klondike, Knee Hills, 

Lesser Slave, Little Paddle, Little Red Deer, Little Smokey, 

Medicine, N. Saskatchewan, Paddle, Pembina, Pipestone, 

Vermillion, West Prairie 

23 Canada 

Sinu 1 Colombia 

Asker, Ceiriog, Chittern, Churnet, Eden, Esk, Hamps 

Kielderburn, Lugg, Pinsley, Ribble, Rookhope Severn, 

Teign, Wylye, Wyre  

16 England 

Danube 1 European 

Countries  

Irishman 1 Ireland 

Ahuriri, Arrow, Buller, Cobb, Gimmerburn, Glen Roy, 

Gowan, Hakataramea, Hokitika, Hurunui, Inangahua, 

Kakanui, Kyeburn, Loganburn, Maerwhenua, Makarewa, 

Mangles, Mataura, Maruia, Maryburn, Matakitaki, Mataura, 

Motueka, Nobles, Ohau, Opihi, Opuha, Orari, Otapiri, 

Otekaieke, Otematata, Pomahaka, Rangitata, Riwaka, Selwyn, 

Taieri, Twizel, Waiau-uha, Waihopai, Waimakiriri, Wairau 

41 New Zealand 

Eachaig 1 Scotland 

Thomas 1 South Africa 

Beaver, Blacks Fork, Branch, Learwater, Crystal, East Inlet, 

Elk, Glen, Halfmoon, Lake Fork, Little Grizzly, Little Muddy, 

Little Snake, Lleddam, Mississippi, North Platte, Otter, 

Stillwater, Taylor, Tomi Chi, White, William Fork, Willow  

23 United states 

Afon, Lwyd, Irfon, Usk 3 Wales 

 2 

  3 



Table 2: Range of values for the seven parameters considered for the estimation of sinuosity. 4 

Testing Stage Training Stage  Parameter 

4.2-390 5.21-375 𝑤 (𝑚) 

0.33-7.2 0.29-5 𝑑 (𝑚) 

1.71-1200 1.87-1372 
𝑄𝑏𝑓 (

𝑚3

𝑆
) 

0.15-118.7 0.27-145 𝐷50 (𝑚𝑚) 

0.05-28.3 0.22-22 𝑆𝑣 × 1000 

0.00155-0.940 0.004-0.915 𝜔𝑣 (
𝑘𝑊

𝑚2
) 

22.294-446.752 28.537-399.96 
𝜔𝑣,𝑡(

𝑘𝑊

𝑚2
) 

1.0545-2.142 1-2.196 𝑃 

 5 

 6 
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Table 3: Mutual Information between inputs and output (sinuosity).  8 

Input Variable Mutual Information 

𝑺𝑽 0.0014 

𝑫𝟓𝟎 0.0039 

𝝎𝒗 0.0285 

𝒅 0.0365 

𝑸𝒃𝒇 0.0074 

𝝎𝒗,𝒕 0.00148 

𝒘 0.0129 

 9 
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Table 4: Input variable combinations considered for channel sinuosity prediction, selected based on 11 

Bayesian Mutual Information theory. 12 

𝒘 𝝎𝒗,𝒕 𝑸𝒃𝒇 𝒅 𝝎𝒗 𝑫𝟓𝟎 𝑺𝑽  

✓ ✓ ✓ ✓ ✓ ✓ ✓ M1 

✓ ✓ ✓ ✓ ✓ ✓ - M2 

✓ - ✓ ✓ ✓ ✓ - M3 

✓ - ✓ ✓ ✓ - - M4 

✓ - - ✓ ✓ - - M5 

- - - ✓ ✓ - - M6 

- - - ✓ - - - M7 

 13 

  14 



Table 5: Summary of the prediction performance indices for the model considered.  15 

Training Stage 

Model RMSE MAE R 

SVR-IWO-M2 0.072 0.037 0.959 

SVR-M2 0.158 0.141 0.792 

RBF-M1 0.260 0.198 0.404 

Testing Stage 

Model RMSE MAE R 

SVR-IWO-M2 0.103 0.065 0.892 

SVR-M2 0.163 0.151 0.704 

RBF-M1 0.236 0.177 0.462 
 16 

 17 
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Table 6: Model uncertainty for training and testing stages. Entropy values are shown. 19 

Training Stage 

Model ML Jeffrey Laplace SG Minimax 
SVR-IWO 4.516 4.523 4.527 4.516 4.518 

SVR 4.528 4.53 4.531 4.528 4.528 

RBF 4.524 4.528 4.53 4.524 4.525 

Observed 4.514 4.523 4.526 4.515 4.517 

Testing Stage 

Model ML Jeffrey Laplace SG Minimax 
SVR-IWO 3.640 3.656 3.656 3.65 3.652 

SVR 3.660 3.660 3.662 3.661 3.661 

RBF 3.654 3.658 3.660 3.655 3.656 

Observed 3.649 3.655 3.658 3.650 3.652 

 20 


