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Abstract
Spatial prediction (SP) based on machine learning (ML) has been applied to soil water quality, air quality,
marine environment, etc. However, there are still deficiencies in dealing with the problem of small
samples. Normally, ML require large amounts of training samples in order to prevent overfitting. The data
augmentation method of mixup and synthetic minority over-sampling technique (SMOTE) ignores the
similarity of geographic information. Therefore, this paper proposes a modified upsampling method and
combines it with the random forest spatial interpolation (RFSI) to deal with the small sample problem in
geographical space. The modified unsampling mainly reflected in the following two aspects. Firstly, in the
process of selecting nearest points, it is to select points with similar geographic information in some
aspects of the category after classification. Secondly, the selected difference is the difference of each
category. In order to verify the effectiveness of the proposed method, we select precipitation as the target
factor and conduct a comparative experiment. The experimental results show that the combination of the
modified upsampling method and RFSI effectively improves the accuracy of spatial prediction.

1. Introduction
Since the 1960s, spatial information technology supported by satellite positioning system, geographic
information system and remote sensing has gradually develop. And a large number of data with spatial
location have been collected, processed and applied(Li and Shao, 2019). Compared with other data,
spatial data is difficult to use the classical statistical method of variable independence assumption
because of its spatio-temporal correlation. And Newton's prediction and other methods in geometric
space are not applicable. In 1970, Professor Toblert (1970) proposes the "First Law of Geography", which
provide a theoretical basis for the analysis and application of spatial data. Spatial prediction(SP) has
also been developed and improved.

At present, SP methods can be roughly divided into four categories: (1) deterministic prediction: inverse
distance weighted(IDW) (Willmott et al., 1985), (2) geostatistics method: kriging (Matheron, 1963), (3)
combination method: regression kriging(RK) (Mohanasundaram et al., 2020), (4) machine learning(ML).
With the complexity of practical problems, these basic methods cannot meet the requirements. So, on the
basis of them, they gradually improved and put forward many new methods. For instance, Yan et al.
(2021) apply a novel multiple parameters synchronization optimization IDW algorithm which involves
anisotropy(PIDW) to two spatial data of different scales. It is proved that the method can effectively
improve the accuracy. Kriging also has certain expansion, such as Universal Kriging(UK) (Xuan Thanh et
al., 2015), Kriging with External Drift(KED) (Berndt et al., 2014). Wu et al. (2021) uses geographical map
spot as basic mapping units. In comparison with traditional regular grid-based methods, it achieves
higher accuracy. On the basis of considering spatial information, RF develops into Random Forest for
spatial data (RFsp) (Hengl et al., 2018) and Random Forest Spatial Interpolation (RFSI) (Sekulic et al.,
2020). These method have been applied to many fields such as soil water quality, marine environment,
geological exploration, air quality, etc. But they are not discussed for the small sample problem. And the
number of meteorological stations set up in a region is often insufficient to study the situation of the
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entire region because of the limitations of terrain, financial resources and other conditions. So, ML may
have insufficient fitting in case of insufficient samples. And with the progress of productivity, the demand
of social and economic life for the delicacy and timeliness of geospatial information is further
highlighted. It is of great practical significance to develop spatial prediction models and improve the
mapping level in the case of small samples.

The methods for small sample learning are roughly divided into three categories: small sample learning
methods based on data augmentation, small sample learning methods based on metric learning, and
small sample learning methods based on meta-learning (Wang, 2022). Data augmentation is to add new
data to the original dataset, which can be unlabeled data or composite labeled data. In supervised data
augmentation, it is divided into single sample data augmentation and multi sample data augmentation.
Single sample data augmentaion is performed around the a sample itself. Multi data augmentation uses
multiple samples to generate new samples, such as synthetic minority over-sampling technique(SMOTE)
(Chawla et al., 2002), mixup (Zhang et al., 2017). These data augmentation methods are combined with
ML to form many methods to deal with small sample learning.

In the field of geoscience, neural network(NN) (Lawrence et al., 1997) has been integrated with data
augmentation technology and widely applied to the classification of hyperspectral images(HSIs). For
example, Li et al. (2019) use deep convolutional neural network(CNN) to extract pixel-block pair (PBP)
features, and decision fusion is utilized for final label assignment. Results demonstrate that this method
can outperform support vector machine with the composite kernel (SVM-CK) (Li et al., 2019) and multiple
classifier systems-based SVM with random feature selection (SVM-RFS) (Waske et al., 2010). Generative
adversarial network(GAN) has been practical and effective in HSIs classification(Zhu et al., 2018). And
improved Wasserstein GAN is morecapable of generating similar radar images while achieving higher
structural similarity results(Lee et al., 2020). Accion et al. (2020) introduce Dual-Window Superpixel(DWS)
data augmentation on the basis of CNN. Experimental results show that the method is effective in HSIs in
classification. In prediction aspects, Li et al. (2022) use window offset, scaling and rotation data
augmentation and deep CNN to predict subsurface mineral deposits. And this method can efficiently
predict mineral prospective areas where there are few ore deposits. But its data enhancement method is
to enhance samples by observing from different angles and distances. It is not applicable to station data.
Yang el al. (2022) adopt cropping operations to generate sufficient training samples and utilize LeNet,
AlexNet and VggNet to predict mineral deposits. LetNet can outperform other method. But its cropping
data augmentation is to operate on the image. Huang el al. (2020) propose spatial autocorrelation-based
mixture interpolation(SABAMIN). Compared with traditional ML, it’s accuracy is improved. However, it use
kriging prediction to create reliable pseudo data. In general, kriging has high theoretical requirements. And
it is relatively difficult to fit the variogram.

To sum up, the combination of data augmentation and ML has been applied to the classification and
prediction aspects of geosciences, especially in the classification aspcets. However, it is relatively less
used in the prediction aspects. In addition, the process of generating pseudo data by kriging interpolation
is relatively complex in the application process. Data augmentation methods such as clipping are not
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applicable to station data. Therefore, this paper proposes the Random Forest Spatial Interpalation-
Modified Unsampling(RFSI-MUS) based on the above problems. It is mainly used in the RFSI model to
enhance the data of observation sample points through the modified unsampling method, as to solve the
underfitting phenomenon in the RFSI model. The modified unsampling mainly reflected in the following
two aspects. Firstly, in the process of selecting nearest points, it is to select points with similar geographic
information in some aspects of the category after classification. Secondly, the selected difference is for
each category. In order to verify the effectiveness of the method proposed in this paper, the precipitation
data set of Chongqing is used to compare RFSI-MUS with Random Forest(RF), RFSI and RFSI-Mixup.

2. Study Area And Data Set

2.1 Study area
Chongqing is selected as the study area to validate the performance of the proposed method. Chongqing
is located in Southwest China and the upper reaches of the Yangtze River. It is surrounded by Daba
Mountain, Wuhui mountain, Wuling Mountain and Daluta mountain in the north, East and south. The
landform is dominated by hills and mountains, with a large slope area. It is known as "mountain city".
The following map (see Fig. 1) shows distribution of digital elevation model (DEM).

2.2 Meteorological data
The raw station data of precipitation were collected from China Meteorological Information Center
(http://data.cma.cn/). This paper downloads the daily data of 11 stations of Chongqing in January 2018.
The daily rainfall measurements are in units of 1/10 of a mm. To obtain the precipitation in January, the
daily precipitation is averaged. The map(Fig. 1) shows the locations of 11 stations.

2.3 Auxiliary data for multiple covariates
Multiple covariates is important to improve model performance. For example, latitude, longitude and
altitude as covariates to predict temperature (Mohsenzadeh Karimi et al., 2020). Beheren et al. (2018) use
educlidean distance as covariates. Land surface temperature (LST) is also widely used for the prediction
of precipitation (Alvarez et al., 2014). Therefore, this paper selects elevation, humidity, LST, NDVI and
GPM precipitation as covariates to predict precipitation. The following Table 1 is specific information of
multiple-covariates and their data source. 
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Table 1
Multiple-covariates for the prediction

Type Spatial resolution Temporal resolution Data source

Elevation 30m \ GDEMV2

NDVI 1km Monthly MOD13A3

LST 1km 8-days MOD11A2

GPM 0.1° Monthly V06(GPM_3IMERGM)

Humidity 1km Daily \

Elevation were collected from Geospatial Data Cloud (http://www.gscloud.cn/). Spatial resolution is 30m.
GPM precipitation, NDVI, LST were collected from National Aeronautics and Space Administration(NASA)
(https://pmm.nasa.gov/). Spatial resolution of GPM precipiatation is 0.1°. In order to unify the spatial
resolution, this paper adopts the resampling technology to unify the covariates spatial resolution to 1km.
In addition, the time resolution of HUM is every day. LST time resolution is 8 days. LST data includes
daytime surface temperature (LSTd) and nighttime surface temperature (LSTn). To obtain the monthly
average humidity and LST, average the Humidity of every day and the LST of every 8 days.

3. Methodology
This paper adopts the four SP methods of RF, RFSI, RFSI-Mixup and RFSI-MUS to predict the monthly
average precipitation of Chongqing. In order to verify them, leave-one-out cross validation (LOOCV) is
used to evaluate acuracy criteria. Figure 2 show the flow chart of SP using these methods.

3.1 Random Forest and Random Forest Spatial Interpolation
RF(Breiman, 2001) algorithm is an integrated learning method based on bagging proposed by Breiman in
2001. It can be used for data classification and regression prediction by constructing multiple decision
trees to deal with the relationship between independent variables and dependent variables. RF builds a
large number of tree models. The importance of various eigenvalues is integrated and screened, and the
importance of different eigenvalues is fully considered to select the optimal sample eigenvalue to find the
optimal solution. In order to obtain the final predicted value, average the values of all predicted values. RF
model predictions can be written as

1
Considering that nearby observations carry information about the value at a prediction location, RFSI
model is proposed. It is as follows:

∧
z(s0) = f (x1 (s0) ,x2 (s0) , ⋯ ,xm (s0))
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2
where the xi(s0)(i = 1,2,…,m) are covariates at location s0, the is prediction at location s0, the z(sj)(j = 
1,…,n) and dj are the j-th nearest observation and euclidean distance from s0.

3.2 Random Forest Spatial Interpolation with Mixup (RFSI-
Mixup)
RFSI-Mixup is mainly used to deal with the problem that the number of observation points is too small in
the process of training the RFSI model, which leads to the lack of fit to the prediction. It mainly uses the
mixup method on the basis of RFSI to expand the sample size of training points in pairs, so as to solve
the problem of small observation points in the RFSI training process. The mixup mainly uses E.Q. (3)-(4)
for data enhancement.

3

4

where , zMixup is new covariate and observation used mixup. And , . As the pseudo
data generated in mixup combination is kept between two points, it may not be suitable for too large
labels. Therefore, when the data of one station is twice that of other stations, this paper adopts the
following label combination method:

5
Pseudocode of algorithm for SP based on RFSI-Mixup model is shown in Table 2. 

 

∧
z(s0) = f (x1 (s0) ,x2 (s0) , ⋯xm (s0) ,d1, z (s1) , ⋯ ,dn, z (sn))

ẑ(s0)

x
Mixup
i = φxi (sk) + (1 − φ)xi (sl)

zMixup = φz (sk) + (1 − φ) z (sl)

xMixup
i φ ∈ (0,1) k,l ∈ i

zMixup = z (sk) +z (sl)
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Table 2
Pseudo code of SP algorithm based on RFSI-Mixup

Input: Mtry, min.node.size, sample fraction, num.trees of RF parameters of 500.

Covariates and observations of chongqing, L = 0.05,0.1,…,0.95.

Output: predictions, uncertainty, MAE, RMSE, R2, CCC

1. Observations and its covariates devided 11 groups,obsk(k = 1,2,…,11).

2. for l in 1 to 19

for j in 1 to 500

data_test = obsk

data_train = obs− k

Use Eq. (3)-(5) for data_train to augmentation.

Train RFSI.

Calculate MAE of data_test.

end

end

3. Select the RFSI parameter corresponding to the minimum MAE.

4. Train optimal RFSI model.

5. for i in 1 to 11

Implement 2–4.

end

6. LOOCV for obsk(k = 1,2,…,11).

7. Calculate MAE, RMSE, R2, CCC.

8. Predict all points precipitation and uncertainty of Chongqing.

9. Mapping of predictions and uncertainty.

3.3 Random Forest Spatial Interpalation with Modified
Unsampling (RFSI-MUS)
As mixup only combines data in pairs, it does not consider the spatial location relationship between
points. In other words, the greater the similarity of the points whose spatial positions are close to each
other. In the combination process, the combination value fluctuates between two points resulting in the
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inability to meet the diversity of the expanded sample. That is, the predicted value will be too large or too
small in the process of boundary point prediction, so the error will be too large. As for the shortcomings of
mixup, this paper proposes the RFSI-MUS model. Firstly, the observation points are classified according to
the similarity of precipitation, spatial distance and covariates. To ensure that there is not much
information about observation points, each category should contain at least three observation points.
Secondly, the similarity points of verification points are selected in the calss according to precipitation,
spatial distance, etc. Finally, according to E.Q.(6)-(7) enhance data. Compared with the unsampling, this
paper uses the difference of each class, and ensures that its covariates and precipitation are positive in
the process of selecting random numbers.

6

7
where ,  is differences of class, , zMUS is new covariate and observation used modified
unsampling. a is maxium number that satisfies the condition of . The classification and
of observation points pseudo code based on Chongqing are shown in the Fig. 4 and Table 3. The
selection of covariates depends on their importance.

 

xMUS
i = xi (sk) ± rand (0,a) Δxi

zMUS = z (sk) ± rand (0,a) Δz

Δxi Δz xMUS
i

xMUS
i  , zMUS>0
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Table 3
Pseudo code of spatial prediction algorithm based on RFSI-MUS

Input: Mtry, min.node.size, sample fraction, num.trees of RF parameters of 500.

Covariates, observations of Chongqing.

Output: predictions, uncertainty, MAE, RMSE, R2, CCC

1. Classification based on similarity of covariates, distance and precipitation.

2. Calculate differences, maximum(M), minimum(m) for each class.

3. Observations and its covariates devided 11 groups, obsk(k = 1,2,…,11)

4. Select nearest points nobsk in the class for obsk.

5. for i in 1:m

Extract random number.

if = Mi

use E.Q. (6) or (7) ‘+’ to data augmentation.

else if  = mi

use E.Q. (6) or (7) ‘-’ to data augmentation

else

use (6)-(7) to data augmentation.

end

6. The data after data augmentation and obs− k combination into .

7. for j in 1:500

data_test = obsk

Use to trian RFSI.

Calculate MAE of data_test.

end

8. Select the RFSI parameter corresponding to the minimum MAE.

nobs
i

k

nobs
i

k

obs
MUS

k

obs
MUS

k
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Input: Mtry, min.node.size, sample fraction, num.trees of RF parameters of 500.

Covariates, observations of Chongqing.

9. Train optimal RFSI model.

10. for l in 1 to 11

Implement 4–9.

end

11. LOOCV for obsk(k = 1,2,…,11)

12. Calculate MAE, RMSE, R2, CCC,

13. Predict all points precipitation and uncertainty of Chongqing.

14. Mapping of predictions values and uncertainty.

3.4 Accuracy Assessment and Uncertainty Analysis
To verify the validity and accuracy of prediction of the RFSI-MUS model, This paper uses LOOCV method
to evaluate the model performance. And it use the following performance criteria. It is Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Coefficient of Determination ( ), Concordance Correlation
Coefficient (CCC). These performance criteria can be written as

8

9

10

11

R2

MAE =
N

∑
r=1

|ẑ (sr) − z (sr)|
1

N

RMSE =





⎷

N

∑
r=1

(ẑ (sr) − z (sr))
21

N

R2 = [1 − ]%
SSE

SST

CCC =
2ρσẑσz

σ2
ẑ

+ σ2
z + (μẑ − μz)

2
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Furthermore, in order to verify the validity of RFSI-MUS in selecting nearest points and classification, we
discuss the differences of the whole study area and the nearest points which are only the similarity of
spatial distance. The models are RFSI-MUS-D and RFSI-MUS-N respectively. In addition, in order to
measure the uncertainty of the whole study area, the following performance criteria is adopted as the
error measurement in this paper.

12
where the  and  are the prediction and observation at cross-validation location sr, N is total
number of cross-validation location. SSE is the sum of squared errors at cross-validation locations and
SST is the total sum of squares , are the predicted and observed variance. ,  are the predicted
and observed mean.  is s the correlation coefficient between prediction and observation.

4. Results And Analysis

4.1 The prediction result of each method
The SP based on RF, RFSI, RFSI-Mixup, RFSI-MUS, RFSI-MUS-D,RFSI-MUS-N models showed in Fig. 5. All
results showed highest predicted precipitation in the east of Chongqing, and low predicted precipitation in
the west of Chongqing. According to DEM of Fig. 1, the elevation in the west of Chongqing is low, while
that in the east is high. This trend is consistent with the characteristics that the higher the elevation is, the
higher the precipitation is.

Compared six precipitation prediction, the prediction is more high in small area south-east of Chongqing
based RF, RFSI and RFSI-mixup. Especially in the area where the precipitation of the station data is not
high, the predicted precipitation is high. But in some corresponding regions it does not have high
precipitation based on RFSI-MUS. And combine two models RFSI-MUS-D and RFSI-MUS-N, They have
effectively improved the situation. So, RFSI-MUS is a good choice for SP.

4.2 Evaluation and Analysis of Results
According to E.Q. (12), Fig. 6 provides the spatial distribution of prediction uncertainty by different
methods. From this figure, the uncertainty of RF is relatively high. The difference in uncertainty is mainly
concentrated in the southeast and northeast of Chongqing. It can be seen from the station map in Fig. 1
that there are few station points in this area, which makes the uncertainty in this area relatively high. By
contrast, the uncertainty of RFSI-MUS is relatively low. Compared RFSI-MUS-D and RFSI-MUS-N, the
uncertainty of RFSI-MUS is also relatively low. Therefore, the nearest points of the similarity of spatial
distance, precipitation, covariates and differences of each class selected by RFSI are valid.

σ (s0) =

∧
z0.841 (s0) −

∧
z0.159 (s0)

2

ẑ (sr) z (sr)

σ2
ẑ σ2

z μẑ μz

ρ
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The cross validation results of the proposed RFSI-MUS model with RF, RFSI, RFSI-Mixup, RFSI-MUS-D and
RFSI-MUS-N are shown in Table 4. Since the CCC and R2 of RF and RFSI are near 0, they are not shown in
the table. It is found by comparison that RFSI-MUS is the largest and RF is the smallest in terms of
predicted accuracy. In terms of MAE, RFSI-MUS is the smallest and RF is highest. In addition, it can be
seen from the correlation plot between the observed values and the predicted values in Fig. 7 that RF,
RFSI, RFSI-Mixup, RFSI-MUS-D and RFSI-MUS-N are relatively dispersed compared with RFSI-MUS. It is
also confirmed that the RF, RFSI, and RFSI-Mixup, RFSI-MUS-D and RFSI-MUS-N in Table 3 have higher
RMSE and lower R2 and CCC. 

 
Table 4

Accuracy metrics of four prediction methods based on
LOOCV

Method MAE RMSE R2 CCC

RF 3.02697 4.16993 \ \

RFSI 2.84463 3.8273 \ \

RFSI-Mixup 1.4193 1.8027 0.7818 0.8465

RFSI-MUS 0.9848 1.6225 0.8233 0.8752

RFSI-MUS-D 1.2054 2.054 0.7167 0.7894

RFSI-MUS-N 2.4151 2.9138 0.43 0.5944

Further analysis shows that RF only uses the intrinsic covariates of each point, and no other prediction
factors are introduced. In addition, when the number of observation points is small, insufficient fitting
may occur. RFSI introduces the observation value of the nearest point and the distance to the prediction
point on the basis of RF, but the accuracy is still not greatly improved. RFSI-Mixup adopts data
augmentation for sample points on the basis of RFSI. Compared with RF and RFSI, the precision has
been further improved. But mixup is only a simple combination of sample points, so it does not make full
use of geographic information. Based on the shortcomings of mixup method, the proposed RFSI-MUS
effectively uses spatial information. So, The spatial prediction error of RFSI-MUS is relatively low. And
compared with RFSI-MUS-D and RFSI-MUS-N, and also effectively verify the effectiveness of the two
points mentioned in RFSI-MUS. To sum up, RFSI-MUS is a good choice in the combination of SP and data
augmentation.

5. Conclusion
In order to obtain accurate SP results, this paper proposes RFSI-MUS that data augmentation SP model
based on modified upsampling. It not only considers the selection of nearest points of spatial location,
precipitation and covariate similarity in the process of data augmentation, but also considers the
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difference by using the classification method to increase the diversity of samples. In order to verify the
accuracy of the RFSI-MUS model, this paper conducts a comparative experiment based on the
precipitation in Chongqing. And compares RFSI-MUS with RF, RFSI, RFSI-Mixup, RFSI-MUS-D and RFSI-
MUS-N models. From the perspective of prediction mapping effect, uncertainty, and cross validation
accuracy analysis, the RFSI-MUS method is effective in SP.

In summary, RFSI-MUS has a number of important advantages over RFSI and RFSI-Mixup. Firstly,
compared with RFSI method, RFSI-MUS handles the case of few sample points. Because various reasons
such as geography and financial resources in life, sample points are difficult to meet the requirements of
ML. Therefore, the proposal of RFSI-MUS potentially solves this problem. Secondly, compared with mixup
data augmentation methods, RFSI-MUS data augmentation takes into account the first law of geography,
and is no longer a simple mechanical data augmentation. Thirdly, RFSI-MUS makes use of the
characteristics that covariates such as altitude and LST are continuous variables. During data
augmentation, they will not exceed the range of the region, so as to avoid that the covariates are too large
or too small to meet the terrain conditions.

In spatial prediction, the RF method is widely used. And it has expanded with the complexity of the data
set, such as RFsp and RFSI. However, these models do not take into account the small number of sample
points. Therefore, the RFSI-MUS proposed in this paper mainly aims at the small number of sample
points. And the experiment proves its effectiveness. However, RFSI-MUS is also expanded in other
aspects. For example, in the process of selecting nearest points, only a simple natural segment method is
used to divide the similarity of covariates. Therefore, we can discuss more effective methods to depict the
similarity of covariates later. In the process of data augmentation, although the influence of nearby points
is considered, it is still a relatively simple combination method. The combination method under various
factors can be considered in future research.
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Figure 1

DEM and Station Location Map of Chongqing
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Figure 2

Schematic representation of this paper based on Chongqing precipiatation
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Figure 3

Covariates importance for the precipitation of Chongqing: (a)RF, (b)RFSI. The importance index is scaled
to a maximum of 1.



Page 19/22

Figure 4

Covariates and station classfication for Chongqing. (d) is obtained from (a), (b), (c), precipitation and
spatial distance.
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Figure 5

Spatial prediction results of Chongqing precipitation: (a) RF, (b) RFSI,(c) RFSI-Mixup, (d)RFSI-MUS, (e)
RFSI-MUS-D, (f) RFSI-MUS-N
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Figure 6

Prediction standard error for Chongqing precipitation: (a) RF, (b) RFSI, (c) RF-Mixup, (d) RFSI-MUS

(e) RFSI-MUS-D, (f) RFSI-MUS-N
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Figure 7

Correlation plots based on observations and predictions: (a) RF, (b) RFSI, (c) RFSI-Mixup,(d) RFSI-MUS, (e)
RFSI-MUS-D, (f) RFSI-MUS-N correlation


