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Abstract
Due to the COVID-19 pandemic outbreak, the home quarantine policy was implemented to control the spread of the pan-
demic, which may have a positive impact on the improvement of air quality in China. In this study, Google Earth Engine 
(GEE) cloud computing platform was used to obtain CO, NO2, SO2 and aerosol optical depth (AOD) data from December 
2018-March 2019, December 2019-March 2020, and December 2020-March 2021 in Shandong Province. These data were 
used to study the spatial and temporal distribution of air quality changes in Shandong Province before and after the pandemic 
and to analyze the reasons for the changes. The results show that: (1) Compared with the same period, CO and NO2 showed 
a decreasing trend from December 2019 to March 2020, with an average total change of 4082.36 mol/m2 and 167.25 mol/
m2, and an average total change rate of 4.80% and 38.11%, respectively. SO2 did not have a significant decrease. This is 
inextricably linked to the reduction of human travel production activities with the implementation of the home quarantine 
policy. (2) The spatial and temporal variation of AOD was similar to that of pollutants, but showed a significant increase 
in January 2020, with an average total amount increase of 1.69 × 107 up about 2.54% from December 2019 to March 2020. 
This is attributed to urban heating and the reduction of pollutants such as NOx. (3) Pollutants and AOD were significantly 
correlated with meteorological data (e.g., average temperature, average humidity, average wind speed, average precipitation, 
etc.). This study provides data support for atmospheric protection and air quality monitoring in Shandong Province, as well 
as theoretical basis and technical guidance for policy formulation and urban planning.

Keywords  Air quality · COVID-19 · Google Earth Engine · Shandong Province

Introduction

With the improvement of urbanization and the increase of 
human activities, air pollution has become an increasingly 
serious problem (Azuma et al. 2020; Zhou et al. 2020; Song 
et al. 2021). Especially, many cities in northern winter have 
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serious haze pollution, which affects human health and 
daily life. Scientific and effective exploration of air qual-
ity changes is of great importance for government decision 
making. Owing to the COVID-19 pandemic outbreak, the 
Chinese government adopted a home quarantine policy, 
which largely improved air quality in China. Therefore, this 
outbreak and lockdown period may be an excellent time to 
explore the driving factors of air quality change.

Many scholars have explored the impact of the pandemic 
lockdown initiative on air quality in China. The station 
data was frequently used to analyze the spatial and tem-
poral changes of pollutant concentrations. For example, 
Zhu et al. (2020) studied the relationship between six air 
pollutants (i.e., PM2.5, PM10, CO, O3, NO2 and SO2) and 
confirmed COVID-19 cases in 120 cities of China from 
January 23, 2020 to February 29, 2020 (Zhu et al. 2020). 
Yao et al. (2020) analyzed the association between PM2.5 
and PM10 concentrations and COVID-19 case fatality rates 
in 49 cities of China from January 15, 2020 to March 22, 
2020 (Yao et al. 2020). However, station data could not well 
demonstrate the spatial distribution of pollutant changes, 
and are not easily collected and obtained. The application 
of remote sensing data has increasingly developed into a key 
technical tool for global atmospheric environment monitor-
ing compared with traditional air pollution monitoring tech-
nology. Remote sensing data can provide data support for 
air quality monitoring with certain accuracy and relatively 
easy access (Zhao et al. 2017; Asokan and Anitha 2019). 
For example, Prakash et al. (2021) used the GEE platform 
to obtain Sentinel-5P and MCD19A2 data for March and 
April 2019 and 2020 to assess the major pollutants in major 
Indian cities during the pandemic lockdown period (Prakash 
et al. 2021). Meng et al. (2021) obtained CO, NO2, O3 and 
SO2 concentrations from January 23, 2020 to May 31, 2020 
by Sentinel-5P data to exploit the non-linear relationship 
between annual and daily global air pollution concentrations 
and daily confirmed cases (Meng et al. 2021). Dutheil et al. 
(2020) compared NO2 concentrations in some regions of 
China from January-March 2019 and January-March 2020 
by Sentinel-5P data (Dutheil et al. 2020). Ghasempur et al. 
(2021) explored the spatial and temporal distribution of NO2 
and SO2 in Sentinel-5P data and AOD in MODIS data from 
January 2019 to September 2020 in Turkey through the GEE 
platform and discovered that Sentinel-5P data were strongly 
correlated with station data (Ghasempour et al. 2021). Zheng 
et al. (2019) used NO2 data from Sentinel-5P to explore the 
spatial and temporal characteristics and influencing factors 
of NO2 concentrations in mainland China from February 
2018 to January 2019, where NO2 concentrations from 
Sentinel-5P were highly correlated with NO2 concentrations 
from urban surface monitoring (p<0.05, R2=0.72) (Zheng 
et al. 2019). In the above-mentioned studies, the pollutant 
data from Sentinel-5P data were employed to detect air 

quality changes with favorable effects and highly correlated 
with pollutant station data.

Therefore, this paper utilized the Google Earth Engine 
(GEE) platform to explore the air quality changes in different 
years during the same period of the pandemic outbreak and 
lockdown (i.e., December 2018 to March 2019, December 
2019 to March 2020, December 2020 to March 2021). GEE 
(https://​code.​earth​engine.​google.​com) is a free, cloud-based 
platform that allows for in-cloud data access, processing and 
management (Tamiminia et al. 2020). Its strength lies in 
the combination of petabyte-scale satellite imagery and geo-
spatial datasets with planetary-scale analysis capabilities, 
allowing for easy analysis and mapping at the global level, 
with easy access to data and ‘unlimited’ and stable process-
ing power (Hu et al. 2018; Chen et al. 2021). Furthermore, 
the driving factors of air quality changes before and after the 
COVID-19 outbreak were explored to investigate the sources 
influencing air quality change.

The contributions of this paper are as follows: (1) This 
study understands the changes in air pollution levels from 
the coexistence of multiple pollutants after the implementa-
tion of the COVID-19 home quarantine policy in Shandong 
Province. We used satellite remote sensing data and com-
pared the three times of the non-pandemic period, the pan-
demic period, and the basic end of pandemic to explore the 
impact of pandemic on air quality from a relatively compre-
hensive perspective. (2) This study quantifies the relation-
ship between meteorological observations and air pollution, 
and explores the extent to which industrial, daily life and 
other activities affect air pollution in Shandong Province. 
We examined a few spatial regression models for identifying 
meteorological factors as explanatory variables to explain air 
quality changes during the pandemic. The driving factors of 
air quality changes from economic and social statistics were 
discussed in depth from the perspectives of mobile sources, 
industrial sources, and domestic sources.

The objective of this study is to analyze the air quality 
in Shandong Province during the pandemic lockdown from 
the perspective of air pollution. The dynamic changes of 
air quality in Shandong Province were studied from a more 
comprehensive perspective by comparing the air quality 
with the non-pandemic period and the approximate end of 
the pandemic. Meanwhile, due to the complex influences 
of emissions and meteorology, the impacts of natural and 
anthropogenic factors on air quality changes were systemati-
cally and quantitatively analyzed to understand the reasons 
why serious air pollution was not avoided in previous years 
and to provide theoretical support for scientific and effective 
air pollution control in the future.
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Data and methods

Study area

The study area was Shandong Province, located in the 
Bohai Sea region of eastern China (see Fig. 1), between 
34°22.9′-38°24.01′ N and 114°47.5′-122°42.3′ E (Zhang 
et al. 2016). Shandong province has a large population, 
with a resident population of 100,702,100 at the end of 
2019. Shandong Province is one of the most economically 
developed provinces in China, with a gross domestic prod-
uct of 7,312.90 billion yuan in 2020.

Datasets

Sentinel-5P is a global atmospheric pollution monitoring 
satellite launched by European Space Agency on October 
13, 2017. The satellite carries tropospheric monitoring 
instruments and is capable of effectively observing trace 
gas constituents in the global atmosphere, including impor-
tant indicators closely related to anthropogenic activities, 
e.g., NO2, O3, SO2, CH4 and CO (Vîrghileanu et al. 2020; 
Schneider et al. 2021). Aerosol optical depth (AOD) from 
moderate resolution imaging spectrometer (MODIS) data 
and Sentinel-5P air pollution data were acquired from the 
GEE platform (see Table 1). The time intervals for the study 
data were December 2018 to March 2019 (referred to as 
Period 1), December 2019 to March 2020 (referred to as 
Period 2), and December 2020 to March 2021 (referred to 
as Period 3). In addition, the factors affecting the changes in 
air quality before and after the COVID-19 pandemic were 
analyzed using meteorological station data from major cities 
in Shandong Province and statistical data from the National 
Bureau of Statistics. Among them, meteorological station 
data (e.g., average temperature, average humidity, average 
wind speed, etc.) were used as natural factors, and statistical 
data (e.g., industrial value added, cement, thermal power, 
gasoline, road passenger volume, natural gas, and gas, etc.) 
were used as anthropogenic factors.

Methods

Acquisition of pollution data using GEE

The GEE platform is widely used in many large-scale, long 
time series remote sensing applications (Mandal et al. 2018; 
Dlamini and Xulu 2019). In this study, all data acquisition 
and processing steps were performed online on the GEE plat-
form using code. The original Sentinel-5P Level 2 (L2) data 
was time-graded, not latitude/longitude graded. To be able 
to incorporate the data into GEE platform, each Sentinel-5P 
L2 product was converted to Level 3 (L3) using the bin_spa-
tial operation of the harpconvert tool (Gorelick et al. 2017). 
The source data was filtered to remove pixels with Quality 
Assurance (QA) values less than 75% for NO2 and 50% for 
CO (Butz et al. 2012). Finally, NO2, SO2, CO, and AOD data 

Fig. 1   Study area location map

Table 1   Description of datasets involved in the study

Datasets Sensor Study interval Units Spatial resolution Image collection ID

NO2 Sentinel-5P 2018/12/01-2019/03/31
2019/12/01-2020/03/31
2020/12/01-2021/03/16

mol/m2 0.01 arc degrees COPERNICUS/S5P/NRTI/L3_NO2
SO2 Sentinel-5P mol/m2 0.01 arc degrees COPERNICUS/S5P/NRTI/L3_SO2
CO Sentinel-5P mol/m2 0.01 arc degrees COPERNICUS/S5P/NRTI/L3_CO
AOD MODIS 1 km MODIS/006/MCD19A2_GRANULES
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were obtained for different years from December to March and 
monthly averages were calculated using the GEE platform.

Driving force analysis methods for Shandong Province

In this study, Pearson correlation analysis was performed using 
Statistical Product and Service Solutions (SPSS 25) software 
(Shi and Shi 2020). Pearson correlation analysis was used to 
explore the degree of correlation between air quality and driv-
ing factors before and after the COVID-19 pandemic (Baeza 
and Paruelo 2020; Özelkan 2020).

In addition, spatial regression analysis was performed using 
GeoDa software, and ordinary least squares linear regression 
model (OLS), spatial lag model (SLM), and spatial error 
model (SEM) were compared to select the most appropriate 
method for constructing the air quality-meteorological model 
(Lina and Lixun 2019). The following are the mathematical 
expressions of the OLS model, SLM model and SEM model, 
respectively (Liu et al. 2015; Mollalo et al. 2020).

where Y  is the dependent variable; X is the independent 
variable; � is the spatial adjacency matrix; �0 is the con-
stant intercept; � is the independent variable coefficient; � 

(1)Y = �0 + �X + �

(2)Y = �0 + ��Y + �X + �

(3)Y = �0 + �X + �,� = ��� + �

is the normally distributed error vector; � and � are the spa-
tial autoregressive and spatial autocorrelation coefficients, 
respectively. First-order Queen contiguity was used to estab-
lish the spatial relationship in Shandong province.

As shown in Fig. 2, the optimal regression model selec-
tion is judged by the Moran’s I, Lagrange multiplier-lag 
(LM-lag), Lagrange multiplier-error (LM-error), goodness 
of fit (R2), natural log-likelihood function value (LogL), 
Akaike info criterion (AIC), etc. The model applicability 
is greater when the LM test passes with higher R2 and 
LogL values and lower AIC value (Lina and Lixun 2019).

The specific judgment steps are as follows: first run the 
OLS model, and if the Moran’s I test is not significant, the 
OLS model is used as the optimal model. If the Moran’s 
I test is significant, the LM-lag test and LM-error test are 
compared. If both LM-lag test and LM-error test are insig-
nificant, the OLS model is used as the optimal model. If 
only the LM-lag test is significant, then the SLM model 
is used as the optimal model. If only the LM-error test is 
significant, the SEM model is used as the optimal model. 
If both LM-lag test and LM-error test are significant, the 
indicators of robust LM-lag test and robust LM-error test 
are compared. If the robust LM-lag test is significant, the 
SLM model is used as the optimal model. If the robust 
LM-error test is significant, the SEM model is used as the 
optimal model.

Fig. 2   Flow chart of optimal 
model selection
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Results and analysis

Spatial and temporal changes analysis of air quality 
in Shandong Province

Spatial and temporal analysis of pollutant concentrations

According to the relevant literature (Xu et al. 2018), it is 
clear that the pollutant concentrations have a clear cyclical 
variation. Figures 3, 4 and 5 show the spatial and temporal 

distribution of CO concentration, NO2 concentration and 
SO2 concentration in Shandong Province, respectively, 
where SO2 data have missing data in December, so the 
average total amount of SO2 may be inaccurate. Figure 6 
shows the average total change in pollutants between 
Period 1 and Period 2 and between Period 2 and Period 3.

From the monthly perspective, it can be seen that 
the concentration of these pollutants was higher from 
December to the following February. During the study 
period, the highest CO concentrations were observed in 

Fig. 3   Spatial distribution of CO concentration
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January 2019 and the highest NO2 concentrations were 
observed in December 2020, while no significant changes 
were observed in SO2 concentrations. There was a more 
significant increase in pollutant concentrations in March 
2021 compared to the same period in 2019-2020. From 
the annual perspective, CO and NO2 were significantly 
lower in Period 2 compared to Period 1, with an average 
total amount of CO decreased by 4082.36 mol/m2 and 
an average total change rate of 4.80%, an average total 
amount of NO2 decreased by 167.25 mol/m2 and an aver-
age total change rate of 38.11%. There was a significant 

increase between Period 2 and Period 3, with the average 
total amount of CO and NO2 increased by 730.46 mol/
m2 and 167.93 mol/m2, respectively, and the average total 
change rate was 0.90% and 61.84%. As shown in Fig. 5, 
SO2 exhibited little variation over the study interval, 
which is somewhat related to the missing data. Compar-
ing Period 1 and Period 2, the average total amount of 
SO2 increased by 72.08 mol/m2 up about 10.44%, and 
decreased by 2.41 mol/m2 in Period 2 and Period 3. The 
central region of Shandong Province, namely Jinan City, 
Binzhou City and Zibo City, had high concentrations of 

Fig. 4   Spatial distribution of NO2 concentration
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pollutants in the year-round. Pollutant concentrations in 
the eastern coastal areas of Shandong Province such as 
Weihai City, Yantai City, and Qingdao City were at low 
levels year-round.

Spatial and temporal analysis of AOD

AOD data can also effectively reflect the ground pollution 
(Lee et al. 2011; Ranjan et al. 2020). As shown in Fig. 7, 
in Period 1-Period 2, the average total change in AOD 
had a significant increase of about 1.69 × 107, with an 

average total change rate of 2.54%. In Period 2-Period 3, 
the average total amount of AOD decreased by 4.49 × 107, 
with an average total change rate of 6.58%. As shown in 
Fig. 8, AOD in December 2019-January 2020 showed a 
more pronounced increase compared to December 2018 
to January 2019, mainly concentrated in the western part 
of Shandong Province, namely Heze City, Liaocheng 
City, and Dezhou City. AOD in February-March 2020 
presented a decreasing trend compared to the same period 
in 2019, and the most obvious areas were the southern 
regions of Shandong Province, namely Zaozhuang City, 

Fig. 5   Spatial distribution of SO2 concentration
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Linyi City, and Jining City. However, AOD for December 
2020 to February 2021 displayed another marked decline 
compared to December 2019 to February 2020. AOD 
returned to previous levels and increased significantly in 
March 2021.

Analysis of the driving factors in air quality changes 
before and after COVID‑19

Pollutant concentration changes are influenced by a combi-
nation of factors (e.g., natural factors, anthropogenic fac-
tors) (Pei et al. 2021; Sahoo 2021; Zhou et al. 2021). In 
order to study the driving factors of air quality changes in 
Shandong Province before and after the COVID-19 pan-
demic, meteorological data from 16 prefecture-level cities 
in Shandong Province were considered as natural factors 
data and relevant data released by the National Bureau of 
Statistics were taken as anthropogenic factors.

Correlation analysis and regression analysis 
of meteorological factors and air pollutants

The main meteorological data used to explore the correlation 
between meteorological data and air quality were average 
temperature (AT), average humidity (AH), average wind 
speed (AWS), average precipitation (AP), average baromet-
ric pressure (ABP), average total cloud cover (ATCC), and 
average visibility (AV).

Table  2 shows the Pearson correlation coefficients 
between air pollutants and natural factors (i.e., meteorologi-
cal data). The air pollutants were more significantly corre-
lated with each other. CO had a more significant correlation 
with AT, AWS, ATCC, and AV. NO2 was correlated with 
AT, AWS, and AV. SO2 showed a correlation with AT and 
AV. There was a significant correlation between AOD and 
AH, AWS, ATCC and AV. Therefore, these meteorological 
factors are affecting the air quality changes to some extent.

Fig. 6   Spatial change of pollutants in Period 1-Period 2 and Period 2-Period 3

Fig. 7   Spatial change of AOD in Period 1-Period 2 and Period 2-Period 3
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As shown in Table 3, the Moran’s I value for both the CO-
meteorological model and the NO2-meteorological model 
were less than 0.05, the LM-lag values were less than 0.05, 
and the LM-error values were greater than 0.05, so the opti-
mal CO-meteorological model and the NO2-meteorological 
model were SLM models. The Moran’s I value for both 
the SO2-meteorological model and the AOD-meteorolog-
ical model were greater than 0.05, and the LM-lag and 
LM-error values were greater than 0.05, thus the optimal 
SO2-meteorological model and the AOD-meteorological 
model were OLS models. The R2 values showed that the 

regression models of each pollutant and meteorological fac-
tors were well fitted and could provide a general reference 
for pollutant concentrations.

Analysis of anthropogenic factors in air quality change 
before and after COVID‑19

The anthropogenic factors affecting air quality can be 
classified as industrial factors, mobile factors and domes-
tic factors. The industrial factors were industrial value 
added, cement, thermal power, crude oil processing, coke, 

Fig. 8   Spatial distribution of AOD
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non-ferrous metals, flat glass and crude steel. The mobile 
factors were gasoline, diesel, road passenger volume and 
road freight volume. The domestic factors were raw coal, 
liquefied natural gas, natural gas and gas.

Industrial activity in Shandong Province declined significantly 
during the outbreak and lockdown period due to the combined 
effects of the Chinese New Year holiday and the pandemic con-
trol. As shown in Fig. 9, the value added of industry in Shandong 
Province dropped significantly by 34.34% year-on-year from 
Period 2. Shandong Province’s coke, cement, thermal power, 
non-ferrous metals, crude steel and other industry output year-on-
year declined by 10.866%, 2.461%, 3.713%, 7.801% and 5.912%. 
Crude oil processing and flat glass industry output rose year-on-
year, respectively, 1.660% and 4.902%. The production process 
of coking, steel and glass companies cannot be interrupted, so the 

actual pollution emissions from these industries do not change 
much (Zhu et al. 2021). As a result, pollution from different 
industrial sectors has different impacts on air quality.

Mobile source emissions also showed a significant 
decline. Figure 9 shows that the national road passenger 
volume decreased by 59.370% year-on-year from Period 2. 
The national road freight volume increased by 1.810% year-
on-year. Shandong Province is in the vicinity of the capital 
economic circle and has a large volume of cargo transporta-
tion. The output of gasoline and diesel products in Shan-
dong Province dropped 24.954% and 12.872% year-on-year, 
respectively. According to changes in NO2 concentrations, 
there was a significant decrease in emissions from road motor 
vehicles and a significant reduction in other mobile sources.

Emissions from domestic sources increased some-
what. Liquefied natural gas and gas in Shandong Province 
increased by 71.875% and 7.351% respectively compared 
to the same period. Raw coal and natural gas in Shandong 
Province decreased by 2.258% and 12.500%, respectively. 
The increase in the amount of gas used by residents in Shan-
dong Province made an important contribution to air pollu-
tion. Moreover, the heating season in the cities extended by 
about 2 weeks, with a corresponding increase in pollutant 
emissions caused by residential heating, which will have a 
certain negative impact on the air quality (Zhu et al. 2021).

Discussion

Analysis of the causes in air quality changes 
before and after COVID‑19

Based on the above results, it can be noted that CO and NO2 
decreased significantly during the outbreak and lockdown 
period compared to the same period, and SO2 did not change 
significantly. It is worth noting that the sources of CO are mainly 

Table 2   Correlation analysis of air quality and meteorological factors

* p<0.05, ** p<0.01

CO NO2 SO2 AOD AT AH AWS AP ABP ATCC​ AV

CO 1
NO2 0.600** 1
SO2 0.136 0.363** 1
AOD 0.408** 0.084 -0.228** 1
AT -0.467** -0.572** -0.456** 0.042 1
AH 0.141 -0.077 0.049 0.397** -0.224** 1
AWS -0.407** -0.254** -0.127 -0.191* -0.071 -0.160* 1
AP -0.063 -0.115 0.111 0.031 -0.245** 0.419** 0.074 1
ABP 0.116 0.012 0.080 -0.012 0.279** 0.190* -0.691** -0.206** 1
ATCC​ 0.248** -0.004 -0.074 0.376** -0.241** 0.343** -0.060 0.210** -0.044 1
AV -0.471** -0.280** -0.152* -0.495** 0.168* -0.599** 0.584** -0.055 -0.378** -0.139 1

Table 3   Regression analysis of air quality and meteorological factors

Variable Coefficient

Pollutants SLM model OLS model

CO NO2 SO2 AOD

AT -1.254 × 10-4 -3.100 × 10-7 -2.824 × 10-5 26.615
AH 6.825 × 10-5 3.080 × 10-6 3.759 × 10-6 -2.751
AWS -7.259 × 10-4 -2.630 × 10-5 -4.964 × 10-5 26.583
AP -1.814 × 10-4 -3.166 × 10-6 -1.734 × 10-5 -0.438
ABP -1.315 × 10-5 -8.333 × 10-7 -4.933 × 10-7 -1.277
ATCC​ -4.473 × 10-6 -6.509 × 10-7 -1.604 × 10-6 3.412
AV 6.896 × 10-5 5.553 × 10-6 2.555 × 10-5 -23.557
Constant inter-

cept
0.033 7.953 × 10-4 0.001 1871.12

� 0.633 0.710 - -
R2 0.899 0.906 0.699 0.905
Moran’s I 0.004 0.001 1 0.606
LM-lag 0.037 0.029 0.653 0.265
LM-error 0.316 0.129 0.425 0.498
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incomplete combustion of fossil fuels and motor vehicle exhaust 
emissions (Kang et al. 2019). NO2 comes mainly from vehicle 
exhaust, fuel combustion in industry and industrial production 
processes of nitric acid, nitrogen fertilizer and explosives, as 
well as lightning (Yu et al. 2020). SO2 mostly originates from 
the smelting of sulfur-containing ores, the burning of fossil fuels, 
or industrial emissions from sulfuric acid and phosphate ferti-
lizer production (Torbatian et al. 2020). Human travel activi-
ties and production operations have been greatly reduced due to 
pandemics and home quarantine policies, thereby resulting in a 
reduction in CO and NO2 (Yang et al. 2018; Copat et al. 2020).

AOD had a significant increase in January 2020. Combin-
ing the relevant literature, the reasons for the increase in AOD 
may be as follows: the reduction of pollutants like NOx leads to 
an increase in ozone formation, which enhances the oxidation 
capacity of the atmosphere and promotes condensation around 
existing or new particles, leading to the production of particu-
late compounds (e.g., sulfates, nitrates, and organic compounds) 
(Huang et al. 2020; Nichol et al. 2020). Figure 10 shows the 
comparison of meteorological data (i.e., AT, AH, ABP, and 
AWS) for some typical cities in December-March. Meteorologi-
cal data during the lockdown period varied within acceptable 
ranges from contemporaneous data. However, the typical city 
had greater AH from December 2019 to February 2020 than 
during the same period. Higher AH also promotes the formation 
of particulate compounds. These particulate compounds are less 
absorbed in nature and prone to form PM2.5, which in turn also 

leads to an increase in AOD (Zhao et al. 2019; Wang et al. 2020; 
Zhang et al. 2020). On the other hand, urban heating in winter is 
also responsible for the increase in AOD.

Implications and recommendations of air quality 
change research

This study is important for understanding the current status of air 
quality qualitatively and quantitatively, and exploring the extent 
of natural and anthropogenic factors influencing air quality 
changes. It is significant for informing decisions on relevant poli-
cies to achieve the ultimate goal of improving air quality. From 
the perspective of anthropogenic factors, controlling anthropo-
genic emissions (especially industrial and mobile sources) is 
a fundamental measure to improve air quality. Natural factors 
(i.e., meteorological factors) have a strong correlation with air 
quality, and air quality-meteorological models have a good fit. 
Therefore, relevant departments can combine the air quality spa-
tial and temporal distribution maps to selectively regulate and 
block the local areas with high pollutant concentrations (e.g., 
Zibo City, Binzhou City, and Jinan City) in making relevant gov-
ernment decisions. On this basis, it is necessary to understand 
meteorological information of cities with air pollution sources 
and design a reasonable industrial production layout and effec-
tive environmental planning. Then, it is desirable to change the 
energy structure and promote the use of clean fuels and clean 
production processes, thereby reducing pollutant emissions.

Fig. 9   The change in air qual-
ity, industrial sources, mobile 
sources and domestic sources 
from Period 2 compared to the 
same period in Period 1
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This study has certain implications for remote sensing 
image data to conduct atmospheric monitoring studies. It 
demonstrates to some extent the usefulness of using the GEE 
platform to obtain Sentinel-5P data for spatial and temporal 
analysis in air pollution at different regional scales (Sch-
neider et al. 2021). First, Sentinel-5P data is a free, high 
spatial resolution product that provides offline and near real-
time air pollution data. Second, compared to ground-based 
air quality stations that provide only punctual information, 
Sentinel-5P data is a continuous data surface with daily 
global coverage. It grids a large amount of spatial data and 
is able to present the spatial distribution of different pollut-
ants at a given time. However, there are some problems with 
Sentinel-5P data, such as cloud coverage and limitations in 
the number of observations, which hinder exhaustive air pol-
lution monitoring (Vîrghileanu et al. 2020).

Conclusions

In this paper, pollutant concentrations and AOD data in 
Shandong Province were obtained from December 2018-
March 2019, December 2019-March 2020, and December 
2020-March 2021 using the GEE cloud platform. The spatial 
and temporal distributions of air quality changes in Shan-
dong Province before and after the COVID-19 pandemic 
were studied, and the reasons for the changes were analyzed. 
Specific conclusions are presented below.

(1)	 Shandong Province had the highest CO concentration 
in January 2019 and the highest NO2 concentration 
in December 2020, while SO2 concentration did not 
change significantly. A significant increase in AOD 
existed in Period 2. Pollutant concentrations increased 

Fig. 10   Comparison of meteorological factors
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more significantly in March 2021 compared to the same 
period in 2019-2020.

(2)	 Compared with Period 1, the average total amount 
of CO and NO2 decreased by 4082.36 mol/m2 and 
167.25 mol/m2 in Period 2, with an average total change 
rate of 4.80% and 38.11%, respectively. Between 
Period 2-Period 3, the average total amount of CO 
and NO2 increased by 730.46 mol/m2 and 167.93 mol/
m2, respectively, with the average total change rate of 
0.90% and 61.84%. The average total amount of SO2 
and AOD increased by 72.08 mol/m2 and 1.69 × 107 
up about 10.44% and 2.54% between Period 1-Period 
2, respectively, while decreased by 2.41 mol/m2 and 
4.49 × 107 in Period 2-Period 3.

(3)	 Pollutant concentrations show significant correlation with 
meteorological data. CO was significantly related to AT, 
AWS, ATCC and AV, NO2 was relevant to AT, AWS and 
AV. SO2 was correlated with AT and AV, and AOD was 
significantly associated with AH, AWS, ATCC and AV.

(4)	 The significant decrease in CO and NO2 from Decem-
ber 2019-March 2020 compared to the same period was 
mainly due to the reduction in human travel activities 
and production operations. AOD showed an increasing 
trend during January 2020, which was associated with 
urban heating and decreases in pollutants such as NOx.

The GEE platform can help more countries and regions 
to understand the spatial and temporal changes of air quality 
and offer the theoretical basis for the management and pro-
tection of atmospheric environmental quality. In the future, 
air quality changes will be studied in a larger study area.

Acknowledgements  This paper is jointly funded by the National Natu-
ral Science Foundation of China (41801308, and 41930107); Open 
Fund of State Laboratory of Information Engineering in Surveying, 
Mapping and Remote Sensing, Wuhan University (20S01); Doctoral 
Research Fund of Shandong Jianzhu University (XNBS1804), Key 
Laboratory of Land Satellite Remote Sensing Application Center, 
Ministry of Natural Resources of the People’s Republic of China and 
Science and Technology Support Program for Youth Innovation in 
Colleges and Universities of Shandong Province (2019KJG005). The 
authors would like to thank the editors and the anonymous reviewers 
for their constructive comments and suggestions, which greatly helped 
to improve the quality of the manuscript.

References

Asokan A, Anitha J (2019) Change detection techniques for remote 
sensing applications: a survey. Earth Sci Inform 12:1–18. https://​
doi.​org/​10.​1007/​s12145-​019-​00380-5

Azuma K, Kagi N, Kim H, Hayashi M (2020) Impact of climate and 
ambient air pollution on the epidemic growth during COVID-19 
outbreak in Japan. Environ Res 190:110042. https://​doi.​org/​10.​
1016/j.​envres.​2020.​110042

Baeza S, Paruelo JM (2020) Land use/land cover change (2000-2014) 
in the rio de la plata grasslands: An analysis based on MODIS 
NDVI time series. Remote Sens 12:1–22. https://​doi.​org/​10.​3390/​
rs120​30381

Butz A, Galli A, Hasekamp O et al (2012) TROPOMI aboard Senti-
nel-5 Precursor: Prospective performance of CH 4 retrievals for 
aerosol and cirrus loaded atmospheres. Remote Sens Environ 
120:267–276. https://​doi.​org/​10.​1016/j.​rse.​2011.​05.​030

Chen A, Yang X, Xu B et al (2021) Monitoring the spatiotemporal 
dynamics of aeolian desertification using google earth engine. 
Remote Sens 13. https://​doi.​org/​10.​3390/​rs130​91730

Copat C, Cristaldi A, Fiore M et al (2020) The role of air pollution 
(PM and NO2) in COVID-19 spread and lethality: A system-
atic review. Environ Res 191:110129. https://​doi.​org/​10.​1016/j.​
envres.​2020.​110129

Dlamini LZD, Xulu S (2019) Monitoring mining disturbance and 
restoration over RBM site in South Africa using landtrendr 
algorithm and landsat data. Sustainability 11. https://​doi.​org/​
10.​3390/​SU112​46916

Dutheil F, Baker JS, Navel V (2020) COVID-19 as a factor influenc-
ing air pollution? Environ Pollut 263:2019–2021. https://​doi.​
org/​10.​1016/j.​envpol.​2020.​114466

Ghasempour F, Sekertekin A, Kutoglu SH (2021) Google Earth 
Engine based spatio-temporal analysis of air pollutants before 
and during the first wave COVID-19 outbreak over Turkey via 
remote sensing. J Clean Prod 128599. https://​doi.​org/​10.​1016/J.​
JCLEP​RO.​2021.​128599

Gorelick N, Hancher M, Dixon M et al (2017) Google Earth Engine: 
Planetary-scale geospatial analysis for everyone. Remote Sens 
Environ 202:18–27. https://​doi.​org/​10.​1016/j.​rse.​2017.​06.​031

Hu Y, Dong Y, Batunacun (2018) An automatic approach for land-
change detection and land updates based on integrated NDVI 
timing analysis and the CVAPS method with GEE support. 
ISPRS J Photogramm Remote Sens 146:347–359. https://​doi.​
org/​10.​1016/j.​isprs​jprs.​2018.​10.​008

Huang X, Ding A, Gao J et al (2020) Enhanced secondary pollu-
tion offset reduction of primary emissions during COVID-19 
lockdown in China. Natl Sci Rev. https://​doi.​org/​10.​1093/​nsr/​
nwaa1​37

Kang H, Zhu B, van der A RJ et al (2019) Natural and anthropogenic 
contributions to long-term variations of SO2, NO2, CO, and 
AOD over East China. Atmos Res 215:284–293. https://​doi.​org/​
10.​1016/j.​atmos​res.​2018.​09.​012

Lee HJ, Liu Y, Coull BA et al (2011) A novel calibration approach of 
MODIS AOD data to predict PM2.5 concentrations. Atmos Chem 
Phys 11:7991–8002. https://​doi.​org/​10.​5194/​acp-​11-​7991-​2011

Lina Z, Lixun L (2019) Spatial distribution and format difference of 
large-scale retail business facilities: a case study of Guangzhou 
based on POI data. Trop Grography 39:88–100

Liu Y, Long H, Li T, Tu S (2015) Land use transitions and their effects 
on water environment in Huang-Huai-Hai Plain, China. Land use 
policy 47:293–301. https://​doi.​org/​10.​1016/j.​landu​sepol.​2015.​04.​
023

Mandal D, Kumar V, Bhattacharya A et al (2018) Sen4Rice: A process-
ing chain for differentiating early and late transplanted rice using 
time-series sentinel-1 SAR data with google earth engine. IEEE 
Geosci Remote Sens Lett 15:1947–1951. https://​doi.​org/​10.​1109/​
LGRS.​2018.​28658​16

Meng Y, Wong MS, Xing H et al (2021) Yearly and daily relation-
ship assessment between air pollution and early-stage covid-19 
incidence: evidence from 231 countries and regions. ISPRS Int J 
Geo-Information 10:1–16. https://​doi.​org/​10.​3390/​ijgi1​00604​01

Mollalo A, Vahedi B, Rivera KM (2020) GIS-based spatial modeling 
of COVID-19 incidence rate in the continental United States. Sci 
Total Environ 728:138884. https://​doi.​org/​10.​1016/j.​scito​tenv.​
2020.​138884

875Earth Science Informatics (2022) 15:863–876

https://doi.org/10.1007/s12145-019-00380-5
https://doi.org/10.1007/s12145-019-00380-5
https://doi.org/10.1016/j.envres.2020.110042
https://doi.org/10.1016/j.envres.2020.110042
https://doi.org/10.3390/rs12030381
https://doi.org/10.3390/rs12030381
https://doi.org/10.1016/j.rse.2011.05.030
https://doi.org/10.3390/rs13091730
https://doi.org/10.1016/j.envres.2020.110129
https://doi.org/10.1016/j.envres.2020.110129
https://doi.org/10.3390/SU11246916
https://doi.org/10.3390/SU11246916
https://doi.org/10.1016/j.envpol.2020.114466
https://doi.org/10.1016/j.envpol.2020.114466
https://doi.org/10.1016/J.JCLEPRO.2021.128599
https://doi.org/10.1016/J.JCLEPRO.2021.128599
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.isprsjprs.2018.10.008
https://doi.org/10.1016/j.isprsjprs.2018.10.008
https://doi.org/10.1093/nsr/nwaa137
https://doi.org/10.1093/nsr/nwaa137
https://doi.org/10.1016/j.atmosres.2018.09.012
https://doi.org/10.1016/j.atmosres.2018.09.012
https://doi.org/10.5194/acp-11-7991-2011
https://doi.org/10.1016/j.landusepol.2015.04.023
https://doi.org/10.1016/j.landusepol.2015.04.023
https://doi.org/10.1109/LGRS.2018.2865816
https://doi.org/10.1109/LGRS.2018.2865816
https://doi.org/10.3390/ijgi10060401
https://doi.org/10.1016/j.scitotenv.2020.138884
https://doi.org/10.1016/j.scitotenv.2020.138884


1 3

Nichol JE, Bilal M, Ali AM, Qiu Z (2020) Air pollution scenario over 
China during COVID-19. Remote Sens 12. https://​doi.​org/​10.​
3390/​rs121​32100

Özelkan E (2020) Water body detection analysis using NDWI indices 
derived from landsat-8 OLI. Polish J Environ Stud 29:1759–1769. 
https://​doi.​org/​10.​15244/​pjoes/​110447

Pei L, Wang X, Guo B et al (2021) Do air pollutants as well as meteoro-
logical factors impact Corona Virus Disease 2019 (COVID-19)? 
Evidence from China based on the geographical perspective. Envi-
ron Sci Pollut Res. https://​doi.​org/​10.​1007/​s11356-​021-​12934-6

Prakash S, Goswami M, Khan YDI, Nautiyal S (2021) Environmental 
impact of COVID-19 led lockdown: A satellite data-based assess-
ment of air quality in Indian megacities. Urban Clim 38:100900. 
https://​doi.​org/​10.​1016/j.​uclim.​2021.​100900

Ranjan AK, Patra AK, Gorai AK (2020) Effect of lockdown due to 
SARS COVID-19 on aerosol optical depth (AOD) over urban and 
mining regions in India. Sci Total Environ 745:141024. https://​
doi.​org/​10.​1016/j.​scito​tenv.​2020.​141024

Sahoo MM (2021) Significance between air pollutants, meteoro-
logical factors, and COVID-19 infections: probable evidences 
in India. Environ Sci Pollut Res. https://​doi.​org/​10.​1007/​
s11356-​021-​12709-z

Schneider P, Hamer PD, Kylling A et al (2021) Spatiotemporal patterns 
in data availability of the sentinel-5p no2 product over urban areas 
in Norway. Remote Sens 13. https://​doi.​org/​10.​3390/​rs131​12095

Shi Y, Shi Y (2020) Spatio-temporal variation characteristics and driv-
ing forces of farmland shrinkage in four metropolises in East Asia. 
Sustainability 12:1–26. https://​doi.​org/​10.​3390/​su120​30754

Song H, Zhuo H, Fu S, Ren L (2021) Air pollution characteristics, 
health risks, and source analysis in Shanxi Province, China. 
Environ Geochem Health 43:391–405. https://​doi.​org/​10.​1007/​
s10653-​020-​00723-y

Tamiminia H, Salehi B, Mahdianpari M et al (2020) Google Earth 
Engine for geo-big data applications: A meta-analysis and sys-
tematic review. ISPRS J Photogramm Remote Sens 164:152–170. 
https://​doi.​org/​10.​1016/j.​isprs​jprs.​2020.​04.​001

Torbatian S, Hoshyaripour A, Shahbazi H, Hosseini V (2020) Air pol-
lution trends in Tehran and their anthropogenic drivers. Atmos 
Pollut Res 11:429–442. https://​doi.​org/​10.​1016/j.​apr.​2019.​11.​015

Vîrghileanu M, Săvulescu I, Mihai BA et al (2020) Nitrogen dioxide 
(No2) pollution monitoring with sentinel-5p satellite imagery over 
europe during the coronavirus pandemic outbreak. Remote Sens 
12:1–29. https://​doi.​org/​10.​3390/​rs122​13575

Wang L, Yu Y, Huang K et al (2020) The inharmonious mechanism 
of CO2, NOx, SO2, and PM2.5 electric vehicle emission reduc-
tions in Northern China. J Environ Manage 274. https://​doi.​org/​
10.​1016/j.​jenvm​an.​2020.​111236

Xu W, Liu L, Cheng M et al (2018) Spatial-temporal patterns of inor-
ganic nitrogen air concentrations and deposition in eastern China. 
Atmos Chem Phys 18:10931–10954. https://​doi.​org/​10.​5194/​
acp-​18-​10931-​2018

Yang G, Huang J, Li X (2018) Mining sequential patterns of PM2.5 
pollution in three zones in China. J Clean Prod 170:388–398. 
https://​doi.​org/​10.​1016/j.​jclep​ro.​2017.​09.​162

Yao Y, Pan J, Wang W et al (2020) Association of particulate matter 
pollution and case fatality rate of COVID-19 in 49 Chinese cities. 
Sci Total Environ 741:140396. https://​doi.​org/​10.​1016/j.​scito​tenv.​
2020.​140396

Yu H, Feng J, Su X et al (2020) A seriously air pollution area affected 
by anthropogenic in the central China: temporal–spatial distribu-
tion and potential sources. Environ Geochem Health 42:3199–
3211. https://​doi.​org/​10.​1007/​s10653-​020-​00558-7

Zhang B, Yin L, Zhang S, Feng C (2016) Assessment on characteristics 
of LUCC process based on complex network in Modern Yellow 
River Delta, Shandong Province of China. Earth Sci Informatics 
9:83–93. https://​doi.​org/​10.​1007/​s12145-​015-​0234-2

Zhang Y, Shen Z, Zhang B et al (2020) Emission reduction effect on 
PM2.5, SO2 and NOx by using red mud as additive in clean coal 
briquetting. Atmos Environ 223:117203. https://​doi.​org/​10.​1016/j.​
atmos​env.​2019.​117203

Zhao S, Wang Q, Li Y et al (2017) An overview of satellite remote 
sensing technology used in China’s environmental protec-
tion. Earth Sci Inform 10:137–148. https://​doi.​org/​10.​1007/​
s12145-​017-​0286-6

Zhao X, Zhou W, Han L, Locke D (2019) Spatiotemporal variation in 
PM2.5 concentrations and their relationship with socioeconomic 
factors in China’s major cities. Environ Int 133:105145. https://​
doi.​org/​10.​1016/j.​envint.​2019.​105145

Zheng Z, Yang Z, Wu Z, Marinello F (2019) Spatial variation of NO2 
and its impact factors in China: An application of sentinel-5P 
products. Remote Sens 11:1–24. https://​doi.​org/​10.​3390/​rs111​
61939

Zhou X, Tong W, Li L (2020) Deep learning spatiotemporal air pol-
lution data in China using data fusion. Earth Sci Inform 13:859–
868. https://​doi.​org/​10.​1007/​s12145-​020-​00470-9

Zhou J, Qin L, Meng X, Liu N (2021) The interactive effects of ambi-
ent air pollutants-meteorological factors on confirmed cases of 
COVID-19 in 120 Chinese cities. Environ Sci Pollut Res. https://​
doi.​org/​10.​1007/​s11356-​021-​12648-9

Zhu Y, Xie J, Huang F, Cao L (2020) Association between short-term 
exposure to air pollution and COVID-19 infection: Evidence from 
China. Sci Total Environ 727:138704. https://​doi.​org/​10.​1016/j.​
scito​tenv.​2020.​138704

Zhu Y, Wang W, Gao Y et al (2021) Assessment of emission reduction 
effect in Beijing, Tianjin and surrounding 26 cities from Janu-
ary to March in 2020 during the epidemic of COVID-19. China 
Environ Sci 41:505–516. https://​doi.​org/​10.​19674/j.​cnki.​issn1​
000-​6923.​2021.​0057

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

876 Earth Science Informatics (2022) 15:863–876

https://doi.org/10.3390/rs12132100
https://doi.org/10.3390/rs12132100
https://doi.org/10.15244/pjoes/110447
https://doi.org/10.1007/s11356-021-12934-6
https://doi.org/10.1016/j.uclim.2021.100900
https://doi.org/10.1016/j.scitotenv.2020.141024
https://doi.org/10.1016/j.scitotenv.2020.141024
https://doi.org/10.1007/s11356-021-12709-z
https://doi.org/10.1007/s11356-021-12709-z
https://doi.org/10.3390/rs13112095
https://doi.org/10.3390/su12030754
https://doi.org/10.1007/s10653-020-00723-y
https://doi.org/10.1007/s10653-020-00723-y
https://doi.org/10.1016/j.isprsjprs.2020.04.001
https://doi.org/10.1016/j.apr.2019.11.015
https://doi.org/10.3390/rs12213575
https://doi.org/10.1016/j.jenvman.2020.111236
https://doi.org/10.1016/j.jenvman.2020.111236
https://doi.org/10.5194/acp-18-10931-2018
https://doi.org/10.5194/acp-18-10931-2018
https://doi.org/10.1016/j.jclepro.2017.09.162
https://doi.org/10.1016/j.scitotenv.2020.140396
https://doi.org/10.1016/j.scitotenv.2020.140396
https://doi.org/10.1007/s10653-020-00558-7
https://doi.org/10.1007/s12145-015-0234-2
https://doi.org/10.1016/j.atmosenv.2019.117203
https://doi.org/10.1016/j.atmosenv.2019.117203
https://doi.org/10.1007/s12145-017-0286-6
https://doi.org/10.1007/s12145-017-0286-6
https://doi.org/10.1016/j.envint.2019.105145
https://doi.org/10.1016/j.envint.2019.105145
https://doi.org/10.3390/rs11161939
https://doi.org/10.3390/rs11161939
https://doi.org/10.1007/s12145-020-00470-9
https://doi.org/10.1007/s11356-021-12648-9
https://doi.org/10.1007/s11356-021-12648-9
https://doi.org/10.1016/j.scitotenv.2020.138704
https://doi.org/10.1016/j.scitotenv.2020.138704
https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0057
https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0057

	Spatial and temporal changes analysis of air quality before and after the COVID-19 in Shandong Province, China
	Abstract
	Introduction
	Data and methods
	Study area
	Datasets
	Methods
	Acquisition of pollution data using GEE
	Driving force analysis methods for Shandong Province


	Results and analysis
	Spatial and temporal changes analysis of air quality in Shandong Province
	Spatial and temporal analysis of pollutant concentrations
	Spatial and temporal analysis of AOD

	Analysis of the driving factors in air quality changes before and after COVID-19
	Correlation analysis and regression analysis of meteorological factors and air pollutants
	Analysis of anthropogenic factors in air quality change before and after COVID-19


	Discussion
	Analysis of the causes in air quality changes before and after COVID-19
	Implications and recommendations of air quality change research

	Conclusions
	Acknowledgements 
	References


