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Abstract
The technological breakthrough and the availability of multispectral remote sensing data have given rise to an ambitious
challenge for the classi�cation of the multispectral images accurately to support administrative bodies in decision-
making. In this paper, the multi-temporal medium resolution Sentinel-2 imagery of the densely populated urban area of
Delhi-NCR is classi�ed using SVM into �ve different land cover classes, namely water bodies, barren land, vegetative
region, road network, and residential areas. Further, the effect of different kernel functions of SVM on land cover
classi�cation performance is contrasted and the radial basis function (RBF) leads to the best results. The experimental
results are compared with the maximum likelihood classi�cation (MLC) method on different evaluation metrics. The
SVM with RBF kernel shows promising improvements in the overall accuracy by 10 percent relative to the polynomial
kernel and by 3 percent compared to MLC. The analysis of multitemporal spectral imagery of the study area re�ects the
increase in a built-up area (road network, Buildings), water bodies, and decrement in the area of barren land and
vegetation.

1. Introduction
Before the invention of remote sensing technology (RST), the main source of information about the land surface was the
data collected by surveying the geographical site physically. Due to the large land cover area, it is di�cult and time-
consuming to physically visit all the places and the information obtained is also subjected to various errors arising from
human intervention. The evolution of RST and improvements in computing power have facilitated the extraction of
meaningful information about cartographic objects from remote sensing data covering a large land cover area e�ciently
and cost-effectively as compared to manual observation. Additionally, it has also facilitated the monitoring of land
surface at regular intervals that help in change detection in land cover and land use and supports various applications
related to urban landscape planning and environment such as vegetation cover mapping(Nizalapur et al. 2011), urban
planning(Stefanov et al. 2001), monitoring water bodies (Steinhausen et al. 2018), agricultural �eld (Sishodia et al. 2020;
Magno et al. 2021), disaster management (Frazier et al. 2012), road network extraction (Miao et al. 2015; Liu et al. 2016),
encroachment detection (Shekede et al. 2015) and building detection (Sumer and Turker 2013; Rottensteiner et al. 2014).
Remote sensing data of varying spatial resolution can be obtained from satellites such as Landsat (Goldblatt et al.
2018), MODIS(Frazier et al. 2012), SPOT (Huang and Siegert 2006), Sentinel (Spoto et al. 2012), etc. The land cover
information extraction from satellite imagery heavily depends on the type of sensor, spatial resolution provides by
satellites. Based on its spatial resolution, satellite imagery can be categorized into various types, namely low-resolution
(> 30m), medium-resolution (5-30m), high-resolution(1-5m), and very high-resolution (< 1 m) imagery (Sheykhmousa et al.
2020). The low-resolution images are primarily suitable for extracting information and detecting the change in large land
areas such as forest cover, agriculture, barren land, water bodies, etc. Medium-resolution imagery contains more
information about the land cover as compared to low-resolution imagery and is ideal for obtaining contextual objects like
large building structures, highways, and change detection in urban and semi-urban settlements. The high-resolution and
very high-resolution imagery have more precise information about land cover and different contextual objects as
compared to low and medium resolution and are utilized for a more intricate extraction process.

Land cover information extraction from the urban landscape is a challenging task due to the presence of complex
heterogeneous objects and low variation in spectral properties. Several techniques have been designed for the
information extraction about different contextual urban objects from the satellite of varying resolution (Stefanov et al.
2001; Zhu et al. 2012; Isaac et al. 2017). An expert urban land cover information extraction system based on MLC and
texture analysis has been designed to classify the urban land cover into different classes, namely vacant, asphalt,
vegetation and residential from Landsat thematic map imagery of 28.5 m resolution (Stefanov et al. 2001). The urban
land cover information about 17 different classes like orchards, deep water, shallow water, commercial buildings, etc.,
have been extracted from PALSAR data using a random forest classi�er (Zhu et al. 2012). A two-stage competitive
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multiscale object-based segmentation method has been designed to classify the high-resolution aerial imagery of urban
segments into three different segments (Johnson 2013). However, the performance of the method suffers to some extent
as real-world objects don’t have any regular shape. The multi-sensory multi-spectral urban data has been classi�ed into
20 different land cover classes utilizing deep learning architecture (Xu et al. 2019). SVM has been effectively employed
to classify the urban land cover from low-resolution imagery of Landsat-5 having a maximum resolution of 120 m into 8
different classes, with satisfactory performance in extensive urban and urban segments as compared to other classes
(Yang 2011). An automated land cover information extraction technique based on the random forest has been designed
to classify the multi-temporal Sentinel-1 and 2 satellite imagery of Iran into 13 different classes, but the accuracy
deteriorates in building structure information extraction (Ghorbanian et al. 2020). An ensemble learning method using
Adaboosted random forest has been designed to detect urban land cover information from aerial ortho imagery (Isaac et
al. 2017). A pixel-based (SVM) and object (SVM and decision tree) based classi�er has been designed to classify the
urban area of SPOT imagery into various classes (Jebur et al. 2014). Similarly, the classi�cation performance of different
machine learning algorithms has been evaluated on the Boreal landscape from Sentinel-2 imagery (Abdi 2020).

Urbanization is a dynamic process and the Spatio-temporal pattern of urban land cover must be monitored which can be
achieved by RST. Due to the rapid industrialization during the last three decades, the population density of the Delhi-NCR
approximately doubles from 1991 to 2011(census of India,2022). These factors have led to the alteration of LCLU
resulting in a change in administrative authorities' policies (transportation, education, health, industry, etc.). The main
reason for selecting the study area as it has an ideal complex scene to analyze the performance of SVM kernel functions
in the urban landscape. The earlier classi�cation studies of the study area primarily deal with the use of low-resolution
Landsat satellite imagery and are unable to provide a precise classi�cation of the urban landscape as a lot of urban
components have a size smaller than the spatial resolution of the imagery (Dutta et al. 2020; Naikoo et al. 2020). The
Sentinel-2 imagery provides a comparatively high 10 m resolution, and its radiometry encompasses vegetation red edge
bands (Abdi 2020). These characteristics of Sentinel imagery make it ideal for LCLU mapping and monitoring tasks.

To handle the aforementioned issues, in this work the multispectral Sentinel-2 imagery of the complex urban landscape
of the Delhi-NCR region as shown in Fig. 1 is classi�ed into different classes namely: water bodies, vegetation, road
network, barren land, and Residential/Buildings using SVM. Further, the classi�cation performances of polynomial and
radial basis kernels are thoroughly analyzed on different evaluation metrics. It should be emphasized that since the
selection of kernel parameters affects the generalization ability of SVM, determining their optimal parameters is regarded
as crucial for the success of classi�cation. The performance of SVM is compared with the MLC method. The main
objectives of this paper are as follows: (1) to classify the urban land cover using SVM (2) to investigate the performance
of SVM on different parameters (3) to perform a cross-comparison of the classi�cation accuracies with other
classi�cation methods.

The remaining paper includes four other sections. The study area and dataset used are described in Section 2 followed
by the description of the method consisting of preprocessing and formulation of SVMs used for multiclass classi�cation
in Section 3. The experimental results and comparative analysis is discussed in Section 4. Finally, the conclusions are
drawn in Section 5.

2. Study Area And Dataset
The study area as shown in Fig. 1 25x 25 km2 situated in the National Capital Territory Delhi with adjoining districts of
Haryana (only the western area of Delhi and adjoining districts of Haryana). It is geographically located from 76058’4E to
7706’34 E longitude to 28033’52” N 28041’31” N latitudes. The study area is densely populated with large residential
structures, commercial complexes, barren land in outer regions of Delhi, and industrialization units as well. The
information extraction from such types of terrain using medium-resolution data is a challenging task. In this work multi-
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spectral Sentinel-2 A (The European Space Agency) level 1C products were obtained from USGS (2020). The sentinel-2 is
a polar-orbiting multi-spectral imaging mission consisting of twin constellations of Sentinel − 2A and 2B It has a swath
width of 290 km and a revisit time of 5 days. the detailed speci�cation of spectral bands is described in Table 1 and the
relationship between spectral bands and spatial resolution is shown in Fig. 2. The main objective of the Sentinel-2
mission is to provide high-resolution data as compared to the Landsat program to monitor LCLU classi�cation,
information extraction, change detection, disaster management, etc. In this work, multi-temporal data of pre (April) and
post-Monson (September) seasons of different years 2022 and 2020 of Sentinel-2 has been used for the study of the
land cover classes. The imagery acquired in September 2020 is categorized as Test case 1 and the imagery acquired in
April 2022 as Test case 2.

Figure 2. Relationship between spatation resolution and spectral bands

Table 2
Sentinel-2 data bands and other details

Spectral band Spatation resolution in metres Center wavelength in nm Bandwidth in nm

Band-2 10 490 65

Band-3 10 560 35

Band-4 10 665 30

Band8 10 842 115

Band5 20 705 15

Band 6 20 740 15

Band 7 20 783 20

Band 8A 20 865 20

Band 11 20 1610 90

Band 12 20 2190 180

Band 1 60 442.7 20

Band 9 60 945 20

Band 10 60 1375 30

3. Method
This section discusses the preprocessing, selection of training and validation samples, and SVM formulation used for
the classi�cation of multispectral imagery of the study area.

3.1 Preprocessing of multispectral Sentinel imagery
The sentinel-2 satellite produces Level1C data in JPG2000 format which suffers from noise during image acquisition
from different sources such as thermal, atmospheric disturbance, etc,. To eliminate the noise the Level1C data is
preprocessed according to the L2 algorithm de�ned in the Sen2Cor toolbox with SNAP tool version 8.0. The L2 algorithm
generates a pixel classi�cation map and performs atmospheric correction which transforms the top of atmosphere
re�ectance into the bottom of sphere re�ectance. The true color imagery of 10 m resolution is obtained by composting



Page 5/21

Bands 2, 3, and 4. To enhance the contrast between different contextual objects of the dense urban area image,
histogram equalization is performed (Demirel et al. 2010).

3.2 SVM formulation for multiclass Land cover classi�cation
SVM(Cortes and Vapnik 1995) is a non-parametric statistical theory-based classi�cation technique used to solve
problems that involve classi�cation(Abdollahi et al. 2018; Rana and Venkata Suryanarayana 2020) and non-linear
regression tasks(Norinder 2003; Mukkamala et al. 2005). The main objective of the SVM is to determine a hyperplane
that optimally discriminates (minimizes the misclassi�cations) the training dataset into the required number of classes
and its generalization capability is tested with testing datasets. SVM is used in a wide range of applications such as
image classi�cation(Miao et al. 2015), medical (Huang et al. 2012), and remote sensing (Demirel et al. 2011), pattern
recognition(Chen and Xie 2007) ,etc. In the last two decades, SVM has been widely used by researchers for the
classi�cation of remote sensing data of varying spatial resolution for extracting information about different contextual
objects like roads, buildings, land cover, vegetation, etc (Mukhopadhyay and Maulik 2009; Cheng et al. 2014; Wang et al.
2017; Lantzanakis et al. 2020).

For performing binary classi�cation task SVM in q dimensional space having k training sample described as,

1

where attempts to �nd a hyperplane. For linear separable case hyperplane can be de�ned
as,

2

3

Where w and b denote the normal to the hyperplane and bias respectively. Eq. (3) and Eq. (4) can be merged and can be
expressed as,

4

and this can be formulated into an optimization problem described as,

5

In the case of the non-linear separable case, the slack variable  is introduced and can be described as,

6
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Where is the penalty term and subject to constraints,

7

And in higher dimensional space (H) the linear SVM classi�er is mapped into H by using a non-linear mapping function 
 and the SVM classi�er takes the following form,

8

Where  and is the Lagrange multiplier. The computation involved in this mapping is
reduced by the kernel trick which enables the input points to spread over such that the hyperplane can be �tted(Dixon
and Candade 2008). SVM supports the following kernels linear, polynomial, RBF and Sigmoid. In LCLU classi�cation of

satellite imagery polynomial kernel  and RBF kernel are widely used. In RBF kernel
regularization parameter (C) and kernel, width  while in case of polynomial kernel parameter (C) and degree of the
polynomial kernel (d) is required. In the present work, the hyperparameters are selected by the k-fold cross-validation
process.

As discussed above, SVMs are intrinsically binary classi�ers. But, the LCLU classi�cation of multispectral imagery
involves multiclass classi�cation. To handle this situation one against one (OAO) and one against all (OAA) which are
ensembles of binary SVM (Mathur and Foody 2008).

(a) OAA ensembles: Let  be the collection of land cover classes then OAA construct a set
of binary class�ers . Each of  where is competent individually to
distinguish class from the rest of the classes . An unknown pattern is assigned to the class by selecting
maximum decision value of which can be calculated as follows,

9

(b) OAA ensembles: in this strategy, each enseable discriminate between two classes and through decision function
and involves binary classi�ers. All decisions are combined to �nd a score function for each

class and the maximum score for a particular class is calculated as follows,

10

In this work, SVM based on OAO ensembles is used for the multiclass classi�cation of Sentinel-2 imagery into different
LCLU classes.

3.3 Selection of training and testing samples

P∑r
i=1ξi

yi(wxi + b) ≥ 1 − ξi,  ξi ≥ 0

(φ)

f (x) = sign [∑
r

i=1
aiyi.K(x,xi) + b]

K(x,xi) = (φ(x).φ(xi )) ai

((x, y) + a)d) e−y||(x−xi)||
2

(λ)

α = {α1,α2,α3. . . . . . . . .αn)

{f1, f2, f3. . . . . . . . fn} fi i = 1, 2, . . . . . . . . . . . ,n

αi (α − αi)

fi(x)

a∗ =
arg max

i
fi(x) = {∑

i=S

a∗
i yiK(xi,x) + b∗}

αi αj

fij(x) n(n − 1)/2 Si(x)

a∗ =
arg max

i
fi(x) = {Si(x) = sign{fij(x)}} .
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For performing SVM based classi�cation of land cover, the training and testing samples of each class are required which
are collected by manual interpretation of true colour sentinel imagery by matching with Google earth imagery. The
arbitrary number of pixels between (100–150 pixels) of each class are selected for training. For assessing the accuracy
of classi�cation results, the different number of pixels are selected for the Sentinel imagery of 2020 and 2022 as
described in Table 2.

Table 2
validation Samples (pixels) for multi-temporal

Sentinel-2 imagery
Class Test case 1 Test case 2

Road Network 334 501

Vegetation 313 366

Barren Land 381 523

Water bodies 383 519

Residential/Buildings 350 506

4. Experimental Results And Comparative Analysis
This section discusses various experimental results of the classi�cation of the multi-temporal Senitnel-2 imagery
categorized as test case 1and test case 2. The results are evaluated on different evaluation metrics and �nally the
experimental results are compared with well known parameteric method (MLC).

4.1 Evluation metrics
The classi�cation performance of SVM is evaluated using several metrics obtained from cross-tabulated data (error
matrix). Which includes overall accuracy (OAC), producer accuracy (PAC), user’s accuracy(UAC) and Kohen’s Kappa
(KPS) (Fung and Ledrew 1988; Foody 2002). The PAC is the number of correctly predicted samples divided by the total
number of samples of a particular class and is a measure of the error of omission which can be calculated from the error
matrix as,

11

The UAC measures the accuracy from the point of view of the user for a particular class. it is the number of correctly
classi�ed samples divided by total samples and measures the error of commission which can be calculated as,

12

The OAC measures the overall accuracy of classi�cation i.e., correctly classi�ed samples divided by the total number of
samples and can be calculated as,

UAC = ∗ 100
Xii

∑X+i

PAC = ∗ 100
Xii

∑Xi+
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13

The KPS(Cohen 1960) is an agreement between model and expected values, it covers both errors of commission and
omissions errors. KPS depicts the performance of classi�cation as compared to reference data and can be calculated as,

14

4.2 Experimental results and comparative analysis
This section discusses the experiments performed on multi-temporal multispectral Sentinel-2 imagery using SVM and the
performance of RBF and polynomial is kernel is evaluated. Furthermore, the classi�cation performance of SVM is
compared with parametric and widely used MLC classi�ers.

The experimental results on the imagery of Test case 1 using SVM with RBF and polynomial kernel are shown in Fig. 2
and Fig. 3. The performance of these kernels is calculated on various accuracy assessment metrics PAC, UAC, OAC and
KPS, and the results are shown in Tables 3 and 4. The RBF kernel has better OAC and KPS values as compared to the
polynomial kernel which is re�ected in experimental results.

Table 3
Error matrix of Test case 1 imagery with RBF kernel

  Road
Network

Vegetation Barren
Land

Water
bodies

Residential/Buildings Total User’s
accuracy

 

Road Network 328 0 6 1 0 335 97.91  

Vegetation 1 313 0 0 0 314 99.68  

Barren Land 1 0 360 0 5 366 98.36  

Water bodies 1 0 0 382 0 383 99.74  

Residential/Buildings 3 0 15 0 345 363 95.04  

Total 334 313 381 383 350 1761    

Producer’s accuracy 98.2 100 94.49 99.74 98.57      

Overall Accuracy 98.13

Overall kappa 0.9765

OAC = ∗ 100
∑n

i=1Xii

∑n
i=1Xii

KPS =
N∑n

i=1xii − ∑n
i=1xi+x+i

N 2 − ∑n
i=1xi+.x+i
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Table 4
Error matrix of Test case 1 imagery with Polynomial Kernel

  Road
Network

Vegetation Barren
Land

Water
bodies

Residential/Buildings Total User’s
accuracy

Road Network 328 198 6 1 0 533 61.54

Vegetation 1 115 0 0 0 116 99.14

Barren Land 1 0 360 0 5 366 98.36

Water bodies 1 0 0 382 0 383 95.04

Residential/Buildings 3 0 15 0 345 363 99.74

Total 334 313 381 383   1761  

Producer’s accuracy 98.2 36.74 94.49 99.74 98.57    

Overall Accuracy 86.88

Overall kappa 0.8355

To measure the temporal effects on classi�cation performance the experiments are performed on Test case 2 imagery of
the study area with RBF and polynomial kernels. The classi�cation map of imagery of Test Case 2 are shown in Figs. 4
and 5 and the accuracy assessment on different parameters is presented in Tables 5 and 6.

Table 5
Error matrix of Test case 2 imagery with RBF kernel

  Road
Network

Vegetation Barren
Land

Water
bodies

Residential/Buildings Total User’s
accuracy

Road Network 486 1 0 1 20 508 95.67

Vegetation 0 360 0 0 1 361 99.72

Barren Land 12 0 468 0 16 496 94.35

Water bodies 0 4 0 499 0 503 99.20

Residential/Buildings 2 1 34 0 463 500 92.60

Total 500 366 502 500 500 2368  

Producer’s accuracy 97.20 98.36 93.23 99.80 92.60    

Overall Accuracy :96.11

Overall kappa 0.9513
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Table 6
Error matrix of Test case 2 imagery with polynomial kernel

  Road
Network

Vegetation Barren
Land

Water
bodies

Residential/Buildings Total User’s
accuracy

Road Network 490 39 0 0 28 557 87.97

Vegetation 0 300 0 0 1 301 99.67

Barren Land 7 0 475 0 19 501 94.81

Water bodies 3 27 0 500 0 530 94.34

Residential/Buildings 0 0 27 0 452 479 94.36

Total 500 366 502 500 500 2368  

Producer’s accuracy 98 81.97 94.62 100 90.40    

Overall Accuracy : 93.62

Overall kappa 0.9199

SVM has been utilized to classify multi-temporal sentinel-2 data using one against one multiclass classi�cation
technique based on RBF and polynomial kernels. The classi�cation performances on different parameters using different
kernel function with optimized parameters on Sentinel-2 imagery of Sept. 2020 (Test case 1) is presented in Tables 3 and
4. In test case 1, it has been observed that the performance of SVM with RBF kernel has produced an OAC of 98.13 as
compared to an OAC of 88.88 with the polynomial kernel. While in terms of the KPS parameter, the RBF kernel has 0.9765
as compared to 0.8355 of the polynomial kernel. The performance of the SVM has deteriorated in the case of classifying
the road network from such densely populated areas as the road network having a width less than the spatial resolution
is not classi�ed as a road. In the case of vegetation class, the RBF kernel has produced 100% but the accuracy of the
polynomial kernel is reduced up to 40% due to its poor performance in handling low spectral variable data The road
network is generally surrounded by trees and few pixels of the vegetative region are categorized as the road network.
While in the case of buildings, land cover and water bodies classes the performance of both kernels remains
approximately the same. The classi�cation results of Sentinel-2 imagery obtained in April 2022 are presented in Tables 5
and 6 in which. The SVM kernel produced an overall accuracy of 96.11 as compared to 93.62 for the polynomial kernel.
In the case of the KPS parameter, the RBF kernel obtained the value of 0.9513 and as compared to 0.9199 of the
polynomial kernel. The low spectral variation effect between road network and vegetative is also re�ected in test case 2
as it has the lowest PAC values among all classes. For further investigation of the classi�cation performance of SVM, the
imagery of Test Case 1 is classi�ed using the MLC method and the experimental results are shown in Table 7. The OAC
and KAS values are less as compared to SVM with RBF kernel but higher than SVM with the polynomial kernel.
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Table 7
Error matrix of Test case 1 imagery by MLC

  Road
Network

Vegetation Barren
Land

Water
bodies

Residential/Buildings Total User’s
accuracy

Road Network 332 22 9 2 4 369 89.97

Vegetation 0 291 0 0 0 291 100

Barren Land 1 0 362 0 24 387 93.54

Water bodies 1 0 0 381 0 382 99.74

Residential/Buildings 0 0 10 0 322 332 96.99

Total 334 313 381 383 350 1761  

Producer’s accuracy 99.40 92.97 95.01 99.48 92.00    

Overall Accuracy: 95.85

Overall kappa 0.9481

After the analysis of the classi�cation results of imagery of test case 1 and Test case 2 with different techniques, several
crucial conclusions can be drawn. Firstly, water bodies are classi�ed with ~ 99% accuracy which shows high
classi�cation capability in complex heterogeneous scenes for this particular class. Secondly, the poorest discrimination
is against the vegetative class and SVM with RBF has performed as compared to MLC by ~ 10% in Test case 1 imagery
and SVM with the polynomial kernel by ~ 60% in Test Case 1 imagery and by ~ 20% in Test Case 2 imagery. Thirdly,
SVMs with RBF kernel outclassed SVMs with a polynomial kernel with about 10% enhancement in Test Case 1 and 3%
improvement in Test Case 2. This proves the RBF kernel's e�ciency to the polynomial kernel in handling heterogeneous
complex remote sensing data. Finally, SVMs are found more powerful (~ 3% higher) than the MLC classi�er for Test Case
1.

The classi�cation map of the multi-temporal Sentinel imagery of the study area by SVM with RBF and the polynomial
kernel is shown in Fig. 2 to Fig. 5. From these classi�cation maps, it is very hard to estimate the classi�cation accuracy
visually. Although statistical comparison of different accuracy parameters is presented to support the intuitive
comparison between classi�cations, a change detection investigation can be applied with the results of the classi�cation
maps (2020 and 2022) of RBF kernels as it has the highest classi�cation accuracy. The study area is estimated based on
% of classi�ed pixels of each class type and a change detection study is applied the results are presented in Table 8. But
the change detection period is very short and there exists a variation between spectral resolution of the different periods
because Test Case 1 imagery is of post rainy season (autumn) of the study area and Test case 2 imagery is of the spring
season.
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Table 8
Change detection study of Sentinel-2 imagery of 2020

and 2022
Land Cover Classes 2020

%

2022

%

Change

Road network 29.84 34.93 5.09

Vegetation 6.15 1.1 -5.05

Barren Land 36.84 34.52 -2.32

Water bodies 6.38 11.92 5.54

Residential/Buildings 17.51 20.78 3.27

5. Conclusion
The Sentinel-2 multispectral instrument is quite bene�cial for analyzing the earth's surface due to its coverage and
provides open source medium resolution data of 10 m. In this work, the performance of SVM kernels (RBF and
Polynomial) has been analyzed on multi-temporal Sentinel-2 data of the densely populated urban area. The land cover is
classi�ed into different classes namely, road networks, water bodies, vegetation, barren land, and buildings/residential.
By performing extensive experiments, it has been observed that the performance of SVM with RBF kernel is best in
discriminating the classes having low spectral variation between them. The experimental results of SVM with RBF kernel
are further compared with the MLC method. Future research would involve the classi�cation of Sentinel − 2 imagery with
a deep learning framework to obtain precise information about land cover and a detailed change detection study having
a difference of at least 10 years (of the same type of data and weather season) can be also performed to obtain a better
analyze the impact of urbanization.
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Figure 1

(a) Extracted Sentinel -2 imagery of the study area (b) Orginal data obtained from Sentinel-2 satellite (c) Geographical
location of the study area
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Figure 2

Relationship between spatation resolution and spectral bands
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Figure 3

Figure 2. Classi�cation map of Test Case 1 using SVM with RBF kernel
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Figure 4

Figure 3  Classi�cation map of Test Case 1 using SVM with polynomial kernel
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Figure 5

Figure 4. Classi�cation map of Test Case 2 using SVM with RBF kernel
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Figure 6

Figure 5. Classi�cation map of Test Case 1 using SVM with polynomial kernel


