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Abstract
A lithology intelligent identi�cation interpretability model is proposed based on Ensemble Learning
Stacking, Permutation Importance (PI) and Local Interpretable Model-agnostic Explanations (LIME). The
method aiming to provide more accurate geological information and more scienti�c theoretical support
for oil and gas resource exploration. Two logging datasets from the public domain were used as
experiments, and support vector machine (SVM), random forest (RF) and naive bayes (NB) were used as
primary learners, and SVM as secondary learners, to classify lithology through stacking algorithm. Then,
the evaluation indexes such as Area Under Curve (AUC), precision, recall and F1-score were used to verify
its accuracy, and PI and LIME were used to explain the lithology identi�cation model. The study shows
that the results of the stacking algorithm have the best indexes and the highest prediction accuracy. In
terms of overall interpretation, PHIND, GR and RT have the most in�uence on lithology identi�cation of a
natural gas protection area in the United States; DEN, CAL and PEF have the most in�uence on lithology
identi�cation in Daqing Oil�eld in China. Interpreted from the perspective of a single sample, the LIME
algorithm is able to give a quantitative prediction probability and the degree of in�uence of the
characteristic variables.

1. Introduction
Oil and gas are kinds of non-renewable resources. With the exploitation and consumption of human
beings, the speed and accuracy of oil and gas resource exploration are becoming higher and higher. In the
exploration of oil and gas resources, lithology identi�cation is the premise of accurately determining rock
porosity and oil saturation, and also the basis of studying geological reservoir characteristics, calculating
reserves and geological modeling. Therefore, rapid and accurate lithology identi�cation using machine
learning methods has become a research topic.

Data-driven machine learning method can effectively mine the complex nonlinear relationship between
high-dimensional features. Machine learning has developed rapidly in recent years and has been widely
used in many �elds, including geosciences (Saporetti et al. 2018, Sun et al. 2019, Saporetti et al. 2019,
Asante-Okyere et al. 2020). In lithologic identi�cation, there are also many related studies, such as
Adaboost (Han et al. 2021), random forest (RF) (Ao et al. 2019), support vector machine (SVM) (Bressan
et al. 2020), and arti�cial neural networks (Asante-Okyere et al. 2020).

Stacking integration is one of ensemble learning algorithms that uses a parallel learning approach and
an untyped algorithm (called "primary learner") to obtain the initial prediction values and a meta-learner to
further optimize the initial prediction values to obtain the �nal prediction results. In the literature (Liu et
al., 2020), a load prediction method based on a multi-model fusion Stacking ensemble learning approach
is proposed, using long short-term memory (LSTM), gradient decision tree, RF, and SVM as primary
learners, and then the results of the primary learners are further optimized by a meta-learner. The method
makes full use of the advantages of each model and has good prediction results for conventional loads.
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At present, the research of intelligent lithologic identi�cation focuses on improving the accuracy of the
model,, while the predict results of the models lack su�cient interpretation. More accurate machine
learning algorithms are less interpretable (Ibrahim et al., 2019), which limits the progress of the
identi�cation model in lithology identi�cation. In order to improve the interpretability of machine learning
algorithms and increase the reliability of identi�cation model, some interpretive algorithms have emerged
in recent years. For example, SHAP based on coronary heart disease mortality prediction (Wang et al.,
2021), applied interpretable machine learning to estimate crop yields (Mateo-Sanchis et al., 2021), and
the LIME based on tra�c safety interpretability study (Das et al., 2021).

Based on the previous research results, the ensemble learning model represented by random forest,
support vector machine and stacking algorithm is widely adopted in lithology identi�cation. In this paper,
in order to further verify the generalization ability of the ensemble learning model in lithology recognition
and prediction evaluation and improve the interpretability of the model, In the Council Grove gas reserve
located in Kansas, USA (Bohling and Dubois, 2003; Dubois et al, 2007), and Daqing Oil�eld, in China, two
public logging data sets as an example, With SVM, RF, and naive bayes (NB) as primary learners, SVM as
a secondary learner, Classi�cation prediction of lithology is made by Stacking. Precision, recall, F1-score,
Area Under Curve (AUC) were veri�ed, and the interpretability of the identi�cation model was studied by
two explanatory algorithms: PI and LIME.

2. Materials

2.1 Data description and pre-processing
Two datasets from the public domain were used in the study. Datasets 1 (Data 1) is Facies logs from
nine wells from the Council Grove gas reserve located in Kansas, USA, and datasets 2 (Data 2) has 12
wells comes from Daqing Oil�eld, China, with same logs and lithologies (Cao, 2018).

Data 1 has 9 lithologies include Nonmarine sandstone, Nonmarine coarse siltstone, Nonmarine �ne
siltstone, Marine siltstone and shale, Mudstone (limestone), Wackestone (limestone), Dolomite,
Packstone-grainstone (limestone), Phylloid-algal and ba�estone (limestone) which are studied from core
samples in every half foot and matched with logging data in well location. The dataset contains 3165
samples in total. Feature variables include �ve from wireline log measurements. See Table 1 and Fig. 1.



Page 4/23

Table 1
Data 1 description

Feature
variables

Interpretation Lithological
categories

Interpretation

GR Gamma ray log Litho1 Nonmarine sandstone

RT Resistivity measurement Litho2 Nonmarine coarse
siltstone

PE Photoelectric effect log Litho3 Nonmarine �ne siltstone

POR Porosity index Litho4 Marine siltstone and
shale

PHIND Average of neutron and density
log

Litho5 limestone

    Litho6 Dolomite

Data 2 is the actual logging data of a tight sandstone working area in Daqing Oil�eld, which has been
repeatedly tested by experts. This area is a key area for tight sandstone oil exploration mainly contains
�ve different lithology categories, i.e., mudstone, siltstone, argillaceous siltstone, silt mudstone, and oil
shale. The dataset contains 5978 samples in total. Feature variables include eight conventional logging
curves common to each well. See Table 2 and Fig. 2.

Table 2
Data 2 description

Feature variables Interpretation Lithological categories Interpretation

GR Gamma ray log Litho1 Mudstone

CAL Caliper log Litho2 Siltstone

SP Spontaneous potential log Litho3 Argillaceous siltstone

AC Acoustic log Litho4 Silt mudstone

DEN Density log Litho5 Oil shale

LLD Deep resistivity log    

LLS Shallow resistivity log    

PE Photoelectric effect log    

To ensure the reliability of the data, data preprocessing is performed on the original logging data,
including the following: remove outliers, �lter, and the normalization method of the maximum and
minimum values is used for the logging data. The calculation method is as follows:
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1

where  is the normalized logging data, and  and  are the maximum value and the
minimum value of the original logging data of the single attribute, respectively.

2.2 Correlation analysis of feature variables
There may be complex and unknown relationships between feature variables, so the degree of correlation
should be found and quanti�ed. This can help to better prepare the data to meet the expectations of
machine learning algorithms, such as linear regression, whose performance decreases as these
correlations emerge. In this paper, Spearman coe�cient is used to measure the correlation of the selected
feature variables, that is, whether the correlation coe�cient of the characteristic variables meets 

 (Chen et al., 2022a). Figure 3. (a) shows that the eight feature variables used by Data 1 all
meet the requirement of being independent of each other. As can be seen from Fig. 3. (b), among the
feature variables used by Data 2, DEN and AC have high correlation, so they choose to remove AC, and
other feature variables meet the requirements of mutual independence.

3. Methods

3.1.1 SVM
SVM constructs the widest classi�cation boundary of the data accurately and solves the non-linear
classi�cation problem (Wang et al., 2017). The algorithm calculates a hyperplane that maximizes the
distance between different categories of samples (Shankar et al., 2020), which can be applied to linearly
separable and linearly nonseparable data. SVM uses the hinge loss function to calculate the empirical
risk and adds a regularization term to the solution system to optimize the structural risk. It is a sparse and
robust classi�cation method. SVM can perform nonlinear classi�cation through kernel method, which is
one of the common kernel learning methods (Hsieh et al., 2009).

3.1.2 RF
The Bagging algorithm is a very widely used ensemble learning algorithm. In the Bagging algorithm, the
training set sample of each learner is obtained from the original training set with a randomly selected
sample of the original training set, and the size of the new training set is equal to the original training set.
Random Forest algorithm is an ensemble learning method based on Bagging algorithm with high
classi�cation accuracy and good tolerance for outliers and noise.RF can handle high dimensional data
and does not have to do feature selection. (Breiman 2001, Genuer et al. 2017,)

3.1.3 NB

Xnor =
X − Xmin

Xmax − Xmin

Xnor Xmax Xmin
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NB is a classi�cation method based on Bayes theorem and independent assumptions of feature
conditions, and is one of the most widely used models. The NBC model has stable classi�cation
e�ciency while requires few estimated parameters and is less sensitive to missing data. The naive
Bayesian algorithm assumes that the properties of the data set are independent of each other, so the
logic of the algorithm is very simple, and it will not show too much difference for different types of data
sets. Theoretically, it has a minimal error rate compared with other classi�cation methods.

3.1.4 Stacking
Ensemble learning is a basic method of data science, which depends on the results of multiple models,
that is, the results of multiple weak learners are organized, often better than a single strong model.
Stacking is a method in ensemble learning.

The framework of Stacking is shown in Fig. 4, which contains two layers of prediction model, the �rst
layer of prediction model is called primary learner, and second layer prediction model is called meta-
learner. The Stacking prediction method �rst inputs the raw data into each primary learner to obtain the
prediction results of the primary learner. Then, the prediction results of the primary learners are used as
the input of the meta-learner to get the �nal prediction results.

The Stacking prediction method combines the advantages of different learners through the integration of
multiple primary learners to make the prediction model with strong generalization ability; further, the
meta-learner is used to optimize the output results of primary learners to improve the overall prediction
accuracy (Xu, 2020).

3.2 Evaluation identi�cation results
To evaluation identi�cation results of the four models, precision, recall, F1-score and AUC were selected
as indicators. All of the evaluation metrics are the results obtained on the validation set.

Precision is the probability of actually being positive among all the predicted positive samples. Recall r is
the probability of being predicted as a positive sample in the actual positive sample. F1-score is the
harmonic average of precision and recall.

Receiver Operating Characteristic curve (ROC) and AUC are measures used to evaluate the performance
of classi�cation model. The abscissa of the ROC curve is the false positive rate (The probability of
determining a positive case but not a real case), and the ordinate is the true positive rate (The probability
that a positive case is also a real case). AUC is the area under the curve. When comparing different
classi�cation models, the ROC curve of each model can be drawn. The area under the curve can be used
as an indicator of the advantages and disadvantages of the model. The higher the AUC value, the higher
the accuracy of the classi�er (Swets, 1988).

3.3 Interpretive model for lithology identi�cation
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The unexplained lithology recognition model cannot accurately analyze the geological information,
because the machine learning model is similar to the black box, which cannot control the operation within
the model, and can only be tried between different parameters. Therefore, we need to introduce the
interpretability algorithm PI and LIME.

3.3.1 Permutation Importance
PI is an effective method to measure the importance of features unrelated to the model. It proves the
importance of a feature value by changing the size of the feature value. The greater the change, the
greater the importance (H. M. et al., 2022). The speci�c steps are as follows: 1) select a feature after the
model training; 2) place random numbers for the feature and calculate the new prediction results; 3) the
in�uence of the feature on the model prediction can be obtained by comparing the old and new prediction
results.

3.3.2 Local Interpretable Model-agnostic Explanations
LIME is a model-independent local interpretability algorithm that was proposed by Marco (Ribeiro et al.,
2016) in 2016. LIME can truly re�ect the behavior of the classi�er when predicting samples. It targets a
single sample and assumes that the local model is a simple linear model to explain the local data points.
LIME makes the input values with small perturbations around the local points, observes the prediction
behavior of the model, and assigns weights according to the distance between the disturbance points
and the original data, so as to obtain an interpretable model and prediction results. The speci�c formula
is as follows:

1

For the explanatory model g of example x, the approximation of model g and the original model f is
compared by minimizing the loss function. Formula (6):  represents the model complexity of the
explanatory model g, G represents all possible explanatory models,  de�nes the neighborhood of x, and
makes the model interpretable by minimizing L.

4. Results And Discussion

4.1 Results of models

4.1.1 Experimental Results in Data 1
Four models, SVM, RF, NB, and Stacking, were used to identify the lithology in Dataset 1. The results of
precision, recall and F1-score indicators are shown in Table 3. The results show that the four models
constructed in the training set have good performance in lithology intelligent recognition, and the

Mexplanation  (x) = argmin
g∈G

L (f, g, πx) + Ω(g)

Ω(g)

πx
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identi�cation result of Stacking is the best. The three evaluation indicators of Stacking have the highest
mean. The precision of Stacking was 86.40%, recall was 92.23% which is more than 6% higher than the
three primary models, and F1-score was 89.12%, showing the effectiveness of ensemble learning. At the
same time, it can be seen from the standard deviation analysis that Stacking also has certain advantages
in stability and can overcome the imbalance of category number to a certain extent.

 
 
 

Table 3
Lithology identi�cation result in Data 1

Models Precision Standard
Deviation

Recall Standard
Deviation

F1
value

Standard
Deviation

SVM 80.00% 11.25% 70.65% 15.18% 76.13% 15.48%

RF 84.24% 8.83% 79.32% 10.39% 82.90% 9.34%

NB 81.63% 7.72% 86.39% 14.84% 84.38% 7.53%

Stacking 86.40% 4.58% 92.23% 7.38% 89.12% 2.98%

In this study, the ROC curves were analyzed for each of the four models (Fig. 4). The micromean AUC of
SVM was 0.82 and macro mean AUC value was 0.72, with Class5 AUC value of 0.85, which was the best
discrimination, and Class4 AUC value of 0.59, the worst discrimination. The micro-mean AUC values for
both the RF and NB were 0.90, and the macro-mean AUC values were 0.82 and 0.87, respectively. In RF
prediction results, Class4 and Class6 identi�ed poorly, and the AUC values did not exceed 0.7. In the
identi�cation results of NB, the identi�cation effect of Class2 was relatively poor, but the AUC value
reached 0.8, indicating the overall identi�cation is good; the AUC of Stacking was 0.95, the macro average
was 0.92, the lowest AUC value was 0.86, and the highest AUC value was 0.96, Class1 and Class5,
indicating that the model identi�cation results are very accurate, whether in a single category or on the
whole.

 

4.1.2 Experimental Results in Data 2
Four models, SVM, RF, NB, and Stacking, were used to identify the lithology in Dataset 2. The results of
precision, recall and F1-score indicators are shown in Table 4. The lithology recognition result of SVM is
poor, precision was 50.36%, recall was 68.28% and F1-score was 62.06%; The lithologic identi�cation
results of RF and NB are not particularly excellent, and Stacking has the best lithologic identi�cation
results. In Stacking, precision was 84.48%, recall was 89.43%, F1-score was 86.09%, more than 7% higher
than the other three models showing the effectiveness of ensemble learning in complex situations.
Meanwhile, it can be seen from the standard deviation analysis that Stacking also has certain
advantages in stability.
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Table 4
Lithology identi�cation result in Data 2

Models Accuracy Standard
Deviation

Recall Standard
Deviation

F1
value

Standard
Deviation

SVM 50.36% 21.67% 68.28% 19.35% 62.06% 15.98%

RF 70.34% 9.41% 73.48% 13.84% 71.90% 9.56%

NB 74.49% 8.46% 82.73% 15.48% 78.74 8.67%

Stacking 84.48% 5.93% 89.43% 6.72% 86.09% 3.85%

In this study, ROC curves were analyzed for the four models (Fig. 5). The micromean AUC value of SVM
was 0.77, and the best identi�ed macro-average AUC value was 0.53. The AUC value of Class5 was 0.35,
indicating the worst discrimination effect. RF and NB have the micromean AUC values of the 0.86 and the
macro-mean AUC values of 0.70 and 0.82, respectively. In RF prediction results, Class2 and Class5 were
less well identi�ed, and the AUC values did not exceed 0.6. In the identi�cation results of NB, the
recognition effect of Class2 is relatively poor, and the AUC value does not reach 0.7, indicating that the
overall identi�cation is poor; the AUC of Stacking is 0.91 and the macro average is 0.86, and the overall
performance is better than the other three models. The AUC value of Class2 was the lowest, 0.72, a large
improvement over other models; Class5 had the highest AUC value of 0.96, the highest identi�cation
accuracy in all categories of all models.

 

4.2 Interpretability of the model

4.2.1. The importance of factors in Data 1
Different evaluation factors affect the accuracy of lithology identi�cation differently, so this study
determines the in�uence size of the evaluation factors from a global perspective. That is, the importance
of each evaluation factor is calculated, and the higher the value of importance, the greater the effect of
this factor on the evaluation results. The importance order from large to small is Average of neutron and
density log, Gammara ylog, Resistivity measurement, Porosity index and Photoelectric effect log (Fig. 6).
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4.2.2. Lithology recognition model local interpretation in
Data 1
The LIME algorithm selects samples for categories 5 and 3 (Fig. 7 and Fig. 8). The results show the
contribution of each feature to the prediction result of this sample. The positive number in the �gure
represents that the feature has a positive effect on the result, and the negative number is the opposite.
From Fig. 7, the model has an 82% probability for sample Data 1–27 being identi�ed as a Class5. The
reason for the model classifying this sample was based on such factors as PHIND, RE and PRO, with
PHIND having the highest contribution of 0.494, consistent with the results explained by the global
model. In addition, the contribution of RT and GR is negative, which becomes the interference that
predicts the sample to be Class5.

 
The model with 66% probability for sample 43 being identi�ed as Class3. The rationale for the model to
classify this sample is based on POP, GR, PE, PHIND, and RT, indicating that all features are supporting
the result of this prediction, but the effect size is different.

 

4.2.3 The importance of factors in Data 2
The importance order from large to small is Density log Caliper log Photoelectric effect log Gamma ray
log Spontaneous potential log Shallow resistivity log Deep resistivity log(Fig. 9).

4.2.4. Lithology recognition model local interpretation in
Data 2
LIME identi�es categories 3 and 1 of category 1 (Fig. 10 and Fig. 11) and interpreted them. The results
show that the model has a 64% probability for sample Data 2-111 being identi�ed as Class3. The
rationale for the model to classify this sample was based on such factors as DEN, CAL and GR, of which
DEN had the highest contribution of 0.195. The results are consistent with the global interpretation. In
addition, SP, LLD and LLS are the interference to predict Class3, but less interference. The model has an
89% probability for sample Data 2-243 to be identi�ed as a Class1. The reason for the classi�cation of
this sample is based on such factors as PEF, CAL, DEN, SP, LLS, and LLD. In addition, GR becomes the
interference that predicts the sample to be Class1.

 

4.3 Discussion
Previous machine learning-based lithology identi�cation studies generally re�ect the importance of
features, but it is related to the machine learning algorithm itself, so the method is not universal. However,
according to the different in�uence degree of different characteristics on the lithology identi�cation
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results, this study adopts the PI algorithm unrelated to the model algorithm itself from a global
perspective, which can more objectively explain the importance of identifying different input features of
the model.

In addition, in view of the problem of previous lithology recognition models, this study introduced LIME
algorithm to locally explain the model and reveal the speci�city of different samples for different
categories. The results show that different input characteristics will have different effects on the
classi�cation of each sample, including support and interference, and the size of the effect is also
different.

Based on the results of the two interpretation algorithms, we know that in Data 1, PHIND, GR and RT are
the most important feature variables of the model to identify lithology, and PHIND usually has a positive
effect on the identi�cation results. In Data 2, DEN is the most important variable of the model to identify
lithology and has a high positive effect; SP, LLD and LLS contribute less, but usually have a negative
impact on the identi�cation results. The results of this interpretation have some signi�cance in reality,
indicating that the geological background of the two regions is obviously different, and there are obvious
differences in the lithology of the rocks storing natural gas and oil, which are the different in�uencing
factors leading to lithology identi�cation, indicating that we can trust our prediction model to a certain
extent.

5. Conclusion
Taking a natural gas protection area in the United States and Daqing Oil�eld, China, GR, R, PE, POR, GR,
PHIND, CAL, SP, AC, DEN, LLD, LLS and PE are selected as the characteristic variables for identi�cation,
and the ensemble learning model is combined with PI algorithm and LIME algorithm to identify lithology
and obtain high identi�cation accuracy. The main conclusions are:

1. The Ensemble Learning Stacking algorithm is most suitable for lithology identi�cation of the two
data sets, with Data 1 identi�cation accuracy 86.40%, recall 92.23%, F1 score 89.12%, Data 2
identi�cation accuracy 84.48%, recall 89.43%, F1 score 86.09%, and each index are better than the
other three machine learning models. According to the standard deviation analysis results, Stacking
has certain advantages for lithology identi�cation in stability, and can effectively overcome the
imbalance of category number.

2. From the perspective of global interpretation, the three characteristic variables PHIND, GR and RT
have the greatest in�uence on the lithology identi�cation of a natural gas protection area in the
United States; DEN, CAL and PEF have the greatest in�uence on the lithology identi�cation of Daqing
Oil�eld in China. From the perspective of single sample interpretation, the LIME algorithm is able to
give a quantitative prediction probability and the degree of in�uence of characteristic variables.
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Figure 1

Data 1 (a) Well log data (b) Distribution of lithologies
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Figure 2

Data 2 (a) Well log data (b) Distribution of lithologies
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Figure 3

Characteristic variables correlation heat map of Data 1 (a) and Data 2 (b)
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Figure 4

The framework for Stacking
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Figure 5

Fig. 4 ROC curve analysis plots of the four models in Data 1
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Figure 6

Fig. 5. ROC curve analysis plots of the four models in Data 2



Page 21/23

Figure 7

Fig. 6. Importance of the feature variable in Data 1

Figure 8

Fig. 7. LIME interpretation of sample 27 in Data 1

Figure 9

Fig. 8. LIME interpretation of sample 43 in Data 1
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Figure 10

Fig. 9. Importance of the feature variable in Data 2

Figure 11

Fig. 10. LIME interpretation of sample 111 in Data 2
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Figure 12

Fig. 11. LIME interpretation of sample 243 in Data 2


