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Abstract
Use cases such as shadow or solar potential analysis require the use of the LOD2 building models (Level
of Detail 2) and the generation of the LOD2 models requires the proper generation of the roof geometries.
In general, obtaining roof type information and succeeding generations of the LOD2 models requires
expensive aerial surveys and time-consuming construction processes. In this study, a methodology to
generate LOD2 building models using only 2D building footprints and aerial imagery is explained to
overcome these challenges. Using this methodology, condominiums could be generated as 3D if
condominium unit plans are provided as well. The roof type information has been obtained from an aerial
image that covers the entire study area using a CNN (Convolutional Neural Network) model with an 89.9
% accuracy rate. Then, the roof geometries have been constructed procedurally by extending and
implementing the Straight Skeleton (SS) algorithm for three main types of roofs: flat, gable and hipped.
These constructed roof geometries have been combined with LOD1 block models generated by extruding
the 2D footprints according to the height attribute. The proposed methodology has been developed as a
web-based solution utilizing RESTful web services with modern web technologies. In summary, the main
novelty of the study is based on two contributions: the extension of the SS algorithm for the construction
of roof geometries and the web-based generation of LOD2 building models.

1. Introduction
With the rapid development in data acquisition methods and computer graphics, 3D City Models (3DCM)
are widely used, mainly in the city planning industry. A literature review about 3DCMs and their
applications can be found in [1]. With the spread of open data policies, which are based on institutions
making their data publicly available [2], many institutions in Europe and the United States share 3DCMs
as open data via the web using web technologies HTML5 and WebGL. Rotterdam, Amsterdam, Delft,
Berlin, and New York are notable ones.

Most of the 3DCMs are found as LOD1 block models in practice since LOD2 models are much more
difficult to obtain because of the need for time-consuming processes and expensive data acquisition
techniques [3]. The minimum required level of detail in 3DCMs varies according to use cases [4]. While
LOD1 models are sufficient for some use cases such as shadow analysis, other use cases require general
roof geometries, such as solar analysis [5, 6].

In this work, the possibility of constructing LOD2 models using 2D data such as building footprints and
aerial images has been investigated. It is exceedingly difficult to model building roofs from 2D building
footprints without roof type information. Deep learning techniques (DL) have been used to derive roof
types from aerial imagery to overcome this issue.

DL is a machine learning technique that a computer model learns to perform classification tasks directly
from images, text, or sound. DL models can achieve state-of-the-art accuracy, sometimes exceeding
human-level performance. Models are trained by using a large set of labelled data and neural network
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architectures that contain many layers [7]. Thus, a DL model called CNN (Convolutional Neural Network)
has been used to classify three main roof types with an aerial image in this work. After the classification,
extracted roof type information has been used to construct roof geometries. The three main roof types
are Hipped, Gable and Flat.

The generation of 3DCMs as LOD2 is done using procedural modelling techniques (PM) in general [8, 9].
PM is an umbrella term which includes many modelling techniques such as L-Systems, fractals, and
shape grammar. All these techniques aim to create multiple instance models by utilizing a set of
predefined rules and algorithms. The batch modelling approach of PM minimizes user interaction and
labour. The PM technique has been used with roof type information that is derived via DL to be able to
construct roof geometries.

LOD1 block models have been generated via footprint extrusion [10, 11]. Roof geometries have been
constructed using the Straight Skeleton Algorithm [12] and Sweep Line Algorithm [13]. Then, roof
geometries are added to the top of block models. RESTful web services have been developed with web
technologies to be able to implement the proposed methodology as a web-based solution. The entire
computational cost of the model generation has been loaded to the server. Finally, constructed roof
geometries and generated 3DCM have been visualized in the client’s browser via HTML5 and WebGL.

There are two main novel contributions presented in this work. First, the Straight Skeleton algorithm has
been extended using the Sweep Line algorithm to construct 3D roof geometries whose types are gathered
with aerial imagery. Then, a web-based architecture for the generation of the LOD2 building models with
condominium units has been proved and implemented.

The rest of the paper is organized as follows. In Section 2, the related studies to our study are criticized. In
Section 3, the general architecture and the development essentials are described. In Section 4,
experimental results and possible drawbacks are discussed. Finally, Section 5 states the conclusion and
the future work.

2. Related Work
One widely used method to generate 3DCM is the extrusion from 2D footprints [10, 11]. Being the most
discernable city object of the building footprints makes them the main subject of extrusion studies [14].
Nevertheless, 3DCMs generated by this method lack roof geometries. The lack of roof geometries hinders
the widespread use of 3DCMs. While some 3D spatial analysis can be performed using LOD1 data, such
as shadow analysis, others, such as solar potential, require minimum LOD2 data [5, 6].

Another popular method to generate 3DCM as LOD2 is using LIDAR point cloud data [15, 16, 17]. Roof
shape and building shell is the most valuable geometric information that can be extracted from point
cloud data. However, this process requires additional data such as 2D building footprints and
computationally intensive data process workflows to be able to classify and construct city objects.
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Recent studies have been done based on DL to obtain roof type information. In practical terms, deep
learning is a subfield of machine learning (ML) and functions similarly, but it has different capabilities.
Unlike other machine learning techniques, deep learning models can learn the discrimination between
classes in a given dataset without feature extraction. On the other hand, deep learning techniques need
more training data than ML techniques such as Support Vector Machine (SVM), Decision Trees, Logistic
Regression, etc. because these ML techniques use only feature vectors extracted from raw data [18]. Deep
learning techniques or more specifically CNNs are widely used for visual cognitive tasks as a
classification to derive discriminant functions between classes from images. [19] used CNNs to classify
roof types for multi-copter emergency landing site selection. First, they used the polygon of the building
roof outline for cropping data from a LIDAR-based DSM image. Then, they used the polygon for cropping
from the RGB image in the same way. After the data preparation, they fuse RGB and LIDAR images as
input to CNN. [20] chose a deep learning-based approach. They used LIDAR-based DSM and pan-
sharpened VHR (Very High Resolution) satellite images, but their approach has drawbacks with non-
rectilinear roof shapes. [21] used CNNs with photogrammetric point clouds obtained from aerial images
for classifying roof types. But they consider the roofs as only two classes: ridge and flat roofs. [5] have
obtained roof types from LOD1 models with machine learning without using point clouds, but they have
not yet constructed roof geometries using this information. Also, they used the LOD1 city model, not 2D
building footprints.

3. Methodology

3.1. Obtaining Roof Type Information
A Python script was written to generate train images from aerial images. These images served as open
data and can be found in [22]. Geopandas library was used to extract geometry and attributes from 2D
footprints. With this script, multiple buildings were cropped from an aerial image and saved as separate
image files using building envelopes that are extracted from 2D building footprints. Using Microsoft
Custom Vision Service [23] that eases training process, training images were labeled as “Hipped”, “Gable”,
“Flat” and “Negative” in train data (Fig. 1). The “Negative” label is used when the image cannot be
identified as hipped, gable or flat. A general workflow for the training process is shown in Fig. 2.

After the training process, the model has reached 89,9% accuracy in predicting roof type. The trained
model was exported from Custom Vision as a TensorFlow graph file to be used in a prediction process. A
trained model can be saved as a model file and can be used in a different environment or application for
the prediction process. This is often called “transfer of learning” in literature. A Python script was also
coded to predict roof types. The model file was parsed using TensorFlow library [24] and roof types were
predicted via this script automatically. A shapefile which consists of 2D building footprints were enriched
with roof types as an attribute. All the workflow for prediction of roof type can be found on a publicly
available Github repository that includes train data, test data and scripts.

3.2. Extrusion and Block Model Generation
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A 3D model of the city can be obtained via extrusion of the building footprints. For this purpose, normal
vectors of the building footprints are calculated. The normal vector is a unit vector perpendicular to the
surface (Fig. 3). Extracting P1 from P2 and P2 from P3 vectors V1 and V2 are obtained. Using the cross
product of these vectors, surface normal is calculated.

After the calculation of surface normals, using the “height” attribute of the building footprints, building
footprints are translated along surface normals and top surfaces are constructed. By indexing the top
and footprint points, vertical surfaces are constructed and LOD1 block model is derived. (Fig. 4).

There are condominium unit plans (CUP) drawn by geomatics engineers that have boundaries of
condominiums as 2D (Fig. 5).

If CUPs are provided, our modeler can model condominium units as well at city scale. For this purpose,
each condominium is translated along the surface normal according to the height of the condominium in
CUP. Then, translated polygons are extruded and condominiums are modelled procedurally (Fig. 6).

Geometries of the condominium units are stored in a CityJSON file. Since condominium units are not
defined in the CityGML data model, an ADE is developed for storing condominium units (Fig. 7).

3.3. Construction of Roof Geometries
A straight skeleton algorithm is used to model roof geometries. The definition of the straight skeleton
(SS) is also its construction. SS is a geometric structure that consists of only straight edges, because of
the stepwise shrinking process of a polygon (Fig. 8).

In this shrinking process, each edge of the polygon moves inwards of the polygon in a self-parallel
manner. Two events change the topology of the input polygon. Edge Event occurs when an edge shrinks
to zero and creates a node in skeleton Fig. 9 and Split Event occurs when a reflex vertex touches to a non-
consecutive edge and creates a node in skeleton Fig. 10.

There are two approaches to stimulate this shrinking process. The 2D construction method is based on
angular bisectors [26] and the 3D construction method is based on sweep planes firstly introduced by [27]
and used by [28].

In the bisector-based approach, to create roof geometries in 3D, the skeleton must be traversed and Z
values of nodes that are created by the skeleton must be manipulated according to proper roof height.
Since sweep plane approach does not require this additional step, sweep plane approach has been used
in this work.

In sweep plane approach, all nodes of the skeleton are detected by intersection of planes. Edge events
have been detected by collision of three consecutive direction planes with the sweep plane and split
events have been detected by collision of two consecutive and one non-consecutive direction planes with
sweep plane.
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In the proposed algorithm which takes polygons as input, vertices of polygons are stored in a circular
doubly linked list, every vertex therefore, has pointers to consecutive vertices and also consecutive
direction planes. Sweep plane, which is a plane parallel to the input polygon, moves in the direction of the
Z axis and the polygon shrinks. Edge events and split events are stored in a priority queue according to
the height of the sweep plane which gives the order of nodes in SS. When every edge of the input polygon
shrinks to zero algorithm finishes and SS completed.

The result of SS is a directed graph. Roof surfaces must be generated from this graph to generate roofs.
A 3D sweep line algorithm has been implemented to accomplish this. In this algorithm, first, nodes of SS
are grouped according to the original edges of the input polygon. Then, for every group, a sweep line that
is perpendicular to the related edge, moves from start to the end of the edge. Intersection order of nodes
with this sweep line determines the order of the points for the roof polygon (Fig. 11). The horizontal roof
surfaces are obtained using these orders. A predefined slope value is used to obtain the peak of the roof.
Every roof surface is inclined from the edge to the skeleton node using the slope and roof geometry is
obtained. In this work, the slope value is initially considered as %45 because it is Turkey's maximum
allowed roof slope value (Fig. 12). However, this information could differ in various zoning regulations.
This parameter could be set by the user or obtained from the attribution of 2D footprint data.

This extension of the SS algorithm directly gives the Hipped type roof geometry. It needs a modification if
the subject is a Gable type of roof. The closest skeleton nodes to the start and end edges of the building
footprint must be extended onto these edges. The slope value becomes 90% on these surfaces. If the
subject is a Flat type of roof, there is no need to use the SS algorithm and the roof geometry is directly the
same as the building footprint.

SS and sweep line have been implemented via web services as a web-based solution using RESTful
architecture. The web application consists of 3 sub-modules: storage module, process module and web
server module. The general system architecture is given below (Fig. 13). The application has been
deployed on an Amazon S3 Bucket cloud storage environment. 2D building footprints can be uploaded to
a MongoDB instance on the bucket via a rest service that has been developed using the Java Jersey web
framework.

3.4. Visualization of the 3DCM via Browser
3DCMs are generally huge in size. Thus, clustering techniques should be used while passing them to
client from a server [29]. Tiling approaches are used with web technologies such as HTML5 and WebGL
to be able to visualize them via browsers. 3D roof geometries are added to 3D models of the tiles and
with this, generated roofs are integrated to the tiling system. Thus, only needed tiles based on the user's
current view in the scene are fetched from the server.

Since WebGL supports only triangles as primitives for representation of surfaces, 3D polygons must be
triangulated. An “Ear Clipping” algorithm is used for this purpose and 3D polygon surfaces that belongs
to roof geometries have been triangulated.
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After generation of the tileset, to visualize the tileset in browser, open-source JavaScript library Cesium.js
is used in this study. Since Cesium.js is built on WebGL, 3DCM has been rendered using the client's GPU
and without any additional plug-in (Fig. 14).

4. Findings And Discussion

4.1. Performance Metrics of the Roof Type Prediction
3423 roof images that belong to hip (835), gable (1762) and flat (751) roofs were used in 0,3/0,7 of
test/train ratio. The accuracy in predicting roof types is %89,9. Performance metrics are represented as
AP (Average Precision), Recall and Precision (Fig. 15). The overall AP value of 0.89 proves the training is
enough for prediction.

The proposed method has performed better than similar works in the related literature. The main reason
for this result is that in this work, only 3 roof types have been classified while in [5], as the most similar
work, 6 different roof types are classified. They have used the geometries of LOD1 3DCM to obtain roof
types. The use of cognitive processes with aerial imagery increases overall performance compared to [5].
The accuracy of prediction for individual roof types is given as a confusion matrix (Table 1).

Table 1
Confusion matrix of prediction process

  Flat Gable Hipped Negative

Flat 53 5 4 0

Gable 8 96 10 0

Hipped 1 14 143 0

Negative 1 10 2 14

Total 63 125 159 14

The comparison of predicted results with ground truth values could be found in Table 2. The precisions of
the classes are not directly proportional with counts of images that are used to train the model. Because,
as the quantity of the images affect the results, so does the quality of them.
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Table 2
Performance metrics of prediction process

Class Ground Truth Prediction Accuracy Precision Recall

Flat 63 62 94,74% 0,85 0,84

Gable 125 114 86,98% 0,84 0,77

Hipped 159 158 91,41% 0,91 0,9

Negative 14 27 96,40% 0,52 1

4.2. Special Cases and Floating-Point Issues
Implementing SS which requires high coordinate precision in a floating-point environment was caused
some degenerations that the construction algorithm must handle. While calculating intersections
between planes and determining new positions of vertices, some vertices that must have exact same
coordinates can have different coordinates with minimal difference due to the floating-point arithmetic. A
tolerance value must be predefined to handle this situation, and vertices with small coordinate
differences with this tolerance value must be unionized into one vertex. If these situations are not
handled, these slight differences can lead to tremendous changes in roof geometries (Fig. 16).

4.3. Limitation
Even if the web application can recognize the 3 most common roof types, it could be impossible to
construct the roof properly when another roof type is the subject such as hexagonal, M-shaped, shed, or a
combination of mentioned ones. The DL model classifies this different type of roof as Negative or one of
the 3 main types which are the most similar to the roof and the roof construction process is done
incorrectly. This construction of the roof geometries could cause incorrect results in analyses such as
shadow, solar potential or visibility etc. Concerning this, the DL model’s recognizing ability could be
improved by retraining the DL model with new roof types and image samples.

5. Conclusion
In this work, the generation of LOD2 building models with condominiums from 2D datasets without any
user initiative is proved by the developed architecture. Roof geometries which are necessary for accurate
solar potential or shadow analyses were constructed using the DL-generated roof type information and
the novel SS extension. By the virtue of the CUPs, 3D models of condominiums could also be generated.
Besides that, the entire pipeline of the model generation is executed in the server and the results are
observable in the client device even if it's a low-cost device. Furthermore, all software development stages
and tests were realized using open-source development tools.

During the preparation of this paper, the proposed pipeline for automatic modelling of roof geometries is
limited to 3 classes: hip, gable and flat. Hence, there is ongoing work on this topic, and this work will be
extended to include modelling other roof types such as the hexagonal, shed etc. Also, this work will aim to
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detect and model chimneys on the roofs as well. The detection and modelling of chimneys could be
beneficial for the optimization of solar panel implementation in solar analyses. As another future work
aim, the direct 3D reconstruction of the roof geometries from non-stereo aerial images will have
experimented.
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Figures

Figure 1

Samples from the roof type dataset.



Page 12/22

Figure 2

Training and Prediction Processes.
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Figure 3

Calculation of the surface normal

Figure 4

2D building footprints (left) 3D block model (right).
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Figure 5

Condominium unit plan [25]

Figure 6

Polygons (left) multiplied and translated (middle) condominium unit in 3D.
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Figure 7

3D condominiums stored in the CityJSON file.
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Figure 8

Input polygon (green), wave fronts (purple lines) and SS (red lines).

Figure 9

Edge Event (Yellow edge shrinks to zero at the orange point)
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Figure 10

Split Event (yellow edge meets red reflex vertex and this creates blue polygon).
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Figure 11

Sweep Line Process. The orange nodes in the first row are belong to the SS. The purple dashed sweep
line moves along the edge “E”. They are ordered according to the time of intersection with the sweep line.
The roof surface is demonstrated with orange diagonal lines in the second row.
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Figure 12

The incline process according to the slope value (45% = 40.5 degrees). The orange points demonstrate
the SS nodes.
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Figure 13

General System Architecture.
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Figure 14

Red roofs: Flats, Green roofs: Hippeds, Purple roofs: Gables.

Figure 15

Performance metrics of training process.
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Figure 16

Degeneration. Two Edge Events must meet on the same point (left) but they do not properly meet (right).


