
Vol.:(0123456789)1 3

Earth Science Informatics (2023) 16:221–240 
https://doi.org/10.1007/s12145-023-00933-9

RESEARCH

Mapping burn severity and monitoring CO content in Türkiye’s 2021 
Wildfires, using Sentinel‑2 and Sentinel‑5P satellite data on the GEE 
platform

Osman Salih Yilmaz1  · Ugur Acar2  · Fusun Balik Sanli2  · Fatih Gulgen2  · Ali Murat Ates3 

Received: 24 November 2022 / Accepted: 1 January 2023 / Published online: 10 January 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
This study investigated forest fires in the Mediterranean of Türkiye between July 28, 2021, and August 11, 2021. Burn severity 
maps were produced with the difference normalised burned ratio index (dNBR) and difference normalised difference vegetation 
index (dNDVI) using Sentinel-2 images on the Google Earth Engine (GEE) cloud platform. The burned areas were estimated 
based on the determined burning severity degrees. Vegetation density losses in burned areas were analysed using the normalised 
difference vegetation index (NDVI) time series. At the same time, the post-fire Carbon Monoxide (CO) column number densities 
were determined using the Sentinel-5P satellite data. According to the burn severity maps obtained with dNBR, the sum of high 
and moderate severity areas constitutes 34.64%, 20.57%, 46.43%, 51.50% and 18.88% of the entire area in Manavgat, Gündoğmuş, 
Marmaris, Bodrum and Köyceğiz districts, respectively. Likewise, according to the burn severity maps obtained with dNDVI, the 
sum of the areas of very high severity and high severity constitutes 41.17%, 30.16%, 30.50%, 42.35%, and 10.40% of the entire 
region, respectively. In post-fire NDVI time series analyses, sharp decreases were observed in NDVI values from 0.8 to 0.1 in 
all burned areas. While the Tropospheric CO column number density was 0.03 mol/m2 in all regions burned before the fire, it 
was observed that this value increased to 0.14 mol/m2 after the fire. Moreover, when the area was examined more broadly with 
Sentinel 5P data, it was observed that the amount of CO increased up to a maximum value of 0.333 mol/m2. The results of this 
study present significant information in terms of determining the severity of forest fires in the Mediterranean region in 2021 and 
the determination of the CO column number density after the fire. In addition, monitoring polluting gases with RS techniques 
after forest fires is essential in understanding the extent of the damage they can cause to the environment.

Keywords dNBR · dNDVI · Forest fire · Google Earth Engine · Carbon Monoxide · TROPOMI

Introduction

Forests are renewable natural resources that contribute sig-
nificantly to the economy of countries and play a decisive 
role in the climate and ecosystem (Dixon et al. 2022). The 

temperature and low humidity are two important factors 
that cause forest fires (Masinda et al. 2022). In addition, the 
increase in wind effect causes further damage to forest areas 
during a fire (Esemen 2011; Efthimiou et al. 2020). Detec-
tion of the damaged regions after a fire is critical in revealing 
the severity of the fire and its ecological effects on the eco-
system (Kulakowski and Veblen 2007; Li et al. 2018). Burn 
severity maps reflecting changes in vegetation and forest soil 
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characteristics have a high priority in determining short-term 
measures to be taken after a fire (García-Llamas et al. 2019). 
Forest fire severity is measured by collecting data on tree mor-
tality, canopy loss, or bole and crown scorch (Keeley 2008). 
However, fieldwork after a fire in steep and inaccessible forest 
areas is quite challenging. Today, in parallel with the develop-
ments in satellite technologies, remote sensing (RS) systems 
have started to be used to determine forest burn severity. RS 
utilises optical sensors that can detect data from large areas 
difficult to reach in forest fires, beyond the visible region of 
the electromagnetic spectrum, and provide continuous data. 
Decreases in chlorophyll, especially in burning regions, cause 
an increase in the reflection of the visible region of the elec-
tromagnetic spectrum while a decrease in the near-infrared 
region (Escuin et al. 2008). These critical changes in the elec-
tromagnetic spectrum make it possible to detect burning areas 
with RS (García-Llamas et al. 2019). Satellite images before 
and after the fire in large forest areas give information about 
the severity of the fire and its effects on the region (Hantson 
et al. 2013; Teodoro and Amaral 2019).

Burnt areas are most mapped using medium-resolution, 
multispectral satellite images (Goodwin and Collett 2014). 
The electromagnetic spectrum's near-infrared (NIR) and 
short-wave infrared (SWIR) ranges (0.7 to 2.4 μm) are sen-
sitive to post-fire charred vegetation and various substances. 
Medium and low-resolution satellite images with this band 
range, such as 30 m spatial resolution Landsat, 250 m spatial 
resolution Medium Resolution Imaging Spectroradiometer 
(MODIS), 1 km spatial resolution Advanced Very High-
Resolution Radiometer (AVHRR), are used for this purpose 
(Storey et al. 2021). Very High Resolution (VHR) satellite 
images are also helpful for disaster management and damage 
assessment (Chung and Kim 2021). Higher spatial resolu-
tion images can better understand the ecological impacts 
of burning areas (Eva and Lambin 2000). For this purpose, 
Landsat images that provide 30 m spatial and 16 days tem-
poral resolution, and Sentinel-2 A/B satellite constellation, 
which provides 10 m spatial and five days temporal resolu-
tion, offer advantages in terms of damage detection and fire 
monitoring immediately after the fire event.

Indices determined using mathematical operations of 
spectral bands are used to determine the plant phenology 
cycle pre-and post-fire and produce burn severity maps. Com-
monly, differenced normalised burn ratio (dNBR) and the 
differenced normalised difference vegetation index (dNDVI) 
are used to measure the impact of fire on biomass (Key and 
Benson 2006; Mathews and Kinoshita 2021). In general, both 
indices successfully detect biomass loss relative to the pre-
fire state of an ecosystem. While dNBR is defined as the dif-
ferences in NBR index before and after the fire, dNDVI is the 
NDVI differences before and after the fire (van Gerrevink and 
Veraverbeke 2021). The normalised burn rate (NBR) is used 
to observe spectral changes after a fire event (Lentile et al. 

2006; Gibson et al. 2020). NDVI is the most basic index to 
show vegetation presence and health. At the same time, the 
normalised difference vegetation index (NDVI) time series 
can explain the increases and decreases in photosynthetic 
activity, vegetation, and biomass (Cheret and Denux 2011). 
Besides RS techniques, the composite burn index (CBI) field 
protocol and modified CBI method (GeoCBI), widely used in 
field studies, are defined as the measurement average of more 
than one environmental variable of post-fire conditions (Key 
and Benson 2006; Picotte et al. 2021).

Several studies have been carried out to detect fire areas 
with RS techniques. Quintano et al. (2011) mapped the burn-
ing areas with Gaussian functions, kernel-based smoothing, 
and adaptive thresholding algorithms on MODIS satellite 
images. They used the burn area index (BAI) and NBR to 
detect burned areas. They tested the accuracy of the maps 
with situ Global Positioning System (GPS) measurements. 
For this purpose, they used j statistics and obtained a high 
accuracy of (j > 0.8). Parks et al. (2014) proposed a new 
Landsat-based burn severity metric, the relativised burn ratio 
(RBR), which provides an alternative to dNBR and RdNBR. 
According to the results in 18 fire zones, dNBR  (R2 = 0.761), 
RdNBR  (R2 = 0.766) and RBR  (R2 = 0.786) were found. 
Botella-Martínez and Fernández-Manso (2017) calculated 
the dNBR, RdNBR and RBR indices for nine fire zones in 
the Valencia region based on Landsat 8 images. Unburned in 
each index is divided into low, moderate, and high classes. In 
the study, the degree of relationship between pre-fire vegeta-
tion and burn severity was examined by analysis of variance. 
Youn & Jeong (2019) used dNBR to map the severity of 
burning areas in Sokcho forests in South Korea using Sen-
tinel-2 images. Gibson et al. (2020) tested the performance 
of traditional burn indices with the random forest (RF) algo-
rithm using Sentinel-2 images. Atun et al. (2020) examined 
forest fires in Athens, Greece, with NBR, dNBR, RBR and 
NDVI. In their study, the size of the vegetation destroyed by 
the fire and the probability of exposure to forest fire were 
determined. Delcourt et al. (2021) used Sentinel-2 images to 
test the use of the most common spectral index in determin-
ing burn severity and found that the dNBR index correlated 
reasonably well with field data. Hu et al. (2021) aimed to 
explain the capacity of deep learning (DL) models to map 
burned areas from single-time multispectral images auto-
matically. For this purpose, several semantic segmentation 
network architectures and machine learning (ML) algorithms 
such as U-Net, HRNet, Fast-SCNN and DeepLabv3 + were 
tested using Sentinel-2 and Landsat-8 images at three wild-
fire sites. Giddey et al. (2022) conducted field observations 
to confirm the dNBR index on Sentinel-2 images in the 
Afrotemperate forest of South Africa. They found a strong 
correlation between field observations and dNBR  (R2 = 0.69). 
There are studies on vegetation change, especially after the 
fire in the burned areas. Cheret & Denux (2011) evaluated the 
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fire susceptibility of Mediterranean vegetation by analysing 
the NDVI time series of MODIS Terra images from 2000 
to 2006. Lanorte et al. (2014) used SPOT-VEGETATION 
NDVI time series and Fisher-Shannon (FS) statistical method 
to investigate the vegetation dynamics before and after the 
fire. Uyeda et al., (2015) used MODIS NDVI time series to 
monitor post-fire recovery in chaparral thickets in Southern 
California. (Bar et al. 2020) compared the performance of 
three machine-learning approaches for burnt area detection 
based on Sentinel-2 and Landsat-8 data in the GEE frame-
work. Their results show superior classification accuracy of 
97–100% for the Classification and Regression Tree (CART) 
and RF algorithms while slightly lower accuracy for the Sup-
port Vector Machine (SVM). Seydi et al. (2021) (Seydi et al. 
2021) detected forest fires in Australia and burned areas 
using the k-Nearest Neighbors (kNN), RF, and SVM machine 
learning algorithms using Sentinel-2 and MODIS images on 
the GEE platform. MODIS images (MCD12Q1) were used 
to detect LULC in the study. They determined that the RF 
algorithm was more successful than the others in detectiong 
of the burned areas. Smith-Ramírez et al. (2022) investigated 
the short- and long-term behaviour of the Chilean sclerophyl-
lous vegetation between 1985 and 2015 with Landsat images.

Burning is a chemical event that occurs with the oxi-
dation and decomposition of organic matter and living 
and dead vegetation (De la Rosa et al. 2008). As a result 
of this chemical event, various polluting gases are emit-
ted into the environment. Different gases such as carbon 
dioxide  (CO2), methane  (CH4), and carbon monoxide 
(CO) can be listed as examples of these polluting gases 
(Satyendra et al. 2013). During a forest fire, these gases 
and other pollutants penetrate the air in large quantities 
(Michel et al. 2005). Reahard et al., (2010) calculated var-
ious pollutant gases from sugarcane and swamp burning 
off the coast of Louisiana, USA, using MODIS, Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), and Landsat-TM images. The TROPOspheric 
Monitoring Instrument (TROPOMI) sensor on the Sen-
tinel-5P satellite helps to monitor the gases emitted after 
a fire and make environmental assessments (Xulu et al. 
2021). Schneising et al. (2019) developed a new algo-
rithm, Weighting Function Modified Differential Opti-
cal Absorption Spectroscopy (WFM- DOAS), to obtain 
CO and  CH4 values simultaneously from the Sentinel-5P 
satellite data. This algorithm was developed to perform 
mutual validation with other algorithms. Vahid et  al. 
(2020) carried out Spatio-temporal changes in the amount 
of CO in the air in Iran for 14 months through Sentinel-5 
data. Magro et al. (2021) evaluated the spatial distribution 
of CO and  CH4 after the fire in Portugal with Sentinel 
5P images. CO concentrations were observed on 21 July 
2019 and 7 August 2018, with CO columns exceeding 
4.5 ×  1018 and 6 ×  1018 molecules/cm2, respectively.

Many studies have been conducted using Sentinel-5P sat-
ellite data for air pollution monitoring, especially during the 
COVID-19 pandemic period. For example, Mehmood et al. 
(2021) monitored column number density values of  NO2 and 
 PM2.5 pollutants in three provinces of Pakistan from March 
22, 2020 to June 30, 2020 (during COVID-19). Sentinel-
5P TROPOMI data for  NO2 value and  PM2.5 value were 
recorded from sampling sties. Faisal et al. (2021) monitored 
CO,  O3,  SO2, and  NO2 polluting gases with Sentinel-5P 
images during the COVID-19 pandemic (from November 
2020 to December 2020) in Indonesia. In this study, the 
decrease in CO,  NO2, and  O3 gas column number density 
was determined. Ghasempour et al. (2021) calculated  NO2 
and  SO2 gas column number density values using Sentinel-
5P TROPOMI, and Aerosol Optical Depth (AOD) from 
MODIS data in Türkiye during the COVID-19 period in the 
GEE platform. Shami et al. (2022) monitored  NO2 and CO 
gas column number density during the COVID-19 lockdown 
period in Iran as well. They used Sentinel-5P TROPOMI 
data on the GEE platform in three periods covering the dates 
11 March-8 April 2019, 2020 and 2021 in the study.

This study was examined under two primary moti-
vations. In the first section, the significant wildfire that 
emerged at five different points on the southern coast of 
Türkiye that affected the Mediterranean coastline for about 
15 days was examined with dNBR and dNDVI indexes on 
the GEE platform using Sentinel-2 satellite images. In the 
second section, it is evaluated that burn severity influences 
CO column number density. The changes in CO gas emit-
ted into the atmosphere during the wildfire were moni-
tored using TROPOMI data based on Sentinel-5P satellite 
observations. Thus, the spread of polluting gases, which 
are difficult to follow during a forest fire, was observed, 
and the effects of the fire on environmental pollution were 
analysed. In addition, Sentinel-5P satellite images are an 
instrumental dataset in monitoring polluting gases emitted 
during a fire. This study showed that using Sentinel-2 and 
Sentinel-5P data would be significant in monitoring forest 
fires and revealing wildfire's atmospheric effect. There are 
many studies on the use of indexes whose accuracy has 
been proven by many studies in the examination of forest 
fires. In addition, there are studies investigating atmos-
pheric pollution using Sentinel 5P satellite data. However, 
much more work is still needed on this topic. Examining 
the forest fires, which caused great destruction in 2021, 
together with their polluting effects on the environment, 
reveals the innovative aspect of this study. This study is 
essential in two aspects; it provides a basis for monitor-
ing vegetation recovery in the forest after a fire, and the 
other important aspect is that it is a guide for the use of 
satellite-based data in future forest fires for rapid damage 
detection, monitoring the spread of polluting gases, and 
taking the necessary precautions.
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Study area

This study examines the large wildfires that began on 
28.07.2021 and lasted about 15 days along the Mediterra-
nean coast of Türkiye. The wildfire broke out at five different 
points within the borders of the Manavgat and Gundogmuş 
districts of Antalya and Marmaris, Bodrum, and Koycegiz 
districts of Mugla (Fig. 1).

Antalya province is located on the western Mediterra-
nean coast of southwest Türkiye. In general, the summers 
are hot and dry in that region. The maquis is the dominant 
vegetation in the Mediterranean region. There are red pine 
forests in the upper parts of the city (https:// www. antal ya. 
bel. tr/). The highest temperature was at 45˚C between 1930 
and 2020 in Antalya, while the lowest was at -4.6˚C (https:// 
www. mgm. gov. tr/). Manavgat district is about 77 km away 
from the city centre of Antalya. It is the second-largest dis-
trict in terms of surface area and the third-largest district 
in terms of population in Antalya (https:// www. tuik. gov. 
tr/). The Taurus Mountains surround the Manavgat to the 
north. The district has a rough terrain besides flat plains 
from the sea to the interior. The Alara Stream and Karpuz 
Stream, which form the eastern borders, and the Manavgat 
River from the district centre and the Manavgat Waterfall 
are world-famous in Türkiye. It is the town of Gundogmus, 
approximately 149 km from the centre of Antalya. It is a 
town built on the Western Taurus and Geyik Mountains. 

The average altitude from the sea is 900 m. Although the 
Mediterranean climate is dominant, it shows somewhat con-
tinental climate characteristics in winter. Mugla, located in 
the South of Türkiye, is in the Aegean region, although a 
small part of it lies in the Mediterranean. Mugla is under 
the influence of the Mediterranean climate. The mountains 
extend parallel to the sea and reach 800 m. Mugla is one of 
the wealthiest regions of Türkiye in terms of forests. Mug-
la's highest temperature was measured at 42.1 ˚C between 
1928–2020, while the lowest was -12.6 ˚C (https:// www. 
mgm. gov. tr/). Marmaris, surrounded by Datca Peninsula 
and Kerme Bay in the west, Ula in the north, Balan Moun-
tain, Karadag and Daily Hills in the east, and the Medi-
terranean Sea in the South, is one of the most important 
districts of Mugla. It is approximately 55 km from Mugla 
city centre. In the district, where the Mediterranean cli-
mate is dominant, summers are hot and dry, while winters 
are warm and rainy. Bodrum, one of the most important 
touristic places in the region, is located 110 km from the 
centre of Mugla, and most of the territory of Bodrum is in 
a peninsula that bears its name. It has a climate consisting 
of the synthesis of Aegean and Mediterranean climates. The 
historically significant town of Koycegiz, located approxi-
mately 73 km from the centre of Mugla, took its name from 
the Koycegiz Lake, which has a coast. The Mediterranean 
climate is dominant in the coastal parts of the region, and in 
the mountainous parts, the continental climate is prevalent.

Fig. 1  Study area

https://www.antalya.bel.tr/
https://www.antalya.bel.tr/
https://www.mgm.gov.tr/
https://www.mgm.gov.tr/
https://www.tuik.gov.tr/
https://www.tuik.gov.tr/
https://www.mgm.gov.tr/
https://www.mgm.gov.tr/
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Material and method

Satellite data

In the first step of the study, Sentinel-2 (MSI) images that 
the GEE platform provides free access to were used. For this 
purpose, image collections were created before and after the 
fire, considering each region's fire exit and end times. The 
image collection date ranges for each fire zone are given in 
Table 1. Sentinel-2 satellite, a part of the European Com-
mission's (EC) Copernicus program, consists of two satel-
lites sent by European Space Agency (ESA), Sentinel-2A 
and Sentinel-2B. The Multispectral Instrument (MSI) sensor 
used in Sentinel-2A and Sentinel-2B satellites has a 12-bit 
radiometric resolution (Astola et al. 2019). Each one has 13 
spectral bands, and the spatial resolution of the band ranges 
from 10 to 60 m. In this study, "COPERNICUS/S2_SR" 
(L2A) images in GEE are Bottom of Atmosphere (BOA) 
corrected images in World Geodetic System 1984 (WGS 
1984) coordinates (Cordeiro et al. 2021). After applying the 
water and cloud masks to the created image collections, the 
mosaicking was done and turned into a single image with 
median statistics. Keeping the pre-fire date range wider or 
smaller did not significantly affect the pre-burn spectral 
reflectance. However, the date range is essential in choos-
ing the dates after the fire in terms of the sharp change in 
the pixel reflection values in the entire burned area.  NBRpre, 
 NBRpost, dNBR,  NDVIpre,  NDVIpost, and dNDVI indexes 
were calculated on the images with the median statistics 
applied with JavaScript code on the GEE platform. In addi-
tion to these indices, an image collection was created to 
include the months of May and September of 2021. Time 
series analysis was performed by calculating NDVI for each 
collection created.

In the second stage of the study, environmental pollution 
was investigated by producing maps of CO, which is the 
pollutant gas emitted by burning forests in the Mediterra-
nean Region. For this purpose, Sentinel-5P satellite images 
were used. The TROPOMI sensor integrated with the sat-
ellite is a Top of Atmosphere (TOA) nadir imaging spec-
trometer covering wavelength bands between ultraviolet and 
short-wave infrared. TROPOMI operates in a push-broom 

configuration with a swath of ~ 2600 km on the Earth's sur-
face (Tian et al. 2022). The TROPOMI instrument measures 
the column number density of polluting gases such as  CH4, 
Sulfur dioxide  (SO2), Nitrogen dioxide  (NO2), Ozone  (O3), 
CO and atmospheric formaldehyde (HCHO) (Faisal et al. 
2021). TROPOMI observes the global amount of CO using 
clear sky and cloudy sky Earth illumination measurements 
in the 2.3 µm spectral range of the SWIR portion of the elec-
tromagnetic spectrum. TROPOMI precise sky observations 
provide CO accumulation columns sensitive to the tropo-
spheric boundary layer (Magro et al. 2021). For cloudy envi-
ronments, column sensitivity varies with light path. There 
are two versions of Sentinel-5P datasets, Near Real-Time 
(NRTI) and Offline (OFFL). The NRTI product is given in 
5-min data granules, while the OFFL data is given accord-
ing to each satellite orbit (Verhoelst et al. 2021). Processing 
algorithms are the same for both products. For both OFFL 
and NRTI products, the quality value qa_value > 0.5 is 
required when using CO data (Tian et al. 2022). TROPOMI 
CO data consists of 1,000 m thick vertical layers equidis-
tant from the ground for each pixel. Sentinel-5P images are 
represented on the GEE platform with a spatial resolution 
of 0.01 arc degrees (1.11 km) (Ghasempour et al. 2021). In 
this study, in which Sentinel-5P TROPOMI NRTI product 
was used, images were obtained at intervals of 2–3 days, 
covering the fire areas completely, considering the dates in 
Table 1, in order to understand the spread of CO gas.

Wind data

MERRA-2 is a model created by the National Aeronautics 
and Space Administration (NASA) Office of Global Mod-
elling and Assimilation (GMAO) using the GEOS-5.12.4 
system (Reichle et al. 2017a). Since 1980, MERRA-2 has 
provided hourly global forecasts of atmospheric conditions 
(Reichle et al. 2017b), using hourly wind speed and direction 
at a grid-level (m/s) 0.5˚ × 0.625˚ between July 7, 2021 and 
August 22, 2021 for each fire zone.

Türkiye air quality monitoring network

The Türkiye Air Quality Monitoring Network is affiliated 
with the Turkish Ministry of Environment and Urbaniza-
tion, which records the concentration of pollutants every 
hour and has 355 monitoring stations. Other stations in the 
fire zones do not measure CO gas. Therefore, in this study, 
the CO measurement data of Serik station, which is 34 km 
away from the Manavgat district, and covers a large area, 
was used. The data collected from satellite observations over 
an average of two days, covering pre-fire and post-fire, were 
compared with the station measurements. The data used 
were downloaded from the (https:// www. havai zleme. gov. 

Table 1  Satellite image date ranges used for the collection

Region Pre-fire start/end Post-fire start/end

Manavgat 01–07-2021/25–07-2021 26–07-2021/08–08-2021
Gundogmus 01–07-2021/25–07-2021 26–07-2021/08–08-2021
Marmaris 01–07-2021/25–07-2021 26–07-2021/04–08-2021
Bodrum 01–07-2021/25–07-2021 26–07-2021/08–08-2021
Koycegiz 01–07-2021/25–07-2021 02–08-2021/19–08-2021

https://www.havaizleme.gov.tr/
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tr/) platform. In this study, the TROPOMI data accuracy 
was evaluated using ground measurement stations.

Methodology

Fire partially destroys the land surface by reducing veg-
etation, density, greenery, and water content. This change 
alters the spectral response of the land surface (Boer et al. 
2008). The detected spectrum's visible and NIR reflectivity 
decreases, and the SWIR reflectivity increases (Lentile et al. 
2006). NBR is an effective method to measure burn sever-
ity in various plant species. This index can determine the 
severity of burns by determining chemical changes such as 
blackening and powdery mildew caused by burning in veg-
etation. Green plants reflect the NIR wavelength highly and 
give a high reflection in the SWIR band in dry and unburned 
soil, and the NBR index was calculated using these features 
(Mathews and Kinoshita 2021). The NBR index is the 
ratio of the reflectance difference between the two spectra, 
expressed as Eq. 1 (Key and Benson 2006). The NBR index 
takes values ranging from -1 to + 1.

where the NIR band for Sentinel-2 images is B8, and the 
SWIR band represents B12. The B8 has a 10 m spatial res-
olution, while the B12 has 20 m. In this study, B12 was 
resampled to a spatial resolution of 10 m by the bilinear 
interpolation method. Thus, the resulting maps have a 10 m 
spatial resolution.

Although the NBR index is used to show the area affected 
by the fire on a single map, the dNBR calculated with the 
NBR index differences calculated before and after the fire is 
widely used to measure the severity of the fire. dNBR index 
is calculated by Eq. 2. Areas with high dNBR indicate the 
degree of severe burn, while low and negative values repre-
sent less burn severity and unburned areas.

Key & Benson (2006) suggested burn severity levels were 
used in this study. As shown in Table 2, burn severity levels 
were checked at five different levels.

The NDVI can predict vegetation and biomass change 
pre-fire and post-fire (Mathews and Kinoshita 2021). The 
NDVI was developed by Rouse et al. in 1974. It uses red 
and NIR reflected by vegetation. Healthy vegetation absorbs 
most of the visible light and reflects most NIR. In contrast, 
unhealthy or sparse vegetation reflects the most visible and 
very little NIR (Rouse et al. 1974). NDVI calculations for a 
given pixel always result in a value ranging from (-1) to (+ 1) 
(Arekhi et al. 2019). Very low NDVI values (< 0.1) indicate 
barren rock, sand and barren areas. Soil gets a shallow NDVI 

(1)NBR =
NIR − SWIR

NIR + SWIR

(2)dNBR = NBRpre − NBRpost

value, and this value is between 0.1–0.2. Shrub, pasture and 
sparse vegetation areas take values between 0.2–0.5. High 
NDVI values represent dense green areas such as forests and 
cultivated areas (Dindaroglu et al. 2021).

NDVI (Eq. 3) was calculated for Sentinel-2 images in the 
study. The vegetation index was used to estimate biomass 
change before and after the fire. Thus, spatial and ecological 
changes in the distribution of vegetation after the fire can 
be determined (Hope et al. 2007; Mathews and Kinoshita 
2021). Also shown is Eq. 4 the dNDVI obtained using the 
pre-fire and post-fire differences.

where The RED band represents B4. Both bands have a spa-
tial resolution of 10 m.

(Morante-Carballo et al. 2022) divided the dNDVI index into 
six classes to determine burn severity (Table 3). In this study, the 
dNDVI index was calculated with the NDVI differences calcu-
lated pre- and post-fire and reclassified into six classes.

Accuracy Assessment

The accuracy assessment of the study was examined using 
a confusion matrix. The confusion matrix was constructed 
with four parameters: true positive (TP), false positive (FP), 
true negative (TF), and false negative (FN) (Table 4). Vari-
ous accuracy values   can be calculated using this matrix. As 
shown in Table 5 for this study: overall accuracy (OA), kappa 
(κ), recall, specificity, precision (PCC), balanced accuracy 
(BA), F1-score (FS), false alarm (FA), miss-detection (MD) 
were calculated (Wang et al. 2018; Seydi et al. 2021).

(3)NDVI =
NIR − RED

NIR + RED

(4)dNDVI = NDVIpre − NDVIpost

Table 2  Burn severity (dNBR) 
classification (not scaled)

Severity Level dNBR Values

High  > 0.66
Moderate-High 0.44–0.65
Moderate-Low 0.27–0.43
Low 0.1–0.26
Unburned  < 0.1

Table 3  Burn severity (dNDVI) 
classification

Severity Level dNDVI Values

Very High  > 0.45
High 0.33–0.44
Moderate 0.20–0.33
Low 0.13–0.20
Very Low 0.08–0.13
Unburned  < 0.07

https://www.havaizleme.gov.tr/
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This work was carried out in JavaScript using the GEE 
platform. The work consists of the following steps. (1) First, 
appropriate satellite passes were detected at the fire date 
(2) Water masks were applied to the cloud and selected 
images. (3) Created collections were resampled, mosaics 
created, and median statistics applied. (4) NBR and NDVI 
index were calculated for pre-fire and post-fire images. (5) 
dNBR and dNDVI were calculated using NBR and NDVI 
pre- and post-fire index results. (6) Burn severity maps, and 
combustion areas were created according to the calculated 
dNBR and dNDVI. (7) NDVI time series analyses were per-
formed for the burned areas. (8) The correlation between 
dNDVI and dNBR after the fire was determined. (9) Cre-
ated "ImageCollection" for CO concentration for pre-fire, 
fire time and post-fire dates. (10) qa_value > 0.5 masks were 
applied. (11) Mosaics were created, and median statistics 
were applied. (12) The correlation between the CO con-
centration detected by the TROPOMI sensor and the values   
measured with the Serik station of the Turkish Air Quality 
Monitoring Network was calculated. The methodology flow-
chart is given in Fig. 2.

Results

Burned area mapping

The accuracy assessments obtained by constructing the 
confusion matrix of both burn severity maps are given in 
Tables 6 and 7. The accuracy assessment for each of the 

five fire zones was calculated separately. The study's accu-
racy was evaluated with random points ranging from 249 to 
1738 according to the size of the burned area. The accuracy 
assessment was above 80%, revealing that the fire areas are 
generally correctly detected. Although the OA value in the 
dNDVI was generally successful compared to the dNBR, 
it was seen that the dNBR was more successful in other 
validation metrics. In the Manavgat forest fire, while OA 
was 85.06% in the dNDVI, it was 81.98% in the dNBR. The 
specificity calculated in the dNBR was 63.15%, and the PCC 
value was 87.01%. At the same time, the FA value was cal-
culated as 37.99 and the MD as 0. When these values are 
evaluated, it can be said that the dNBR gives more accurate 
results than the dNDVI. In Gundogmus, another fire zone, 
the OA value was calculated as 80% in the dNBR, while the 
OA value was calculated as 74.79% in the dNDVI. It was 
seen that the dNBR was more successful in other accuracy 
metrics. When the forest fire in Marmaris was examined, 
while the OA value was 89.28% in the dNBR, the OA value 
was 93.66% in the dNDVI. When the other metrics in this 
region were examined, the dNDVI gave a more successful 
result than the dNBR. In Bodrum and Koycegiz fires, the 
OA values of both indexes were quite close to each other. 
When other metrics are examined, it can be said that dNBR 
is more successful in the Bodrum fire and dNDVI is more 
successful in the Koycegiz fire.

The maps produced with the dNBR and dNDVI indices 
used to map the forest fires in the study area are given in 
Fig. 3. For the dNBR, there are five levels of burn severity: 
high, medium–high, medium–low, low, and unburned (Key 
and Benson 2006). The dNDVI is divided into six different 
classes: unburned, very low severity, low severity, moder-
ate severity, high severity, and very high severity (Morante-
Carballo et al. 2022).

The burn severity regions calculated according to the 
dNBR and dNDVI indexes are given in Table 8. When 
the burned areas found with the dNBR were examined, 
the total burned area in the Manavgat district of Antalya 

Table 4  Confusion matrix (Wang et al. 2018; Seydi et al. 2021)

Predicted

Burned Unburned

Actual Burned TP FN
Unburned FP TN

Table 5  The metrics which 
were used in the accuracy 
assessment of burn severity 
maps (Wang et al. 2018; Seydi 
et al. 2021)

OA (TN+TP)

N

κ PCC−
(TP+FP)x(TP+FN)+(FN+TN)x(FP+TN)

(TN+TP+FP+FN)2

1−
(TP+FP)x(TP+FN)+(FN+TN)x(FP+TN)

(TN+TP+FP+FN)2

Recall (TP)

(TP+FN)

Specificity (TN)

(TN+FP)

PCC (TP)

(TP+FP)

BA (Recall+Specificity)

2

FS 2xTP

(2xTP+FP+FN)

FA (FP)

(TN+FP)

MD (FN)

(TP+FN)
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Fig. 2  Workflow chart showing the production of dNBR and dNDVI maps and calculation of CO column number density on the GEE platform

Table 6  Accuracy assessment of burn severity maps obtained according to the dNBR

Region OA (%) κ Recall (%) Specificity (%) PCC (%) BA (%) FS (%) FA (%) MD (%) Number of points

Manavgat 81.98 0.636 99.78 63.15 87.01 81.01 93.05 37.99 0.00 1,043
Gundogmus 80.00 0.604 100.00 60.94 70.93 80.47 82.99 39.06 0.00 249
Marmaris 89.28 0.701 100.00 62.01 87.01 81.01 93.05 37.99 0.00 1,738
Bodrum 89.07 0.716 100.00 64.52 86.35 82.26 92.68 35.48 0.00 501
Koycegiz 93.30 0.774 97.98 74.32 93.93 86.15 95.91 25.68 2.02 927
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was 57,828.38 ha. In this determined area, 7,367.79 ha 
area was not affected by the fire, while 50,460.59 ha area 
was affected by the fire with different burn severity. The 
moderate-low severity area in the burned area was calcu-
lated as 16,130.90 ha, covering 27.89% of the burned area. 
The sum of high, moderate-high, and low severity areas is 
34,329.69 ha and covers 59.36% of the total area. In the 
Gundogmus district of Antalya, the entire area affected 
by the fire is 15,372.07 ha. A place of   2,165.06 ha within 
the boundaries of the fire area was not affected by the fire 
at all. This area has a proportion of 14.08% of the entire 
area. The area affected by the low-severity fire is 5,767.73 
hectares. The sum of high, moderate-high, and moderate-
low severity areas was calculated as 7,439.28 ha, covering 
48.39% of the total area. The entire area was calculated 
as 10,583.96 ha in the fire that broke out in the Marmaris 
district of Mugla. Within this area, an 813.18 ha area was 
determined as unburned. This area corresponds to 7.68% 
of the entire area. The moderate-high severity area of   the 
region was calculated as 2,889.83 ha. This area has 27.30% 
of the whole area. High, moderate-low, and low severity 
areas cover 22,024.79 ha, 2,795.41 ha, and 2,060.75 ha, with 
a total burned area rate of 19.13%, 26.41%, and 19.47%. 
The whole area covered by the burned area in the Bodrum 
district of Mugla is 17,614.88 ha. The unburned area in this 
area is 2,193.10 ha. This area covers 12.45% of the entire 
area. The area of   moderate-high severity burning in the 
region is 5.436.63 ha. This area covers 30.86% of the whole 
area and is the region with the highest burn severity rate. 
The sum of high, moderate-low, and low severity areas is 
9,985.15 ha and covers 56.69% of the total area. Finally, the 
entire area affected by the fire in the Koycegiz district of 
Mugla province is 11,363.41 ha. The unburned area covers 
2,110.01 ha, 18.57% of the total burned area. The low sever-
ity area covers 35.43% of the area, with 4,025.92 ha. The 
sum of the high, moderate-high, and moderate-low severity 
areas is 5,227.48 ha and covers 46.00% of the total area. 
The fire affected a total of 112,762.70 ha area in the Antalya 
and Mugla provinces. Among the burned areas, the district 
most affected by the fire was Manavgat, with 57,828.38 ha. 
The least affected district was Marmaris, with 10,583.96 ha. 
In the burn severity maps produced, the high severity in 
all regions was 13.00%, moderate-high severity 22.00%, 

moderate low severity 27.00%, low severity 26.00%, and 
unburned area 13.00%. In the dNDVI, the burning sever-
ity was examined at six degrees. In the Manavgat district, 
while the ratio of high-severity and moderate severity grades 
in the dNBR was 34.64%, the sum of very high severity 
and high severity grades in the dNDVI was calculated as 
41.17%. In the forest fire in the basement, while the sum of 
the ratio of high-severity and moderate severity degrees in 
the dNBR was 51.50%, the sum of the very high severity 
and high severity degrees in the dNDVI was calculated as 
42.35%. In these two forest fires, it was observed that the 
areas with high burning degrees were close to each other in 
both indexes. It was observed that this difference was higher 
in Gundogmus, Marmaris, and Koycegiz fires.

The correlation between the dNBR and the dNDVI was 
calculated separately for each fire zone. This calculation was 
performed using ArcGIS Pro software with 1,000 random 
points for each fire zone. The dNBR and dNDVI values 
for each point were then calculated using Microsoft Excel 
software, Pearson's correlation coefficient R and  R2 values 
were calculated, and scatter plot charts were shown (Fig. 4). 
According to Fig. 4, the highest correlation between the two 
indexes was observed in the Marmaris fire with the highest 
R-value of 0.941 and in the Bodrum fire with an R-value of 
0.915. The lowest R-value was calculated in the Gundogmus 
fire at 0.754. It can be easily said that there is a high positive 
correlation with a correlation value above 0.70 in all fires.

Determination of green area loss with NDVI 
and time series analysis

A great deal of forest and vegetation loss occurred in burned 
areas. It is possible to determine the vegetation density in 
remotely sensed images with the NDVI (Gitelson et al. 2014; 
Duarte et al. 2018). It is crucial to reveal a significant dif-
ference in the images obtained pre- and post-fire in terms 
of post-fire destruction. Pre- and post-fire NDVI maps of 
all burned regions are shown in Fig. 5a-j. When the vegeta-
tion density pre-fire is represented by a green colour (pixel 
value ~ 0.9) on the maps, this colour changes to yellow and 
brown (pixel value < 0.1) post-fire.

In most of the studies in the literature, the NDVI is widely 
used to determine the damage to the plant density of burned 

Table 7  Accuracy assessment of burn severity maps obtained according to the dNDVI

Region OA (%) κ Recall (%) Specificity (%) PCC (%) BA (%) FS (%) FA (%) MD (%) Number of points

Manavgat 85.06 0.638 99.34 58.61 81.64 78.97 89.62 41.39 0.66 1,043
Gundogmus 74.79 0.498 98.31 51.67 66.67 74.99 79.45 48.33 1.69 249
Marmaris 93.66 0.832 100.00 77.49 91.90 88.75 95.78 22.51 0.00 1,738
Bodrum 88.84 0.709 99.71 64.29 86.32 82.00 92.53 35.71 0.29 501
Koycegiz 94.29 0.824 95.76 88.33 97.09 92.05 96.42 11.67 4.24 927
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Fig. 3  Spatial distribution of burn severity maps created according to dNBR and DNDVI indexes
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areas (Barbosa et al. 1999; Junaidi et al. 2021; Konkathi and 
Shetty 2021). Time-series analyses were performed on the 
GEE platform for the fires in Antalya and Mugla provinces 
between 01.01.2017 and post-fire until 21.09.2022 (Fig. 6). 
When Fig. 6 is examined, NDVI values in all fire regions 
between 2017–2021 were 0.5–0.8 before and remained 
between 0.2–0.4 after the fire. In 2021–2022, NDVI values 
fell between 0.1–0.2, sharply decreasing after January. After 
the cleaning works were carried out in the burned areas after 
the fire, the effects of the fire became clearer. According to 
the average NDVI values in burnt areas, it can be said that 
shrubs and bare land remain.

Spatio‑temporal distribution of CO column number 
density over post fires

After the forest fires in Antalya and Mugla in 2021, plenty of 
CO gas was emitted into the atmosphere, especially from the 
trees that were not completely burned. To better observe the 
amount of this emitted gas and its increase during the fire, 
CO gas time series were created for each fire zone between 
01.01.2021 and 31.12.2021 (Fig. 7). The time series created 
for each fire zone represents the average value of the pixels 
within the fire boundaries. According to Fig. 7, while the 
average CO value was around 0.03 mol/m2 over the past 
one-year period, it reached 0.14 mol/m2 levels during the 
fires (red box). After the fires, the CO remained at an aver-
age of 0.05 mol/m2 until August (blue box). The decrease to 
0.03 mol/m2 level was realised after September. According 
to these results, CO gas decreased to the average level one 
month after the fire.

Pollutant gases emitted by burning fires to the atmosphere 
tend to spread due to various atmospheric conditions, espe-
cially wind. Especially the fact that the fires that occurred in 
the Mediterranean region in 2021 were close to each other, 
both spatially and temporally, caused the spread of pol-
luting gases over large areas. For this purpose, the fires in 
Antalya and Marmaris provinces were investigated in wide 
acreages. The amounts of CO emitted into the atmosphere 
during the Antalya and Mugla forest fires in the summer of 
2021 are shown in Fig. 8a-d. These three categories were 
used in the legend to represent the CO amount. Date ranges 
were determined as pre-fire, during the fire, and post-fire. 
The maps covering the entire region were filtered on the 
GEE platform and created an image collection. The desired 
date range images were obtained by applying the median 
statistics on the resulting map collections. The fire started 
in Manavgat between 18–29 July 2021, and the CO column 
number density in the atmosphere was monitored between 
0.022–0.192 mol/m2 (Fig. 8a). This value showed that the 
average CO value of 0.03 mol/m2 started to increase with the 
effect of the fire. With the addition of the Koycegiz fire to 
the Manavgat fire that continued between 26 July-06 August 

2021, the CO value reached a maximum of 0.333 mol/
m2 (Fig. 8b-c). The CO value decreased to 0.071 mol/m2 
between 02–15 August on the dates that continued with the 
fire extinguishing study (Fig. 8d).

It has been observed that CO gas is mainly concentrated 
in the Mediterranean when the fire started, continued, and 
ended. The effect of the wind was considered in interpreting 
the CO gas throughout the date range of analyses. Hourly 
wind speeds and directions from the Merra-2 satellite were 
obtained separately for each fire zone. In the given geo-
graphic information systems environment, a map showing 
the fire speed and directions was produced by using the krig-
ing interpolation method (Fig. 9). According to the map, it 
was observed that the prevailing wind direction in all burned 
areas was from Northeast to Northwest. The average wind 
speed varies between 2.55 m/s and 7.66 m/s. It was observed 
that the wind speed increased significantly from South to 
West (Fig. 9a). The high-resolution Worldview satellite 
image (Fig. 9b) taken at a particular time of the fire confirms 
the map produced. It was observed that the gases emitted 
into the atmosphere from the burning area moved towards 
the Southwest and concentrated on the sea.

Calculation of Sentinel‑5P CO column number 
density

The near-surface atmospheric CO concentration values 
were measured at the Serik station closest to the fire area. 
The daily averages of the station data pre- and post-fire are 
shown in Fig. 10. On average, CO concentration values were 
around 200 µg/m3 between July 25 and August 4, 2021. It 
reached a maximum above 600 µg/m3 between August 4 and 
6, 2021, and decreased below 200 µg/m3 between August 8 
and 11, 2021. The TROPOMI values are compatible with the 
maps in Figs. 7 and 8. The increases in the CO concentra-
tion value in Fig. 8b and c are also consistent with the value 
between August 4 and 6, 2021, at the measuring station. 
Unfortunately, there is no data at the station between August 
3 and 7, 2021.

The correlation (R-value) between TROPOMI pixel 
values and Serik station measurements was calculated as 
0.705 (Fig. 11), which indicates a high degree of agreement 
between the two data. This compatibility emphasizes that 
TROPOMI data is useful for spatio-temporal monitoring of 
post-fire pollutants such as CO.

When the results in this study were compared with 
other studies in the literature, it was seen that similar 
results were obtained. For example, Zheng et al. (2019) 
compared the  NO2 concentration obtained from TRO-
POMI with remote sensing methods with ground meas-
urement stations over one year and found  R2 = 0.72. 
Magro et al. (2021) monitored the CO and  CH4 values 
of TROPOMI in forest fires in Portugal. They compared 
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Table 8  Areas and ratios 
calculated according to burn 
severity

dNBR dNDVI

Region Classes Area (ha) Ratio (%) Area (ha) Ratio (%)

Very High severity - - 11,481.97 19.86
Manavgat High Severity 7,209.92 12.47 12,323.54 21.31

Moderate-High Severity 12,822.24 22.17 - -
Moderate severity - - 14,579.27 25.21
Moderate-Low Severity 16,130.90 27.89 - -
Low Severity 14,297.53 24.72 6,786.12 11.73
Very low severity - - 4,957.64 8.57
Unburned 7,367.79 12.74 7,699.85 13.31
Total 57,828.38 57,828.38
Very High severity - - 2,051.64 13.35

Gundogmus High Severity 879.43 5.72 2,584.67 16.81
Moderate-High Severity 2,282.38 14.85 - -
Moderate severity - - 4,840.93 31.49
Moderate-Low Severity 4,277.47 27.83 - -
Low Severity 5,767.73 37.52 2,674.06 17.40
Very low severity - - 1,542.21 10.03
Unburned 2,165.06 14.08 1,678.57 10.92
Total 15,372.07 15,372.07
Very High severity - - 1,378.56 13.02

Marmaris High Severity 2,024.79 19.13 1,850.11 17.48
Moderate-High Severity 2,889.83 27.30 - -
Moderate severity - - 3,235.11 30.57
Moderate-Low Severity 2,795.41 26.41 - -
Low Severity 2,060.75 19.47 1,747.21 16.51
Very low severity - - 984.53 9.30
Unburned 813.18 7.68 1,388.46 13.12
Total 10,583.96 10,583.96
Very High severity - - 3,008.19 17.08

Bodrum High Severity 3,636.71 20.65 4,451.91 25.27
Moderate-High Severity 5,436.63 30.85 - -
Moderate severity - - 4,778.26 27.13
Moderate-Low Severity 3,633.89 20.63 - -
Low Severity 2,714.55 15.41 1,881.31 10.68
Very low severity - - 1,325.58 7.53
Unburned 2,193.10 12.45 2,169.65 12.32
Total 17,614.88 17,614.88
Very High severity - - 281.57 2.48

Koycegiz High Severity 730.87 6.43 900.45 7.92
Moderate-High Severity 1,414.38 12.45 - -
Moderate severity - - 2,949.01 25.95
Moderate-Low Severity 3,082.23 27.12 - -
Low Severity 4,025.92 35.43 2,257.64 19.87
Very low severity - - 1,515.15 13.33
Unburned 2,110.01 18.57 3,459.60 30.45
Total 11,363.41 11,363.41
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their results with the ground measurement station and 
observed an R = 0.50 correlation. Ghasempour et  al. 
(2021) conducted research in Türkiye. They investigated 
the effect of polluting gases in the air during the COVID-
19 epidemic period, compared TROPOMI  SO2 and NO 
gases with the station measurements we used similarly 
in Türkiye, and obtained correlation coefficients of 0.65 
and 0.83, respectively.

Discussion

Detection of areas and accuracy analysis 
with the dNBR and dNDVI

The spatial and temporal resolutions of Sentinel-2 images 
are better than medium-resolution MODIS, AVHRR, and 

Landsat data. These low-resolution images have been used 
in many studies on forest fires (Escuin et al. 2008; Vander-
hoof et al. 2017; Teodoro and Amaral 2019; Youn and Jeong 
2019; Cahyono et al. 2021; Chen et al. 2021; Pelletier et al. 
2021). Sentinel images enabled the results to have higher 
spatial resolution and to collect data at more frequent inter-
vals during long fire periods.

The produced maps showed that the area affected by the 
wildfire was calculated as 112,762.70 ha. The map analysis 
in this study unearthed that the most affected region by the 
wildfires was the Manavgat district of Antalya. The total 
area damaged by the fires in the district was approximately 
57,828.38 ha. The area least damaged by the fires was the 
Marmaris district of Mugla, with 10,583.96 ha. These sensi-
tive calculations are superior knowledge for decision-makers 
regarding the rehabilitation of burned areas and the sustain-
ability of forest areas.

Fig. 4  Correlation analysis for the dNBR and dNDVI
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In this study, detecting fire areas using the dNBR com-
puted from Sentinel-2 images was very accurate. In previ-
ous studies, Botella-Martínez & Fernández-Manso (2017) 
calculated the dNBR for different fire zones with the OA 
ranging from 72.1 to 94.8 and κ from 0.61 to 0.92. Llorens 
et al. (2021) also detected forest fires with the dNBR using 
Sentinel-2 images. In their study, the classification accuracy 
was calculated with Kappa statistics, and the κ value ranged 
from 0.69 to 0.73. Morresi et al. (2022) used the RdNBR 
and improved the OA and κ values ranging from 76.9% 
to 83.7% and from 0.61 to 0.72, respectively, in the burn 
severity maps produced using Sentinel 2 images. Conse-
quently, in our and other researchers' studies, the success of 
the dNBR used in detecting the burned areas was supported 
by the statistical tests. Therefore, the results of our study are 
entirely consistent with the other studies conducted.

NDVI time series analysis

Detecting the losses in the post-fire vegetation mass with 
satellite images is an accepted approach discussed in 
many articles. NDVI time series analysis monitors veg-
etation changes, especially in areas rehabilitated after 
wildfires (Cuevas-González et al. 2009; Van Leeuwen 
et al. 2010; Lanorte et al. 2014; Landi et al. 2021). It 
is commonly used to detect vegetation density changes 

before and after a wildfire. Díaz-Delgado et al. (2003) 
reported that post-fire NDVI values decreased to 0.36 
in areas with high burn severity. Telesca & Lasapon-
ara (2006) examined the dynamic behavior of pre- and 
post-fire vegetation in a burned forest area through NDVI 
time series analysis. They found a sharp decrease in post-
fire NDVI values in Northern Italy. Lanorte et al. (2014) 
applied SPOT-VEGETATION NDVI time series analysis. 
It was determined that the pixel values changes before 
and after the fire ranged from 0.6 to 0.8 and 0.2 to 0.3, 
respectively.

Similarly, our study showed that sharp decreases were 
observed in NDVI values   in NDVI time series analysis 
performed before and after the fire. When previous stud-
ies were examined, it was observed that there were sharp 
decreases in NDVI values   after the fire. In this respect, 
NDVI is very important for monitoring vegetation losses. 
In this study, the areas where the fire occurred are domi-
nated by maquis and red pine vegetation. After the fire, 
NDVI values   were between 0.2–0.4. This result showed us 
that there was a significant decrease in the dense vegetation 
after the fire. It was observed that NDVI values   decreased 
to 0.1–0.2 levels after the cleaning works carried out by the 
Regional Directorate of Forestry teams, especially within 
a year after the fire. When these values   are considered, it 
has been observed that bare land and very little vegetation 
remained in the region after the fire.

It was understood that some burnt trees and sparse vegeta-
tion remained after the fire in the burned areas where maquis 
and red pine vegetation dominate. Therefore, the follow-up 
of rehabilitation studies to be carried out with annual NDVI 
follow-ups in the following years will reveal the speed and 
amount of recovery.

Fig. 5  NDVI values of all burned regions pre-fire and post-fire: (a) 
Manavgat pre-fire map, (b) Manavgat post-fire map, (c) Gundogmus 
pre-fire map, (d) Gundogmus post-fire map, (e) Marmaris pre-fire map, 
(f) Marmaris post-fire map, (g) Bodrum pre-fire map, (h) Bodrum

◂

Fig. 6  NDVI time series analysis
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CO column number density

In this study, the amount of CO gas released into the 
atmosphere in forest fires was determined by the TRO-
POMI device. It was observed that the average CO content 
increased from 0.03 mol/m2 to 0.15 mol/m2 in all fire zones 
and then decreased to 0.03 mol/m2 levels in one month after 
the fire. On the other hand, if the study carried out in the 
vast region covering the entire fire zones, the CO gas gath-
ering together in the atmosphere by the affect of wind and 
reached a maximum level of 0.333 mol/m2 with an increase 
of 1,010% in the wildfire areas. The World Health Organiza-
tion (WHO) has declared the upper limit of CO 11,440 µg/
m3 in 8 h. The amount of CO emitted into the atmosphere 
after the fire was measured as approximately 680 µg/m3 from 
the Serik station, which is 34 km from the closest ground 
stations to the fire areas. This value is likely to approach 
the upper limits reported by WHO in the atmosphere over 

the fire zone. This level will cause adverse health effects on 
living things. For example, outdoor CO levels are a risk for 
lung and heart patients, such as COPD, asthma, and cardio-
vascular diseases (Fu et al. 2020).

Fires are natural disasters that occur for various reasons. 
These natural disasters frequently occur, especially in Med-
iterranean countries where the hot climate is in question. 
Although it is seen in this study that harmful gases such as 
CO gas spread to the seas, other forest fires that may occur 
in the future may affect the settlements with the effect of the 
wind. From this point of view, this study is vital regarding 
air pollution and precautions that may be effective after fires.

Conclusion

In 2021, forest fires in the Mediterranean and Aegean 
regions, especially in Mugla and Antalya, caused great 
environmental and ecological disasters. RS techniques 
were used to reveal the forest fires' severity and the effect 
of fires on the region's flora and fauna. In this study, Senti-
nel-2 (MSI) satellite data were used for calculating dNBR 
and dNDVI spectral indices to determine the severity of 
the fire. Besides Sentinel 5P data were used for monitor-
ing pollutant gasses after the fire. In the regions where the 
fire occurred, burn severity degrees were determined sep-
arately for the dNBR and dNDVI indexes, and fire sever-
ity was graded in five classes for dNBR and six classes 
for dNDVI. According to the burn severity maps obtained 
with the dNBR and dNDVI indexes, the affected areas in 

Fig. 7  CO column number density time series chart for each fire area

Fig. 8  CO column number 
density covers all regions pre 
and post-fire; the date ranges 
represent the CO column 
number density map: (a) 
18.07.2021–29.07.2021, (b) 
26.07.2021–04.08.2021, (c) 
29.07.2021–06.08.2021, (d) 
02.08.2021–15.08.2021
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Manavgat, Gundogmus, Marmaris, Bodrum, and Koycegiz 
districts were calculated as 57,828.38 ha, 15,372.07 ha, 
10,583.96 ha, 17,614.88 ha, and 11,363.41 ha, respectively. 
According to the burn severity maps obtained with dNBR, 
the sum of the areas of high severity and moderate severity 
constitutes 34.64%, 20.57%, 46.43%, 51.50%, and 18.88% 
of the entire region, respectively. Likewise, according to 
the burn severity maps obtained with dNDVI, the sum of 
the areas of very high severity and high severity constitutes 
41.17%, 30.16%, 30.50%, 42.35%, and 10.40% of the entire 
region, respectively. The dNBR and dNDVI indexes have 
been demonstrated again in this study, thanks to Sentinel-2 
satellite images, that they are very effective in producing 
burn severity maps by taking into account the situations pre 

Fig. 9  Map showing wind speed 
and direction: a) Represents 
wind speed and direction in fire 
areas, b) High resolution satel-
lite image downloaded from 
NASA's site during the fire 
(https:// eoima ges. gsfc. nasa. gov/ 
images/ image recor ds/ 148000/ 
148650/ fires turkey)

Fig. 10  Carbon monoxide concentration values measured from 
Antalya Serik station

Fig. 11  TROPOMI Serik station 
measurement values regression 
analysis
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and post-fire. At the same time, with the NDVI time series 
analyses calculated from 2017 to the end of 2022, serious 
information was obtained about the change in plant density 
before and after the fire. It has been observed that the forest 
areas in the region have turned into bare land, with NDVI 
values ranging from 0.5 to 0.8 and NDVI values ranging 
between 0.1–0.2 after the fire in forests generally covered 
with scrub and red pine. Time series analysis is critical for 
monitoring plants' phenological cycle and vegetation recov-
ery. In addition to field studies and monitoring, RS tech-
niques provide significant advantages, especially for large 
areas and hard-to-reach lands.

After fires, various harmful gases such as CO,  CO2, and 
 CH4 are emitted in abundance into the atmosphere. A one-
year investigation was made with Sentinel-5P satellite data 
in each fire zone, and the CO level increased from 0.03 mol/
m2 on average to 0.14 mol/m2 during the fire. The CO gas 
from the forest fires that broke out at about the same time 
spread over large areas with the effect of the wind. Although 
the gases spread over large areas, they reached 0.333 mol/m2 
levels with the accumulation of CO gases emitted from all 
fire areas. Mediterranean forest fires in 2021 concentrated 
on the Mediterranean with the effect of the wind. Although 
CO gas accumulated mainly above the Mediterranean, it has 
also affected many regional settlements. The increase in CO 
in the atmosphere during fires adversely affects the life of all 
breathing creatures until they decrease to normal levels. It 
was noteworthy that the CO gas level remained at 0.05 mol/
m2 for approximately one month, especially after the fire, 
which is a significant result for this study. Considering this 
result, it poses a risk, especially for chronic lung and car-
diovascular patients in areas close to settlements. CO gas, 
which continues to exist in the atmosphere for a long time, 
such as a month, will adversely affect humans and other 
breathing creatures, such as birds. Therefore, monitoring 
these gases with RS techniques is vital for managers and 
decision-makers to draw up emergency action plans when 
their emissions need to be monitored.

Burn severity maps were produced in this study, and 
burned areas were graded according to dNBR and dNDVI 
indexes. It has been revealed that the burning area size and 
severity also affect the gas concentration to be released. 
Therefore, in natural disasters such as fire, besides determin-
ing the severity of the fire, it is also essential to investigate 
the environmental effects, especially in terms of air pollu-
tion. Many countries have local ground monitoring stations 
to monitor and detect harmful gases in the air. However, 
satellite systems enable monitoring these gases globally 
at almost zero cost. This study revealed that the gases that 
cause environmental pollution and global warming after the 
fire could be quickly monitored with satellite images.

This study shows that the integrated use of Sentinel-2 and 
Sentinel-5P data will be significant in monitoring forest fires 

and revealing both the atmospheric and ecological effects of 
wildfire. In addition, all image processing tasks were performed 
on the GEE platform in the study. In addition, it has been shown 
that this platform is suitable for fast, reliable, and cost-effective 
damage assessment and environmental impact monitoring in 
wildfires occurring in different parts of the world.

Authors’ contribution Osman Salih YILMAZ: conceptualisation, data 
collection, analysing, and writing; Ugur ACAR: literature search and 
review, analysing, visualisation, Fusun BALIK SANLI, Fatih GUL-
GEN, and Ali Murat ATES: conceptualisation, writing, validation, 
review, and editing.

Data availability All data used in the current study are available free 
of charge to all users on the GEE platform and can be obtained here. 
Otherwise, it can be available from the corresponding author upon 
reasonable request.

Declarations 

Ethical Approval All authors in this article have read, understood, and 
prepared under the "Authors' Ethical Responsibilities" in the Authors' 
Submission guidelines.

Competing interests The authors declare no competing interests.

References

Arekhi M, Goksel C, Balik Sanli F, Senel G (2019) Comparative Evalu-
ation of the Spectral and Spatial Consistency of Sentinel-2 and 
Landsat-8 OLI Data for Igneada Longos Forest. ISPRS Int J Geo-
Information 8:56. https:// doi. org/ 10. 3390/ ijgi8 020056

Astola H, Häme T, Sirro L et al (2019) Comparison of Sentinel-2 and Land-
sat 8 imagery for forest variable prediction in boreal region. Remote 
Sens Environ 223:257–273. https:// doi. org/ 10. 1016/j. rse. 2019. 01. 019

Atun R, Kalkan K, Gürsoy Ö (2020) Determining The Forest Fire Risk 
with Sentinel 2 Images. Turkish J Geosci 1:22–26

Bar S, Parida BR, Pandey AC (2020) Landsat-8 and Sentinel-2 based 
Forest fire burn area mapping using machine learning algorithms 
on GEE cloud platform over Uttarakhand, Western Himalaya. 
Remote Sens Appl Soc Environ 18:100324. https:// doi. org/ 10. 
1016/j. rsase. 2020. 100324

Barbosa PM, Grégoire JM, Pereira JMC (1999) An algorithm for 
extracting burned areas from time series of AVHRR GAC data 
applied at a continental scale. Remote Sens Environ 69:253–263. 
https:// doi. org/ 10. 1016/ S0034- 4257(99) 00026-7

Boer MM, Macfarlane C, Norris J et al (2008) Mapping burned areas 
and burn severity patterns in SW Australian eucalypt forest using 
remotely-sensed changes in leaf area index. Remote Sens Environ 
112:4358–4369. https:// doi. org/ 10. 1016/j. rse. 2008. 08. 005

Botella-Martínez MA, Fernández-Manso A (2017) Estudio de la seve-
ridad post-incendio en la comunidad Valenciana comparando los 
índices dNBR, RdNBR y RBR a partir de imágenes landsat 8. Rev 
Teledetec 2017:33–47. https:// doi. org/ 10. 4995/ raet. 2017. 7095

Cahyono BE, Fibyana V, Nugroho AT, Subekti A (2021) Mapping 
and analysis burned area based on LANDSAT 8 OLI/TIRS and 
hotspots data in palangkaraya of central kalimantan province - 
Indonesia. J Phys Conf Ser 1825:. https:// doi. org/ 10. 1088/ 1742- 
6596/ 1825/1/ 012087

https://doi.org/10.3390/ijgi8020056
https://doi.org/10.1016/j.rse.2019.01.019
https://doi.org/10.1016/j.rsase.2020.100324
https://doi.org/10.1016/j.rsase.2020.100324
https://doi.org/10.1016/S0034-4257(99)00026-7
https://doi.org/10.1016/j.rse.2008.08.005
https://doi.org/10.4995/raet.2017.7095
https://doi.org/10.1088/1742-6596/1825/1/012087
https://doi.org/10.1088/1742-6596/1825/1/012087


239Earth Science Informatics (2023) 16:221–240 

1 3

Chen D, Fu C, Hall JV et al (2021) Spatio-temporal patterns of optimal 
Landsat data for burn severity index calculations: Implications for 
high northern latitudes wildfire research. Remote Sens Environ 
258:112393. https:// doi. org/ 10. 1016/j. rse. 2021. 112393

Cheret V, Denux J-P (2011) Analysis of MODIS NDVI time series 
to calculate indicators of Mediterranean forest fire susceptibility. 
Giscience Remote Sens 48:171–194

Chung M, Kim Y (2021) Wildfire-induced Change Detection Using 
Post-fire VHR Satellite Images and GIS Data. Korean J Remote 
Sens 37:1389–1403. https:// doi. org/ 10. 7780/ kjrs. 2021. 37.5. 3.5

Cordeiro MCR, Martinez JM, Peña-Luque S (2021) Automatic water 
detection from multidimensional hierarchical clustering for Senti-
nel-2 images and a comparison with Level 2A processors. Remote 
Sens Environ 253:. https:// doi. org/ 10. 1016/j. rse. 2020. 112209

Cuevas-González M, Gerard F, Balzter H, Riaño D (2009) Analys-
ing forest recovery after wildfire disturbance in boreal Siberia 
using remotely sensed vegetation indices. Glob Chang Biol 
15:561–577. https:// doi. org/ 10. 1111/j. 1365- 2486. 2008. 01784.x

De la Rosa JM, González-Pérez JA, González-Vázquez R et al (2008) 
Use of pyrolysis/GC–MS combined with thermal analysis to 
monitor C and N changes in soil organic matter from a Mediter-
ranean fire affected forest. CATENA 74:296–303

Delcourt CJF, Combee A, Izbicki B et al (2021) Evaluating the dif-
ferenced normalized burn ratio for assessing fire severity using 
sentinel-2 imagery in northeast siberian larch forests. Remote 
Sens 13:1–20. https:// doi. org/ 10. 3390/ rs131 22311

Díaz-Delgado R, Lloret F, Pons X (2003) Influence of fire severity 
on plant regeneration by means of remote sensing imagery. Int 
J Remote Sens 24:1751–1763. https:// doi. org/ 10. 1080/ 01431 
16021 01447 32

Dindaroglu T, Babur E, Yakupoglu T, et al (2021) Evaluation of geo-
morphometric characteristics and soil properties after a wildfire 
using Sentinel-2 MSI imagery for future fire-safe forest. Fire Saf 
J 122:. https:// doi. org/ 10. 1016/j. fires af. 2021. 103318

Dixon DJ, Callow JN, Duncan JMA et al (2022) Regional-scale 
fire severity mapping of Eucalyptus forests with the Landsat 
archive. Remote Sens Environ 270:112863. https:// doi. org/ 10. 
1016/j. rse. 2021. 112863

Duarte L, Teodoro AC, Monteiro AT et al (2018) QPhenoMetrics: 
An open source software application to assess vegetation phe-
nology metrics. Comput Electron Agric 148:82–94

Efthimiou N, Psomiadis E, Panagos P (2020) Fire severity and soil 
erosion susceptibility mapping using multi-temporal Earth 
Observation data: The case of Mati fatal wildfire in Eastern 
Attica Greece. Catena 187:104320. https:// doi. org/ 10. 1016/j. 
catena. 2019. 104320

Escuin S, Navarro R, Fernández P (2008) Fire severity assessment 
by using NBR (Normalized Burn Ratio) and NDVI (Normalized 
Difference Vegetation Index) derived from LANDSAT TM/ETM 
images. Int J Remote Sens 29:1053–1073. https:// doi. org/ 10. 1080/ 
01431 16070 12810 72

Esemen K, (2011) Forest Fires analysis using satellite imagery. Mas-
ter’s Thesis, Istanbul Technical Univesity, Istanbul, Türkiye

Eva H, Lambin EF (2000) Fires and land-cover change in the trop-
ics: a remote sensing analysis at the landscape scale. J Biogeogr 
27:765–776

Faisal M, Prakoso KA, Sanjaya H et al (2021) Spatio-temporal analysis 
of air pollutants changes during the COVID-19 using sentinel-5P in 
google earth engine (Case Study: Java Island). IEEE Asia-Pacific Con-
ference on Geoscience. Electronics, and Remote Sensing Technology 
(AGERS) 102–108. https:// doi. org/ 10. 1080/ 19475 705. 2021. 19204 77

Fu F, Purvis-Roberts KL, Williams B (2020) Impact of the covid-19 pan-
demic lockdown on air pollution in 20 major cities around the world. 
Atmosphere (Basel) 11:. https:// doi. org/ 10. 3390/ atmos 11111 189

García-Llamas P, Suárez-Seoane S, Fernández-Guisuraga JM et al 
(2019) Evaluation and comparison of Landsat 8, Sentinel-2 and 

Deimos-1 remote sensing indices for assessing burn severity in 
Mediterranean fire-prone ecosystems. Int J Appl Earth Obs Geoinf 
80:137–144. https:// doi. org/ 10. 1016/j. jag. 2019. 04. 006

Ghasempour F, Sekertekin A, Kutoglu SH (2021) Google Earth Engine 
based spatio-temporal analysis of air pollutants before and during the 
first wave COVID-19 outbreak over Turkey via remote sensing. J Clean 
Prod 319:128599. https:// doi. org/ 10. 1016/j. jclep ro. 2021. 128599

Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing 
approach to mapping fire severity in south-eastern Australia using 
sentinel 2 and random forest. Remote Sens Environ 240:111702. 
https:// doi. org/ 10. 1016/j. rse. 2020. 111702

Giddey BL, Baard JA, Kraaij T (2022) Verification of the differ-
enced Normalised Burn Ratio (dNBR) as an index of fire sever-
ity in Afrotemperate Forest. South African J Bot 146:348–353. 
https:// doi. org/ 10. 1016/j. sajb. 2021. 11. 005

Gitelson AA, Peng Y, Huemmrich KF (2014) Relationship between 
fraction of radiation absorbed by photosynthesizing maize and 
soybean canopies and NDVI from remotely sensed data taken 
at close range and from MODIS 250 m resolution data. Remote 
Sens Environ 147:108–120

Goodwin NR, Collett LJ (2014) Development of an automated 
method for mapping fire history captured in Landsat TM and 
ETM+ time series across Queensland, Australia. Remote Sens 
Environ 148:206–221. https:// doi. org/ 10. 1016/j. rse. 2014. 03. 021

Hantson S, Padilla M, Corti D, Chuvieco E (2013) Strengths and 
weaknesses of MODIS hotspots to characterize global fire 
occurrence. Remote Sens Environ 131:152–159. https:// doi. 
org/ 10. 1016/j. rse. 2012. 12. 004

Hope A, Tague C, Clark R (2007) Characterizing post-fire vegetation 
recovery of California chaparral using TM/ETM+ time-series 
data. Int J Remote Sens 28:1339–1354. https:// doi. org/ 10. 1080/ 
01431 16060 09089 24

Hu X, Ban Y, Nascetti A (2021) Uni-temporal multispectral imagery 
for burned area mapping with deep learning. Remote Sens 13:. 
https:// doi. org/ 10. 3390/ rs130 81509

Junaidi SN, Khalid N, Othman AN, et al (2021) Analysis of the 
Relationship between Forest Fire and Land Surface Temperature 
using Landsat 8 OLI/TIRS Imagery. IOP Conf Ser Earth Envi-
ron Sci 767:. https:// doi. org/ 10. 1088/ 1755- 1315/ 767/1/ 012005

Keeley JE (2008) Fire: encyclopedia of ecology. In: Jørgensen SE, 
Fath BD (eds). Academic Press, Cambridge, MA, p 1557–1564

Key CH, Benson NC (2006) Landscape assessment: sampling and 
analysis methods. USDA Forest service, rocky mountain research 
station general technical report RMRS-GTR-164-CD, Ogden

Konkathi P, Shetty A (2021) Inter comparison of post-fire burn sever-
ity indices of Landsat-8 and Sentinel-2 imagery using Google 
Earth Engine. Earth Sci Informatics 14:645–653. https:// doi. 
org/ 10. 1007/ s12145- 020- 00566-2

Kulakowski D, Veblen TT (2007) Effect of prior disturbances on the 
extent and severity of wildfire in Colorado subalpine forests. 
Ecology 88:759–769

Landi MA, Di Bella CM, Bravo SJ, Bellis LM (2021) Structural 
resistance and functional resilience of the Chaco forest to wild-
land fires: an approach with MODIS time series. Austral Ecol 
46:277–289. https:// doi. org/ 10. 1111/ aec. 12977

Lanorte A, Lasaponara R, Lovallo M, Telesca L (2014) Fisher-Shannon 
information plane analysis of SPOT/VEGETATION normalized 
difference vegetation index (NDVI) time series to characterize 
vegetation recovery after fire disturbance. Int J Appl Earth Obs 
Geoinf 26:441–446. https:// doi. org/ 10. 1016/j. jag. 2013. 05. 008

Lentile LB, Holden ZA, Smith AMS et al (2006) Remote sensing tech-
niques to assess active fire characteristics and post-fire effects. 
Int J Wildl Fire 15:319–345. https:// doi. org/ 10. 1071/ WF050 97

Li X, Liu L, Qi S (2018) Forest fire hazard during 2000–2016 in Zheji-
ang province of the typical subtropical region, China. Nat Hazards 
94:975–977

https://doi.org/10.1016/j.rse.2021.112393
https://doi.org/10.7780/kjrs.2021.37.5.3.5
https://doi.org/10.1016/j.rse.2020.112209
https://doi.org/10.1111/j.1365-2486.2008.01784.x
https://doi.org/10.3390/rs13122311
https://doi.org/10.1080/01431160210144732
https://doi.org/10.1080/01431160210144732
https://doi.org/10.1016/j.firesaf.2021.103318
https://doi.org/10.1016/j.rse.2021.112863
https://doi.org/10.1016/j.rse.2021.112863
https://doi.org/10.1016/j.catena.2019.104320
https://doi.org/10.1016/j.catena.2019.104320
https://doi.org/10.1080/01431160701281072
https://doi.org/10.1080/01431160701281072
https://doi.org/10.1080/19475705.2021.1920477
https://doi.org/10.3390/atmos11111189
https://doi.org/10.1016/j.jag.2019.04.006
https://doi.org/10.1016/j.jclepro.2021.128599
https://doi.org/10.1016/j.rse.2020.111702
https://doi.org/10.1016/j.sajb.2021.11.005
https://doi.org/10.1016/j.rse.2014.03.021
https://doi.org/10.1016/j.rse.2012.12.004
https://doi.org/10.1016/j.rse.2012.12.004
https://doi.org/10.1080/01431160600908924
https://doi.org/10.1080/01431160600908924
https://doi.org/10.3390/rs13081509
https://doi.org/10.1088/1755-1315/767/1/012005
https://doi.org/10.1007/s12145-020-00566-2
https://doi.org/10.1007/s12145-020-00566-2
https://doi.org/10.1111/aec.12977
https://doi.org/10.1016/j.jag.2013.05.008
https://doi.org/10.1071/WF05097


240 Earth Science Informatics (2023) 16:221–240

1 3

Llorens R, Sobrino JA, Fernández C et al (2021) A methodology to 
estimate forest fires burned areas and burn severity degrees using 
Sentinel-2 data Application to the October 2017 fires in the Ibe-
rian Peninsula. Int J Appl Earth Obs Geoinf 95:102243. https:// 
doi. org/ 10. 1016/j. jag. 2020. 102243

Magro C, Nunes L, Gonçalves O et al (2021) Atmospheric Trends of CO 
and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TRO-
POMI Level-2 Data. Fire 4:25. https:// doi. org/ 10. 3390/ fire4 020025

Masinda MM, Li F, Qi L et al (2022) Forest fire risk estimation in a 
typical temperate forest in Northeastern China using the Canadian 
forest fire weather index: case study in autumn 2019 and 2020. 
Nat Hazards 111:1085–1101

Mathews LEH, Kinoshita AM (2021) Urban fire severity and veg-
etation dynamics in southern california. Remote Sens 13:1–18. 
https:// doi. org/ 10. 3390/ rs130 10019

Mehmood K, Bao Y, Petropoulos GP, Abbas R, Abrar MM, Saiful-
lah Mustafa A, Soban A, Saud S, Ahmad M, Hussain I, Fahad S 
(2021) Investigating connections between COVID-19 pandemic, 
air pollution and community interventions for Pakistan employing 
geoinformation technologies. Chemosphere 272:129809. https:// 
doi. org/ 10. 1016/j. chemo sphere. 2021. 129809

Michel C, Liousse C, Grégoire J M et al (2005) Biomass burning emission 
inventory from burnt area data given by the SPOTVEGETATION 
system in the frame of TRACE‐P and ACE‐Asia campaigns. J Geo-
phys Res Atmos 110(D9). https:// doi. org/ 10. 1029/ 2004J D0054 61

Morante-Carballo F, Bravo-Montero L, Carrión-Mero P et al (2022) 
Forest Fire Assessment Using Remote Sensing to Support the 
Development of an Action Plan Proposal in Ecuador. Remote Sens 
14:1–26. https:// doi. org/ 10. 3390/ rs140 81783

Morresi D, Marzano R, Lingua E et al (2022) Mapping burn severity in 
the western Italian Alps through phenologically coherent reflec-
tance composites derived from Sentinel-2 imagery. Remote Sens 
Environ 269:112800. https:// doi. org/ 10. 1016/j. rse. 2021. 112800

Parks SA, Dillon GK, Miller C (2014) A new metric for quantifying 
burn severity: The relativized burn ratio. Remote Sens 6:1827–
1844. https:// doi. org/ 10. 3390/ rs603 1827

Pelletier F, Eskelson BNI, Monleon VJ, Tseng YC (2021) Using landsat 
imagery to assess burn severity of national forest inventory plots. 
Remote Sens 13:1–20. https:// doi. org/ 10. 3390/ rs131 01935

Picotte JJ, Cansler CA, Kolden CA et al (2021) Determination of burn 
severity models ranging from regional to national scales for the 
conterminous United States. Remote Sens Environ 263:112569. 
https:// doi. org/ 10. 1016/j. rse. 2021. 112569

Quintano C, Fernández-Manso A, Stein A, Bijker W (2011) Estima-
tion of area burned by forest fires in Mediterranean countries: 
A remote sensing data mining perspective. For Ecol Manage 
262:1597–1607. https:// doi. org/ 10. 1016/j. foreco. 2011. 07. 010

Reahard RR, Clark R, Robin C, Zeringue J, McCarty JL (2010) Loui-
siana air quality-using ASTER, Landsat 5, and MODIS to Assess 
the impact of sugarcane and marsh burning practices on local air 
quality. In: AGU fall meeting abstracts. A21B-0051

Reichle RH, Draper CS, Liu Q et al (2017a) Assessment of MERRA-2 
land surface hydrology estimates. J Clim 30:2937–2960

Reichle RH, Liu Q, Koster RD et al (2017b) Land surface precipitation 
in MERRA-2. J Clim 30:1643–1664

Rouse JW, Haas RH, Schell JA et al (1974) Monitoring the vernal advance-
ment and retrogradation (greenwave effect) of natural vegetation. 
NASA/GSFC Type III Final Report, Greenbelt, Maryland, p 371

Satyendra T, Singh RN, Shaishav S (2013) Emissions from crop/biomass 
residue burning risk to atmospheric quality. Int Res J Earth Sci 1:1–5

Schneising O, Buchwitz M, Reuter M et al (2019) A scientific algo-
rithm to simultaneously retrieve carbon monoxide and methane 
from TROPOMI onboard Sentinel-5 Precursor. Atmos Meas Tech 
12:6771–6802. https:// doi. org/ 10. 5194/ amt- 12- 6771- 2019

Seydi ST, Akhoondzadeh M, Amani M (2021) Wildfire Damage 
Assessment over Australia Using Sentinel-2 Imagery and MODIS 

Land Cover Product within the Google Earth Engine Cloud Plat-
form. Remote Sens 13:220

Smith-Ramírez C, Castillo-Mandujano J, Becerra P, et  al (2022) 
Combining remote sensing and field data to assess recovery of 
the Chilean Mediterranean vegetation after fire: Effect of time 
elapsed and burn severity. For Ecol Manage 503:. https:// doi. org/ 
10. 1016/j. foreco. 2021. 119800

Storey EA, Lee West KR, Stow DA (2021) Utility and optimization 
of LANDSAT-derived burned area maps for southern California. 
Int J Remote Sens 42:486–505. https:// doi. org/ 10. 1080/ 01431 161. 
2020. 18097 41

Telesca L, Lasaponara R (2006) Pre-and post-fire behavioural 
trends revealed in satellite NDVI time series. Geophys Res Lett 
33:L14401. https:// doi. org/ 10. 1029/ 2006G L0266 30

Teodoro A, Amaral A (2019) A Statistical and Spatial Analysis of 
Portuguese Forest Fires in Summer 2016 Considering Landsat 
8 and Sentinel 2A Data. Environments 6:36. https:// doi. org/ 10. 
3390/ envir onmen ts603 0036

Tian Y, Sun Y, Borsdorff T et al (2022) Quantifying CO emission rates 
of industrial point sources from Tropospheric Monitoring Instru-
ment observations. Environ Res Lett 17:014057. https:// doi. org/ 
10. 1088/ 1748- 9326/ ac3b1a

Uyeda KA, Stow DA, Riggan PJ (2015) Tracking MODIS NDVI time 
series to estimate fuel accumulation. Remote Sens Lett 6:587–596

Vahid S, Behrouz S, Yazdani MH, Mohammadkia K (2020) Monitoring, 
analysis and spatial and temporal zoning of air pollution (carbon 
monoxide) using Sentinel-5 satellite data for health management in 
Iran, located in the Middle East. Air Qual Atmos Health 13:709–719

van Gerrevink MJ, Veraverbeke S (2021) Evaluating the hyperspectral 
sensitivity of the differenced normalized burn ratio for assessing 
fire severity. Remote Sens 13:. https:// doi. org/ 10. 3390/ rs132 24611

Van Leeuwen WJD, Casady GM, Neary DG et al (2010) Monitoring 
post-wildfire vegetation response with remotely sensed time-series 
data in Spain, USA and Israel. Int J Wildl Fire 19:75–93. https:// 
doi. org/ 10. 1071/ WF080 78

Vanderhoof MK, Fairaux N, Beal YJG, Hawbaker TJ (2017) Validation 
of the USGS Landsat Burned Area Essential Climate Variable 
(BAECV) across the conterminous United States. Remote Sens 
Environ 198:393–406. https:// doi. org/ 10. 1016/j. rse. 2017. 06. 025

Verhoelst T, Compernolle S, Pinardi G et al (2021) Ground-based vali-
dation of the Copernicus Sentinel-5p TROPOMI NO 2 measure-
ments with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia 
global networks. Atmos Meas Tech 14:481–510

Wang Q, Yuan Z, Du Q, Li X (2018) GETNET: A general end-to-end 
2-D CNN framework for hyperspectral image change detection. 
IEEE Trans Geosci Remote Sens 57:3–13

Xulu S, Mbatha N, Peerbhay K (2021) Burned Area Mapping over the 
Southern Cape Forestry Region, South Africa Using Sentinel Data 
within GEE Cloud Platform. ISPRS Int J Geo-Information 10:511. 
https:// doi. org/ 10. 3390/ ijgi1 00805 11

Youn H, Jeong J (2019) Detection of Forest Fire and NBR Mis-clas-
sified Pixel Using Multi-temporal Sentinel-2A Images. Korean J 
Remote Sens 35:1107–1115

Zheng Z, Yang Z, Wu Z, Marinello F (2019) Spatial variation of NO2 
and its impact factors in China: An application of sentinel-5P 
products. Remote Sens 11:1939

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.jag.2020.102243
https://doi.org/10.1016/j.jag.2020.102243
https://doi.org/10.3390/fire4020025
https://doi.org/10.3390/rs13010019
https://doi.org/10.1016/j.chemosphere.2021.129809
https://doi.org/10.1016/j.chemosphere.2021.129809
https://doi.org/10.1029/2004JD005461
https://doi.org/10.3390/rs14081783
https://doi.org/10.1016/j.rse.2021.112800
https://doi.org/10.3390/rs6031827
https://doi.org/10.3390/rs13101935
https://doi.org/10.1016/j.rse.2021.112569
https://doi.org/10.1016/j.foreco.2011.07.010
https://doi.org/10.5194/amt-12-6771-2019
https://doi.org/10.1016/j.foreco.2021.119800
https://doi.org/10.1016/j.foreco.2021.119800
https://doi.org/10.1080/01431161.2020.1809741
https://doi.org/10.1080/01431161.2020.1809741
https://doi.org/10.1029/2006GL026630
https://doi.org/10.3390/environments6030036
https://doi.org/10.3390/environments6030036
https://doi.org/10.1088/1748-9326/ac3b1a
https://doi.org/10.1088/1748-9326/ac3b1a
https://doi.org/10.3390/rs13224611
https://doi.org/10.1071/WF08078
https://doi.org/10.1071/WF08078
https://doi.org/10.1016/j.rse.2017.06.025
https://doi.org/10.3390/ijgi10080511

	Mapping burn severity and monitoring CO content in Türkiye’s 2021 Wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform
	Abstract
	Introduction
	Study area
	Material and method
	Satellite data
	Wind data
	Türkiye air quality monitoring network
	Methodology
	Accuracy Assessment

	Results
	Burned area mapping
	Determination of green area loss with NDVI and time series analysis
	Spatio-temporal distribution of CO column number density over post fires
	Calculation of Sentinel-5P CO column number density

	Discussion
	Detection of areas and accuracy analysis with the dNBR and dNDVI
	NDVI time series analysis
	CO column number density

	Conclusion
	References


