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Abstract
Biplot diagrams are traditionally used for rock discrimination using geochemical data from samples. However, this approach 
has limitations when facing a high number of variables. Machine learning has been proposed as an alternative to analyze 
multivariate data for more than 70 years. However, the application of machine learning by geoscientists is still complicated 
since there are no tools that propose a pipeline that can be followed from preparing the data to evaluating the models. Auto-
mated machine learning aims to face this issue by automating the creation and evaluation of machine learning models. The 
contribution of this work is twofold. First, we propose a methodology that follows a pipeline for the application of supervised 
and unsupervised learning to geochemical data. Both methods were applied to a dataset of granitic rock samples from 6 
blocks in the Peninsular Ranges and the Transverse Ranges Provinces in Southern California. For supervised learning, the 
Decision Trees model offered the best values to classify the samples from this region: accuracy: 87%; precision: 89%; recall: 
89%; and F-score: 81%. For unsupervised learning, 2 components were related to pressure effects, and another 2 could be 
related to water effects. As a second contribution, we propose a web application that follows the proposed methodology to 
analyze geochemical data using automated machine learning. It allows data preparation using techniques such as imputation 
and upsampling, the application of supervised and unsupervised learning, and the evaluation of the models. All this without 
the need to program.

Keywords  Automated machine learning · Geochemistry · Machine learning · Methodology · Southern California · Web 
application

Introduction

The application of machine learning in geoscience has a his-
tory of around 70 years (Dramsch 2020). Machine learning 
can be defined as the ability of computers to recognize pat-
terns without being explicitly programmed. Nowadays, dif-
ferent authors have proposed machine learning approaches 
in remote sensing (Lary et al. 2016), rock classification and 
predictions (Saporetti et al. 2018), mineral identification 
(Scott and Steenkamp 2019), and more.

Machine learning can be an alternative to multivariate 
analysis in geosciences. For instance, although discrimina-
tion diagrams have been widely used since 1973 by geosci-
entists to classify rock samples (Pearce and Cann 1973), 
they present limitations such as: 1) leaving out important 
elements of the samples, so the results may be limited; 2) 
the overlap between the data when plotting; 3) they are effec-
tive only for a specific type of rock and even then, they can 
produce misclassifications; 4) discriminating the same sam-
ple with different diagrams can give different results; 5) the 
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samples must meet certain requirements in their composi-
tion, even if the diagram indicated for their type is used; 
and 6) some plots are created with samples from a specific 
region, so their use cannot be generalized (Li et al. 2015; 
Armstrong-Altrin and Verma 2005).

Nevertheless, the applicability of machine learning has 
limitations because it is necessary to have logical reasoning, 
programming experience, knowledge of algebra, statistics 
and calculus, and so on (Janakiram 2018). Furthermore, the 
creation of a highly efficient machine learning model is a 
time-consuming process, as it involves: cleaning and prepar-
ing the data, testing different algorithms, finding the most 
optimal hyperparameters, and evaluating the models with 
the appropriate metrics (Vieira et al. 2019).

As a solution, automated machine learning (autoML) is 
a growing trend to face the complexity of machine learn-
ing to end users. AutoML consists of automating machine 
learning processes to reduce the time to create machine 
learning models. Also, it allows rapid implementation, and 
makes machine learning techniques more accessible without 
advanced programming knowledge (Yao et al. 2018; Hutter 
et al. 2019).

AutoML platforms such as H2O1, DataRobot2, and Cloud 
AutoML3 allow the automatic creation and evaluation of 
machine learning models. However, they are not free and 
some may still require prior programming knowledge.

In order to facilitate the application of machine learning 
to geoscience, our contribution is twofold. First, we pre-
sent a methodology that follows a simple pipeline, allowing 
geoscientists to perform machine learning analysis on geo-
chemical data. The methodology consists of: data prepara-
tion and analysis with supervised and unsupervised learning. 
First, the methodology starts with data preparation using 
techniques such as data imputation and upsampling. Then, 
supervised learning can be used for classifying samples with 
5 classification algorithms: K-Nearest Neighbors, Decision 
Trees, Support Vector Machines, Logistic Regression, and 
Multilayer Perceptron. Unsupervised learning can be used 
for finding patterns with Principal Component Analysis 
(PCA) and clustering.

Our second contribution is a web application that applies 
the proposed methodology allowing geoscientists to analyze 
geochemical data with autoML. This web application does 
not require programming. The methodology and the web 
application were used to analyze a dataset of granitic rocks 
from Southern California using supervised and unsupervised 
learning.

This paper is organized as follows: “Framework for our 
approach” presents the framework for our approach. Section 
“Related work” presents the related work. Section “Method-
ology” presents the methodology. Section “Web application 
for AutoML” presents the web application for autoML. Sec-
tion “Case study” presents the application of our approach 
to a case study. Finally, “Conclusions and future work” pre-
sents the conclusions and future work.

Framework for our approach

Our approach is based on the following concepts (see Fig. 1):

1.	 Machine learning: Machine learning is a branch of arti-
ficial intelligence that allows computers to apply differ-
ent techniques to learn from past experience (Alpaydin 
2010). Thanks to machine learning, the computer learns 
without being explicitly programmed. Machine learning 
involves different areas such as computer science, engi-
neering, statistics, data mining, and pattern recognition. 
Its two most used techniques are supervised and unsu-
pervised learning (Harrington 2012; Mohammed et al. 

Fig. 1   Underpinnings of our approach

1  https://​www.​h2o.​ai/​solut​ions/
2  https://​www.​datar​obot.​com/
3  https://​cloud.​google.​com/​automl/

1684

https://www.h2o.ai/solutions/
https://www.datarobot.com/
https://cloud.google.com/automl/


Earth Science Informatics (2022) 15:1683–1698

1 3

2016). In supervised learning, the data is labeled. A 
label is a category or class to which the sample belongs 
to and identifies it. Multiple samples can belong to the 
same class (have the same label). The algorithms learn 
from the features of each sample to predict new sam-
ples. The features are the measurable properties of the 
samples. Depending on the feature values (independent 
variables) it will be the class (dependent variable) to 
which it belongs. In unsupervised learning, the data is 
not necessarily labeled. The algorithms group the sam-
ples into clusters to discover patterns in them.

2.	 Automated machine learning: In machine learning, 
experience is necessary to program, train, and choose 
algorithms. AutoML automates these steps. Thanks to 
autoML, machine learning results can be obtained with-
out having advanced technical expertise in the area of 
programming (Goyal 2019).

3.	 Supervised learning: The following algorithms are the 
most commonly used for classification (Osisanwo et al. 
2017):

(a)	 K-Nearest Neighbor: In this algorithm all avail-
able cases are stored. New samples are classified 
based on the most frequent label of its k nearest 
neighbors (the cases with the data most similar to 
it) Harrington (2012).

(b)	 Logistic Regression: This algorithm models the 
probability of an outcome based on the individual 
features (independent variables). The features are 
multiplied by a weight and then added. This sum 
is put into a logit function, and returns a result that 
can be taken as a probability estimate (Harrington 
2012).

(c)	 Decision Trees: This algorithm splits the data 
into subsets (creating a tree) based on the most 
important features that make the set distinct. It has 
decision blocks and terminating blocks. In deci-
sion blocks, there are 2 alternatives, depending 
on whether the condition is true or false. They can 
lead to another decision block or a terminating 
block. In a terminating block some conclusion has 
already been reached.

	   Each block has a measure called entropy. 
Entropy measures the disorder or uncertainty in 
a group of samples. The higher the entropy, the 
messier the data is. The Decision Trees algorithm 
tries to decrease this measure as each block pro-
gresses. When a conclusion is reached (in a termi-
nating block), the entropy is 0 (Harrington 2012).

(d)	 Support Vector Machines: In this algorithm, the 
data is plotted in a n-dimensional space (number 
of features) and a decision boundary (or hyper-
plane) splits the data into classes. The farther the 

plotted data points are from the decision bound-
ary, the more confident the algorithm is about the 
prediction. The data points closest to the hyper-
plane are called support vectors (Harrington 
2012).

(e)	 Multilayer Perceptron: It is the most common 
artificial neural network (ANN). It has 2 layers 
directly connected to the environment (input 
layer and ouput layer). The intermediate layers 
between these 2 are called hidden layers. Each 
layer contains neurons connected to the next layer. 
The signal transmitted by neurons follows a single 
direction (from the input layer to the output layer) 
without forming loops. This structure is called 
feed forward. It also uses an algorithm called 
backpropagation to minimize errors between the 
model outputs and the expected outputs (Marius 
et al. 2009).

4.	 Unsupervised learning: Data reduction and clustering 
are commonly used together in unsupervised learning 
to improve accuracy by reducing the dimensions of the 
data (Ding and He 2004). In this research work, the fol-
lowing 2 unsupervised learning methods are used:

(a)	 PCA: It is a technique used to reduce the dimen-
sionality of the data while losing as little informa-
tion as possible. The dataset is transformed to a 
coordinate system. A first axis is chosen in the 
direction of the most variance in the data. A sec-
ond axis is chosen orthogonal to the first axis and 
with the largest variance that it can. This process 
is repeated until all the data is covered on the gen-
erated principal components (PCs) (Harrington 
2012).

(b)	 K-Means: It is an algorithm to form clusters with 
similar characteristics. The center of each clus-
ter is called centroid, and it is the mean distance 
of the values in each cluster. The K-Means algo-
rithm finds k unique clusters and each sample is 
assigned to the cluster with the closest centroid 
(Harrington 2012).

5.	 Web Application: A web application is any tool that is 
hosted on a web server, which is accessed via a web 
browser. Its functions can be of any type, and can be 
very simple to very complex. Because it is hosted on a 
server, it is not necessary to install the application on a 
computer. Rather, it interacts with the data from the web, 
creating a client-server environment. Any application 
used to enter the information is called client. The server 
can be any hardware or software that uses different pro-
tocols to respond to client requests.
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Related work

Several authors have proposed the application of machine 
learning techniques to solve problems in geochemistry. 
Table 1 summarizes these research works.

Supervised learning

In the following research works, the authors compared 
several supervised learning approaches to create optimal 
classifiers and predict new samples.

In Itano et al. (2020), the authors proposed the use 
of Multinomial Logistic Regression to discriminate the 
source rock of detrital monazites. They used 16 elements 
(La, Cr, Pr, Nd, etc.) from samples of detrital monazites 
from African rivers. All possible combinations were cre-
ated using the 16 elements (65,535 different combinations) 
to obtain the models with the best discrimination. Accu-
racy values by number of elements were compared and the 
results showed that the highest accuracy (97%) is obtained 
with 8 to 10 elements.

In Maxwell et al. (2019), the authors applied 3 clas-
sification algorithms (Random Forest, Gradient Boosted 
Machine, and Deep Neural Network) to predict altered 
and non-altered lithotypes. They used a dataset with geo-
physical log data from 1,230 coal samples taken from 263 
boreholes from the Leichhardt Seam of the Bowen Basin 
in Eastern Australia. The dataset was randomly splitted 
into an 80% training set and 20% testing set. The Random 
Forest model performed the best with average results of: 
99% precision, 99% recall, and 99% F-score for the train-
ing set; for the testing set: 97% precision, 93% recall, and 
95% F-score. Only 11 classifications out of 1,230 samples 
were identified wrongly.

In Hasterok et al. (2019), the authors compared and 
discarded different approaches (Discriminant Analysis, 
Logistic Regression Analysis, Decision Trees, etc.) to 
develop an accurate protolith classifier. A dataset was cre-
ated and normalized extracting 9 major elements (SiO2, 
TiO2, Al2O3, MgO, etc.) from 533,360 samples: 497,401 
igneous samples and 35,959 sedimentary samples. The 
samples were taken from a global dataset of rock major 
elements. The results showed that the best classifier was 
an Ensemble Trees model (RUSboost) with an accuracy of 
95% true igneous and 85% true sedimentary.

In Ueki et al. (2018), the authors compared 3 classi-
fication algorithms (Support Vector Machine, Random 
Forest, and Sparse Multinomial Regression) for the dis-
crimination of volcanic rocks according to 8 tectonic set-
tings. The dataset was obtained from 2 global geochemical 
databases: PetDB and GEOROC. It was composed of 24 
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geochemical data and 5 isotopic ratios (29 features) and 
contained 2,074 samples. The results showed that the 3 
methods presented an accuracy higher than 83% in most of 
the classes. Although the accuracy of Sparse Multinomial 
Regression was the lowest, it was the most useful method 
for generating geochemical signatures that were easy to 
interpret and analyze.

In Petrelli and Perugini (2016), the authors used Sup-
port Vector Machines to classify rock samples according to 
8 different tectonic settings. The dataset was composed of 
major elements, trace elements, and isotopes, from 3,095 
samples. They classified the samples using major elements, 
trace elements and isotopes separately, and the combina-
tion of all (4 experiments total). The results showed that 
the combination of the major elements, trace elements, and 
isotopic data offers the highest accuracy (93%) than sepa-
rately: 79% for major elements, 87% for trace elements, and 
79% for isotopes.

Unsupervised learning

In the following research works, unsupervised learning was 
used to find patterns in geochemical data. They also show 
the relationship between data reduction and clustering.

In Ellefsen and Smith (2016), the authors applied a clus-
tering method based on a hierarchy to interpret geochemi-
cal data from the soil of Colorado, USA. The dataset was 
cleaned based on the concentration percentage of the ele-
ments, and PCA. The final dataset contained 959 samples 
with 22 principal components. The results of the hierarchy 
method were 2 clusters, each one with elements in common. 
Cluster 1 contained elements commonly enriched in shales 
and other fine-grained marine sedimentary rocks. Cluster 2 
contained elements commonly associated with potassium 
feldspars or felsic rocks. The plotted results were consistent 
with the geological units in the area.

In Jiang et al. (2015), the authors applied PCA and Hier-
archical Cluster Analysis (HCA) to study the geochemical 
processes that control the presence of As in groundwater in 
the Hetao basin, Mongolia. 90 groundwater samples with 
22 geochemical parameters (Ca, Cl, Na, NO3, pH, etc.) were 
collected from the area. PCA was applied to the samples and 
they identified 4 major principal components that explain 
78.2% of the variance of the original data. The components 
were the input for the HCA method. The results showed 3 
clusters. In Cluster 1, high As concentrations correspond 
to high P concentrations in flat plain. In Cluster 2, samples 
are affected by lithological and redox factors. In Cluster 3, 
low As concentrations correspond to low P concentrations 
in alluvial fans.

In Alférez et  al. (2015), the authors compared PCA 
and Geographic Information Systems (GIS) techniques 
with the K-Means clustering algorithm. The authors used 

geochemical data from 800 rock samples from an area of 
Southern California. The approaches were compared in 
terms of 4 geochemical factors: SiO2, Sri, Gd/Yb, and K2O/
SiO2. The results showed that the K-Means algorithm gives 
results very similar to the ones obtained with GIS and PCA.

Discussion

According to the research works presented above, supervised 
learning is more used than unsupervised learning in geo-
chemistry. In general, research works on supervised learning 
use the following methodology: cleaning and selecting the 
data, splitting the dataset, training the algorithms, and show-
ing the results. However, several of these research works 
lack specific activities for data preparation, such as imputa-
tion, removing null values, or sample balancing. Also, they 
tend to leave out other metrics besides accuracy to evalu-
ate and compare the models. There is no work proposing a 
machine learning platform or an autoML tool for geochemi-
cal analysis.

Methodology

The methodology proposed for applying machine learning 
to geochemical data is as follows (see Fig. 2).

First, the data is entered and prepared using imputation 
or removing null values. Then, the learning method to be 
applied is chosen. For supervised learning: 1) the class and 
features are selected; 2) the user can choose to balance the 
data or not; 3) the dataset is splitted; 4) the models gener-
ated are automatically trained and evaluated; and 5) the best 
model is used to classify new samples. For unsupervised 
learning: 1) the features are selected; 2) PCA is applied; and 
3) K-Means clustering is applied. These steps are explained 
as follows.

Data preparation

In this step, the dataset is uploaded and prepared. The user 
can choose to apply imputation to fill null values. Otherwise, 
the user can choose to remove samples with null values. 
Specifically, the following activities are carried out during 
data preparation:

1.	 Upload the dataset: The user uploads the dataset to the 
server. Our web application is publicly available.4 First, 
the file must be in the comma separated values (CSV) 
format. The CSV format is widely used to store raw data. 
Each column must be identified with a name. Also, the 

4  http://​216.​249.​119.​85:​8889
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CSV dataset must only contain numeric or string data 
values to avoid problems when reading special charac-
ters. For example, characters such as <, >, %, or ˆ are 
not allowed. For supervised learning, samples must be 
labeled by strings of characters or categorical values 

(integer natural numbers). For unsupervised learning, 
it is not necessary to have labeled samples.

2.	 Apply imputation: If the dataset has samples with miss-
ing values, the user can decide to use imputation. If the 
user decides not to use imputation, then the samples 
with null values are removed. Imputation refers to filling 
empty spaces with different values. The web application 
uses the Extra (extremely randomized) Tree Regressor to 
perform this technique (Geurts et al. 2006). Extra Tree 
Regressor is an Ensemble Decision Tree algorithm. It 
can produce better results than Decision Trees because 
it splits each node randomly instead of looking for the 
most optimal split.

Supervised learning

In this step, the classification algorithms are trained and 
evaluated. The most accurate model is then used to classify 
new samples of data. The activities to apply the supervised 
learning method are described as follows:

1.	 Select the features and the class variables: The features 
and class variables to train the algorithms are selected. 
In the web application, the class labels can be string of 
characters or numeric categories, and the features must 
be numeric values.

2.	 Balance the data: The upsampling method can be applied 
to prevent the most frequent one from dominating the 
algorithm. Upsampling consists of randomly duplicating 
samples of the least frequent class until its quantity is the 
same as the most frequent class. Also, the classes with 
which the classifiers will be trained are selected.

3.	 Split the data: The percentage of data used for training 
is selected and the rest is used for testing. Commonly 
between 70% and 80% of all data is used to train the 
models and the rest is used to evaluate their perfor-
mance.

4.	 Compare the classification models: The data is finally 
entered in the classifiers for training and evaluation. 
The web application uses the HPO (Hyper Parameter 
Optimization) technique to find the best configuration 
for each model. A hyper parameter is a defined variable 
that affects the performance of the algorithm. In HPO, 
several values for each hyper parameter are selected, 
and the model is evaluated with the possible combina-
tions (Feurer and Hutter 2019). Then, the model with the 
best performance is automatically chosen. The following 
metrics are used to evaluate each model:

(a)	 Accuracy: It represents the percentage of sam-
ples classified correctly out of total samples. It is 
defined by the following formula:

Fig. 2   Pipeline to apply machine learning to geochemical data with 
autoML
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(b)	 Precision: It represents the percentage of samples 
correctly identified as positive (true positives) out 
of total samples identified as positive (true posi-
tives + false positives). It is defined by the follow-
ing formula:

(c)	 Recall: It represents the percentage of samples 
correctly identified as positive (true positives) out 
of total positive samples (true positives + false 
negatives). It is defined by the following formula:

(d)	 F-score: It represents the harmonic mean between 
precision and recall. It is defined by the following 
formula:

(e)	 Feature importance: It is an additional metric for 
the Decision Trees classifier. It represents the 
percentage of how much the model performance 
decreases when a feature is not available. A fea-
ture is important if shuffling its values increases 
the model error.

5.	 Predict new samples: In this step, the samples from a 
new dataset are classified. The new dataset must con-
tain only the features selected in Activity 1 (Select the 
features).

Unsupervised learning

In this step, the features of the dataset are reduced using 
the PCA technique. The PCs generated are used as input 
to the K-Means clustering method. The activities to apply 
the unsupervised learning method are described as follows:

1.	 Select the features: The features to be analyzed by PCA 
and clustering are selected. The features must be contin-
uous numerical values, not categorical. Although PCA 
can be applied to discrete values, it is not recommended 
because the variance is less significant in them and the 
results obtained are less relevant.

2.	 PCA: The PCA technique is applied for data reduction. 
It aims to reduce a large number of variables to a (much) 
smaller number losing as little information as possible. 
Each component contains the combination of the origi-

Accuracy =
Correctpredictions

Totalpredictions

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score = 2 *
Precision ∗ Recall

Precision + Recall

nal variables and the largest variance available in the 
data. PCA reduces data noise by grouping multivariate 
into fewer components.

3.	 K-Means clustering: The PCs that were obtained with 
PCA are used as input for the K-Means clustering algo-
rithm. Clustering consists of grouping unlabeled sam-
ples with similarities between them. The clusters help to 
understand the organization of the data in a summarized 
way.

Web application for AutoML

The Flask5 micro framework was used to create the web 
application for autoML. Flask was chosen in this research 
work because it provides tools to define routes, manage 
forms, render templates, etc. while external packages can 
extend it Grinberg (2014). Flask has two main dependencies: 
Werkzeug provides the routing, debugging, and Web Server 
Gateway Interface (WSGI) subsystems; and Jinja2 provides 
support for the view component. A view is the response sent 
by the application for a web request and each view is associ-
ated with a specific route.

In Flask, the operations with the data are performed by 
the model components and when finished, it redirects to a 
view. The view and model components of the web applica-
tion were programmed in Flask using Python. A Python file 
contains the definition of the routes, functions, and views 
of the web application. The interactions between the user 
and the components in the web application are as follows 
(see Fig. 3).

First, the user enters the web application and the route 
of the Index() function (see step 1 in Fig. 3) is requested. 
When the route matches, the function renders an HTML 
template and displays it to the user (see step 2). The HTML 
templates contain forms where the user chooses the opera-
tions to be applied to the dataset uploaded by the user. In the 
HTML template, the user enters the dataset to analyze. Once 
the form is submitted, the path belonging to the Add_CSV() 
function is requested (see step 3). The Add_CSV() function 
reads the CSV file and converts it to a dataframe (see step 
4). At the end of its operations, the function redirects to the 
route of the Imputation() function and the process repeats 
again from step 1 until it reaches an endpoint in the pipeline.

The underlying process followed by the web application 
is shown in Fig. 4. White blocks are the view functions that 
render the HTML templates, which are the yellow blocks. 
Blue blocks are functions that work with the data between 
each view and at the end, they redirect to the next view. Each 

5  https://​flask.​palle​tspro​jects.​com/​en/1.​1.x/

1689

https://flask.palletsprojects.com/en/1.1.x/


Earth Science Informatics (2022) 15:1683–1698

1 3

set of white, yellow and blue blocks corresponds to an activ-
ity of the methodology presented in Section IV.

The data preparation step is composed of 3 view func-
tions, 3 HTML templates, and 3 work functions. The Add_
CSV() function transforms the CSV file to a dataframe; 
the Add_Imput() function applies imputation to the data or 
removes the null values according to the user’s response; 
and the Choose_Learning() function redirects to the next 
step, depending on the analysis that you want to apply to 
the dataset.

The supervised learning step is composed of 6 view func-
tions, 6 HTML templates, and 6 work functions. The Add_
SupFeats() function keeps only the columns selected by the 
user; the Add_Balance() function applies upsampling or not 

according to the user’s response; the Add_Split() function 
splits the dataset to train and evaluate the 5 algorithms, and 
chooses the most accurate one; the Add_Report() function 
redirects to the template to enter the new dataset to be classi-
fied; the Add_Classify() function classifies the new samples; 
and the Add_Results() function downloads a CSV file with 
the samples and their predicted label.

The unsupervised learning step is composed of 3 view 
functions, 3 HTML templates, and 3 work functions. The 
Add_UnsupFeats() function applies PCA to the features 
selected by the user; the Add_PCA() function groups the 
components into clusters; and the Add_Results() function 
allows to download the original samples and their assigned 
cluster in a CSV file.

Fig. 3   Components in Flask of 
the web application

Fig. 4   Underlying process of the autoML web application
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A session is used to store user information through 
requests. This functionality was necessary to avoid data lost 
at the end of the session. The session object creates a cookie 
to store the content of the session in a temporary directory 
on the server. The production WSGI (Web Server Gateway 
Interface) server Waitress6 was used for the deployment of 
the web application. WSGI is a standard used to establish 
how the web server communicates with the web application.

Case study

Our approach was evaluated with a compositional dataset 
from 6 fault-separated blocks in the Peninsular Ranges 
Province and Transverse Ranges Province. The Peninsular 
Ranges are a group of mountain ranges, stretching from 
Southern California to Southern Baja California, Mexico. 
North of the Peninsular Ranges Province is the east-west 
Transverse Ranges Province. Around this area, there are 
several faults that allow the subdivision of the provinces: 
San Andreas, San Jacinto, Elsinore, Pinto Mountain, and 
Banning. There are 6 structurally-bounded units or blocks 
bounded by these faults: San Gabriel, San Bernardino, and 
Little San Bernardino from Transverse Ranges; and San 
Jacinto, Perris, and Santa Ana from Peninsular Ranges 
(Baird and Miesch 1984).

The most important geological feature of the Peninsular 
Ranges Batholith (PRB) is a batholith-wide separation into 
western and eastern parts based on geophysical criteria. The 
older western terrain is more mafic and heterogeneous, and 
plutons were generally emplaced at a shallower depth with a 
shallower magma source than those in the east. The magma-
tism in these provinces records a west to east progression of 
subduction transitioning from an oceanic to a continental arc 
setting characterized by numerous individual plutons with 
compositions ranging from gabbro to tonalite (Hildebrand 
and Whalen 2014).

The dataset is composed of 514 granitic rock samples 
(quartz diorites, granodiorites, and quartz monzonites) col-
lected from the study area. This dataset contains 8 major 
elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, and 
TiO2), 36 trace elements (P2O5, MnO, Sc, V, Cr, Mn, Co, 
Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, La, Ce, Pr, Nd, 
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Th, and 
U), sample id, latitude, longitude, and block (as the class) 
from the collected samples. This dataset is available online.7 
Two datasets were created from the original dataset. The first 
dataset was composed by 90% of the samples per block, and 
the remaining 10% of the samples were used for the second 

dataset. The first dataset (462 samples) was splitted again 
for the training and testing of the models (80% for training 
and 20% for testing). The labels of the second dataset (52 
samples) were removed and the samples were used for pre-
diction. Both datasets were used for supervised learning. The 
original dataset (514 samples) was used for unsupervised 
learning. The classes were not used for PCA and clustering. 
Table 2 shows the number of samples per block for the 3 
datasets.

For both analyses, the samples with null values were 
removed in the data preparation step. Figure 5 shows the 
workflow of the web application. Each screen shows a form 
where the user chooses the operations to perform on the 
dataset. The datasets analyzed during the current study are 
available online.8 The evaluation results, a video demonstra-
tion of the web application, and the resulting plot images of 
the analysis are available as supplementary materials.

Data preparation

Data were prepared by eliminating the rock samples with 
null values. The activities carried out to prepare the data 
are as follows:

1.	 Upload the dataset: Step 1 in Fig. 5 shows the screenshot 
of the interface to enter the dataset. In this case, the 
training dataset was uploaded to the web application.

2.	 Apply imputation: Step 2 in Fig. 5 shows a screenshot 
of the interface to apply or not apply imputation to the 
dataset. In this example, imputation was not applied, so 
samples with null values were removed. After remov-
ing null values, the remaining dataset was composed of 
432 samples. The remaining samples per class were as 
follows: San Bernardino: 112 samples; Perris: 97 sam-
ples; San Jacinto: 89 samples; Santa Ana: 72 samples; 

Table 2   Samples per class of each dataset

Block Original dataset Training and 
testing dataset

Predic-
tion 
dataset

San Bernardino 129 116 13
Perris 126 113 13
San Jacinto 99 89 10
Santa Ana 91 82 9
San Gabriel 45 41 4
Little San Bernardino 24 21 3
Total 514 462 52

6  https://​docs.​pylon​sproj​ect.​org/​proje​cts/​waitr​ess/​en/​stable/
7  https://​doi.​org/​10.​21227/​rcfz-​bp27 8  https://​doi.​org/​10.​21227/​rcfz-​bp27
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San Gabriel: 41 samples; and Little San Bernardino: 21 
samples.

3.	 Choose the learning method: Step 3 in Fig. 5 shows a 
screenshot of the interface to select the learning method 
to be applied to the dataset. Supervised learning was 
applied first and then unsupervised learning.

Supervised learning

Supervised learning was applied to classify granitic samples 
according to the 6 blocks of the Peninsular Ranges and Trans-
verse Ranges region: San Gabriel, San Bernardino, Little San 
Bernardino, San Jacinto, Perris, and Santa Ana. The activities 
carried out in terms of supervised learning were as follows:

1.	 Select the features and the class variables: The class col-
umn and the feature columns were selected (see step 4 in 
Fig. 5). The column block was selected as the class. The 
major and trace elements of the samples (44 out of 48 
features) were also selected. The following features were 
left out: latitude, longitude, and sample id.

2.	 Balance the data: In this step, the data were balanced (see 
step 5 in Fig. 5). The class with the highest frequency 
was San Bernardino with 112 samples, and the lowest 
Little San Bernardino with 21 samples. Upsampling was 
applied to balance the frequency of the 6 classes. After 
applying upsampling, the remaining dataset was com-
posed of 672 samples, 112 samples per class.

3.	 Split the data: The percentage values to split the dataset 
were selected (see step 6 in Fig. 5). Specifically, 80% of 
the samples were selected to train the algorithms and 
the remaining 20% of the samples were used evaluate 
the resulting models.

4.	 Compare the classification models: In this step, the web 
application returns the metrics of the models (see step 
7 in Fig. 5). The model with the best performance in 
this example was the one generated with the Decision 
Trees algorithm, with an accuracy of 87%. Its precision, 
recall, and F-score values were also good in general (see 
Table 3). The classes that the model classified the best 
were San Gabriel and Santa Ana, both with 95% in 

F-score. Contrary, San Bernardino was the class with 
the lowest recall (68%) and F-score (79%).

	   The 10 most important features of the Decision Trees 
model and their values are shown in Table 4. Ni and Sc 
may be the most important as they are compatible ele-
ments and highly concentrated in mafic magmas. La, 
Sr, Y, and Tb are important because of pressure effects 
while Cs and K2O are important because they are usu-
ally associated with magma depth source (Gromet and 
Silver 1987).

	   Figure 6 shows the shortest path to reach a conclusion 
in the Decision Trees model. It is explained as follows. 
Each block of the tree contains: its entropy value, its 
condition and the number of samples that meet it, a one-
dimensional array that indicates the score value of each 
class, and the class with the highest score value. When 
a new sample is introduced to be classified, it is located 
in the first block. If the condition is met in the first block 
(Ni <= 0.006), it goes to the decision block on the left 
and the sample is classified as San Jacinto. If the condi-
tion is met in the second block (Cu <= 0.007), it goes 
to the left block and the sample is classified as Perris. 
If the condition is met in the third block (Cs <= 0.001), 
it goes to the left block and the sample is classified as 
San Gabriel, and so on until reach a conclusion. If the 
condition is false in this block, it goes to the right and 
the sample is finally classified as Perris in the terminat-
ing block.

	   The accuracy of the remaining models was: K-Nearest 
Neighbors: 85%; Logistic Regression: 41%; Support 
Vector Machines: 43%; and Multilayer Perceptron: 77%.

5.	 Classify new samples: The testing dataset was entered to 
be classified by the Decision Trees model (see step 8 in 
Fig. 5). The testing dataset contained the major and trace 
elements selected by the user. Step 9 in Fig. 5 shows 
the table with the features and the predicted label for 
each sample. The table with the sample features and its 
predicted class can be downloaded in CSV format.

Fig. 5   Workflow of the web application◂

Table 3   Report from the Decision Trees model

Block Precision Recall F-score

Little San Bernardino 84% 100% 91%
Perris 87% 91% 89%
San Bernardino 95% 68% 79%
San Gabriel 91% 100% 95%
San Jacinto 77% 85% 81%
Santa Ana 100% 90% 95%

Table 4   Feature importance of 
the Decision Trees model

Feature Importance

Ni .1874
Sc .1215
Cu .0977
La .0903
Sr .0633
Cs .0561
Y .0479
Fe2O3 .0422
Tb .0305
K2O .0294
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Unsupervised learning

Unsupervised learning was applied to observe the behavior 
of clusters in terms of geochemical elements. The activi-
ties carried out in terms of unsupervised learning were as 
follows:

1.	 Select the features: The columns with the features were 
selected (see step 10 in Fig. 5). The major and trace 
elements of the samples (44 out of 48 features) were 
selected. The following features were left out: sample 
id, latitude, longitude, and block.

2.	 PCA: PCA was applied to reduce noise in the data and 
improve the performance of the K-Means algorithm. 
Step 11 in Fig. 5 shows the screenshot with the table 
containing the features, and the calculated component 
loadings. Table 5 shows the eigenvalues, variance per-
centage, and cumulative variance percentage of the 
PCs generated. The 5 first PCs were selected to explain 
71.9% of the data variance.

3.	 K-Means: Cluster analysis with K-Means was applied to 
observe the relationship between the geochemical ele-
ments of the samples. Step 12 in Fig. 5 shows a screen-
shot with the table that contains each sample and its 
corresponding cluster. The table with the sample fea-
tures and its assigned cluster can be downloaded in CSV 
format. According to the Elbow method, 3 was chosen 
as the optimal value of k (number of clusters). Figure 7 
shows the sample clusters plotted by longitude and lati-

tude. The average SiO2 values are as follows: Cluster 1 = 
felsic @ SiO2 average = 71%; Cluster 2 = intermediate 
@ SiO2 average = 65%; and Cluster 3 = mafic @ SiO2 
average = 58%. However, the average SiO2 values are 
not quite right to define the compositional groups (for 
example mafic compositions are not usually higher than 
55% SiO2).

	   The clusters were generated in terms of the samples 
and geochemical elements. Figure 8 shows the clusters 
plotted in terms of PC1 and PC2. Positively correlated 
variables were grouped together (for example: MnO, 
Mn, and TiO2 are positively correlated). Negatively 

Fig. 6   Shortest path to reach a conclusion in the decision tree generated

Table 5   Eigenvalues and variance of the generated PCs

PC Eigenvalue Variance per-
centage

Cumulative 
variance per-
centage

PC1 12.93 29.32% 29.32%
PC2 8.58 19.45% 48.77%
PC3 6.00 13.61% 62.39%
PC4 2.41 5.46% 67.85%
PC5 1.79 4.05% 71.9%
PC6 1.72 3.91% 75.81%
PC7 1.33 3.01% 78.82%
PC8 1.25 2.83% 81.65%
PC9 1.09 2.47% 84.13%
PC10 0.96 2.18% 86.31%
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correlated variables were placed on opposite quadrants 
of the plot origin (for example: SiO2 is negatively cor-
related to Fe2O3). The distance between the variables 
from the plot origin measures the quality of the variables 
on the factor map (for example: Gd and Dy are more 

represented in PC2 than in PC1, and Cu and Ni are not 
well represented in both PCs). PC1 is probably related to 
compatible/incompatible elements because K2O, SiO2, 
and Rb were heavily represented on it.

Fig. 7   Cluster map of the 
Transverse Ranges Province and 
the Peninsular Ranges Province 
in Southern California. The 
samples were located according 
to their measured latitude and 
longitude

Fig. 8   Clusters according to 
PC1 and PC2. For the element 
clusters: red are large ionic 
radius, blue are small ionic 
radius, and green are Rare Earth 
Elements (REEs)
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	   Clusters plotted on PC2 and PC3 show the effects of 
pressure (see Fig. 9). Sr is positive and Y is negative 
to PC3 as expected if PC3 is related to pressure. The 
other Rare Earth Elements (REEs) arrange themselves in 
between. PC2 does not show much dispersion. However, 
the large ionic radius elements (K2O and Rb) are nega-
tive, and the small ionic radius (MgO, Co, V, and Mn) 
are positive. For the element clusters: green seems to 
be heavy REEs (small ionic radius); red are light REEs 
(large ionic radius); and blue are compatible elements 
(small ionic radius). For the sample clusters: yellow is 
high in SiO2, K2O, and Rb (felsic); purple is high in 
compatible elements (mafic); and green seems to be high 
in REEs (intermediate).

	   Clusters plotted on PC4 and PC5 could be related 
to water effects (see Fig. 10). Immobile Ta and Nb are 
positive PC4, along with U and Th. For the element 
clusters: red includes the mobile alkaline elements (Na, 
K, Rb, and Cs) as well as the immobile ones (Nb and 
Ta). Perhaps it also includes the elements carried during 
hydrothermal alteration (Cu, Mo, and W), the radioac-
tive elements (U, Th, K, and Rb) and the Zr-Hf set. For 
the sample clusters: seem to all center on zero, so the 
extent of fractionation is not related to water effects. 
This needs to be studied some more.

Discussion

For supervised learning, the Decision Trees algorithm 
obtained the best average metrics results: accuracy: 87%, 
precision: 89%; recall: 89%; and F-score: 81%. For unsuper-
vised learning, 5 PCs were used to generate the clusters. The 
plot with PCs 2 and 3 was found to be related to pressure 
effects, while the plot with PCs 4 and 5 could be related to 
water effects.

Conclusions and future work

This research work proposed a methodology to apply 
machine learning to geochemical data and an open web 
application for autoML. This tool will allow geoscientists 
to load geochemical datasets and perform analysis with 
supervised and unsupervised learning. A dataset composed 
by granitic rock samples from Southern California was ana-
lyzed with both learning methods using the web application. 
For supervised learning, the Decision Trees model offered 
the best results. For unsupervised learning, 2 plots were 
found that could be related to water and pressure effects.

As future work, the proposed pipeline will be extended 
to apply other techniques to prepare the data, such as 

Fig. 9   Clusters according to 
PC2 and PC3. Large ionic 
radius (light REEs) and small 
ionic radius (heavy REEs and 
compatible elements) are found 
in element clusters. Felsic, 
mafic and intermediate elements 
are found in sample clusters
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downsampling. Also, the web application will incorpo-
rate new functions, such as: saving the models created by 
users to be used more than once, and allowing the tuning of 
more parameters for supervised and unsupervised learning 
methods.
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