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Abstract
Geographic object-based image analysis methods usually provide better results than pixel-based methods for classifying land
use and land cover from high andmedium resolution satellite imagery. This study compares the results of Random Forest (RF)
and Multilayer Perceptron (MLP) when used to classify the segments obtained on an RGB+NIR Sentinel-2 image using three
different segmentation algorithms, Multiresolution (MR), Region Growing (RG), andMean-Shift (MS). The hyperparameters
of these algorithms were optimised minimising the intra-object heterogeneity and maximizing the inter-object heterogeneity,
integrating them in an optimization loop. Geometric and two different centrality and dispersion statistics were computed
from some Sentinel-1, Sentinel-2 and LiDAR variables over the segments, and used as features to classify the datasets. The
highest segment cross-validation accuracies were obtained with RF usingMR segments: 0.9048 (k=0.8905), while the highest
accuracies calculated with test pixels were obtained with MLP using MR segments: 0.9447 (k=0.9303), both with the mean
and standard deviation of the feature set. Although the overall accuracy is quite high, there are problems with some classes
in the confusion matrix and, significant misclassification appear when a qualitative analysis of the final maps is performed,
indicating that the accuracy metrics may be overestimated and that a qualitative analysis of the results may also be necessary.

Keywords GEOBIA · Random forest ·Multilayer perceptron · Segmentation ·Multisensor data

Introduction

Geographic object-based image analysis (GEOBIA) meth-
ods tend to outperform pixel-based methods when applied to
land cover and land use classification using high-resolution
satellite imagery (Gao and Mas 2008; Whiteside et al. 2011;
Jozdani et al 2019; Šiljeg et al. 2022). This is because
they are able to identify spatial objects above the minimum
image unit, the pixel, which improves pattern recognition
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and reduces the computational cost of classification algo-
rithms (Blaschke et al. 2014). The analysis starts with image
segmentation, i.e. the separation of the image into homo-
geneous regions or objects. Then, relevant features of each
object (such as shape, size, texture or colour, among others)
are extracted to classify these objects (Lang 2008).

Initially, this type of analysis was oriented towards high
resolution imagery. Although GEOBIA is mainly used with
high resolution imagery, the widespread use of medium res-
olution imagery from satellites such as Landsat or Sentinel,
and the synergy of optical sensor data with data from other
sources such as SAR or Lidar, has broadened the applica-
tion of GEOBIA. Ruiz et al. (2021) successfully applied
multi-source data from SAR and optical Sentinel sensors and
GEOBIA techniques to classify wetland vegetation classes.
Other data sources have also been explored to perform a large
area land cover classification, e.g. Maxwell et al. (2019) use
an orthophoto in combination with a DEM and other ancil-
lary data such as population or road density. Gbodjo et al.
(2020) proposed an architecture of a neural network using
multi-source and multi-temporal data to a GEOBIA LULC
mapping in several locations, with disparate results and Wu
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et al. (2016) explored the application of a multi-source
approach integrating LiDAR and optical data to perform
an object-oriented hierarchical classification of urban land
cover.

However, image segmentation is a complicated procedure
with many difficulties to be solved. The neighbouring pix-
els of an image have to be grouped according to unknown
spatial, spectral and/or contextual criteria, which have to be
defined a priori (Räsänen et al. 2013). The scale problem falls
under this aspect, since the decision of the optimal parameters
must take into account that the objects may involve different
scales (Georganos et al 2018). The quality of the subsequent
classification results will depend on the choice of these cri-
teria (Blaschke et al. 2008). Thus, the best segmentation will
be the one that minimises the internal spectral heterogeneity
of the segments and maximises the external between them.
Therefore, the first problem to be faced when performing this
type of analysis is to find the best combination of parame-
ters to obtain the best possible segmentation according to the
internal and external heterogeneity. However, how to find this
combination is still considered one of the most difficult prob-
lems by the scientific community (Johnson and Ma 2020).

Image segmentation techniques may be divided into two
basic approaches (Anjna and Kaur 2017): (i) those based on
discontinuity detection, such as the change in the intensity of
the values of a region of the image, which implies the identi-
fication of edges; (ii) and those based on similarity detection,
called region-basedmethods, such as region-growing or clus-
tering techniques. More recently, deep learning techniques
such as neural network architectures like CNNorU-Net have
been increasingly used for segmentation (Ma et al. 2019),
although it has been found that they are better suited to high
resolution than themedium resolution of Landast or Sentinel-
2 (Liu et al. 2019; Wurm et al. 2019).

In region-based segmentation methods, the image is
divided into homogeneous regions that resemble objects or
regions of interest (e.g., buildings, crops, water bodies, etc.).
The segmentation process involves several parameters that
need to be optimised, such as the scale (i.e., the size of these
objects or regions) or the spectral similarity threshold, or the
shape and size of the segments. Thus, someof the problems of
any parameter optimisation task appear in image segmenta-
tion. Another issue is the choice of a segmentation algorithm
(Hanbury 2009; Hossain and Chen 2019), as they are compu-
tationally intensive due to the need to compute the similarity
between pixels and to optimise the parameters.

Quantifying the quality of a segmentation is another prob-
lem. There are not manymethods to evaluate a segmentation,
both visually and subjectively (qualitatively) aswell as objec-
tively (quantitatively). The most common problems in image
segmentation are oversegmentation and undersegmentation.
The latter may contain several classes in a single segment,
so it is usually difficult to assign a segment to a single class

in the classification process. On the other hand, an overseg-
mented image does not present this problem. Therefore, one
of the ways to objectively evaluate a segmentation is using
the final metrics of the classification (Räsänen et al. 2013).

In addition, most of the work in GEOBIA has been
developed using black box models in expensive proprietary
software that can’t be reproduced and analysed without it
(Grippa et al. 2017). Shepherd et al. (2019) developed a free
software package that uses k-means to do an initial clustering
of the pixels and then merges smaller sets until a minimum
cluster size is reached. However, it requires advanced pro-
gramming skills. Grippa et al. (2017) have developed several
modules for the GRASS-GIS software to perform segmenta-
tion, optimise the selection of segmentation parameters, and
obtain segmentation metrics. However, there is still a notable
lack of free, powerful, robust and user-friendly software that
includes segmentation methods among its tools. This makes
it difficult to apply GEOBIA to images of large areas, as
well as to multi-sensor or multi-temporal data, due to the
large amount of data to be processed. For the same reasons,
the quantitative comparison between different segmentation
algorithms is compromised and difficult to perform.All these
problems are still the subject of research by the scientific
community (Johnson and Ma 2020).

A different but no less important decision is which fea-
tures to extract from the segments. Centrality and dispersion
statistics and others related to shape or size, as in Cnovas-
Garca and Alonso-Sarra (2015), are usually extracted from
segments. However, the choice between mean or median, or
between standard deviation or range, can affect the accu-
racy results, depending on the segments obtained after the
segmentation process. Mean and standard deviation seem to
be the most sensible option when the intra-class variance of
some of the classes in the classification scheme or the seg-
mentation seems to fit the image objects reasonably well.
However, if the data distribution is not normal, median and
range would be a more robust choice.

Machine Learning (ML) algorithms such as Random
Forest (RF) have shown satisfactory performance for multi-
sensor classification in small agricultural areas (Masiza et al.
2020), urban areas (Dobrinić et al 2020) or forests (Luca
et al. 2022). Amoakoh et al. (2021) tested multi-sensor clas-
sification using RF aiming to accurately monitor a tropical
peatland, and Chen et al. (2022) used RF to effectively
map forest above-ground biomass in heterogeneous moun-
tainous regions. Cánovas-García and Alonso-Sarría (2015)
compared the use of five classification algorithms applied
to a high-resolution image segmentation; RF and Support
Vector Machines (SVM) produced the most accurate results.
However, when spatial or temporal patterns in land use and
cover are important, it may be difficult for traditional ML
algorithms to extract some contextual features from images
(Reichstein et al 2019). For this reason, the use of Artificial
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Neural Network (ANN) architectures in LULC classification
for image analysis has made great progress. However, the
superiority of the performance of Deep Learning (DL) meth-
ods over ML methods remains unclear (Wang et al 2022).
There are still several unresolved aspects, such as the use of
multi-source data (Reichstein et al 2019; Qin and Liu 2022)
or the quality and quantity of the training data set (Qin and
Liu 2022). In addition, DL has a challenge related to the
size of the training data. Applying good performance mod-
els with their training and test data to other datasets does
not always achieve the same level of success (Qin and Liu
2022), possibly due to an inadvertent form of overtraining.
Since algorithms such as Random Forest are robust to small
training data sets,ML approaches are still widely used. How-
ever, some techniques based on neural networks such as the
Multi-Layer Perceptron are being used for comparison with
traditional ML algorithms, such as RF or SVM (Valdivieso-
Ros et al. 2023).

The aim of this research is to compare the results of dif-
ferent open source segmentation algorithms on Sentinel-2
imagery. Open source software is usually based on libraries
that are easier to integrate with optimization routines than
proprietary software. The selection of the best segmentation
hyperparameters is done by minimising the intra-object het-
erogeneity and maximising inter-object heterogeneity. The

resulting set of objects is classified using both Random For-
est and a Multilayer Perceptron, and the final test of both
classifications is performed using a set of test pixels outside
of the training objects used to calibrate the models. In this
way the quality of the segmentation is not determined by the
properties of the objects, as they were the objective function
in the segmentation optimization, but by the ability of the
segmentation to produce an accurate LULC map when its
segments are used to calibrate the classification model. We
also want to analyse the effect of using two combinations of
geometric information with statistics of centrality and dis-
persion of the predictor variables of each segment on the
accuracy of the classification.

Methods

Study area

The study area is the Mar Menor basin, located on the
south-east coast of Spain, on the Iberian Peninsula. Admin-
istratively, it belongs to the Autonomous Community of the
Region of Murcia (Fig. 1).

The basin is characterised by a slope of less than 10%
from northwest to southwest, draining into a coastal lagoon,

Fig. 1 Study Area: Mar Menor Basin
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theMarMenor. The climate is semi-aridMediterranean,with
high aridity and irregular rainfall. The average annual rainfall
is less than 300-350 mm, depending on the proximity to the
coast. In addition, the high temporal and spatial variability
of rainfall makes alternating droughts and extreme floods
common. Temperatures are warm throughout the year, with
an average between 16oC and 18oC and an average annual
maximum that can exceed 42oC.

The Mar Menor is the largest coastal saltwater lagoon
in the western Mediterranean. It is partially enclosed by a
sand barrier 22 km long and up to 1.2 km wide, known as
La Manga del Mar Menor. This lagoon and part of its sur-
roundings are recognised by the most important European
protection figures for their high singularity, ecological value
and great biodiversity; however, the development of themain
uses in the basin, agricultural and urban, has been affecting
the lagoon’s marine ecosystem for decades (Martínez et al.
2007; Giménez-Casalduero et al. 2020).

Traditional rainfed agriculture has gradually been aban-
doned or transformed into irrigated agriculture, which is
more profitable given the rainfall patterns of the area.Accord-
ing to the regional agricultural statistics (CARM 2023),
traditional rainfed agriculture currently accounts for less
than 4,500 ha, mainly almond trees, olive groves and some
vineyards. Thus, irrigated crops of different classes reached
almost 38,000 ha in 2018 and greenhouses about 1,500 ha of
surface, although this amount does not include other types

of cover such as nets or meshes to prevent damage to the
crop by birds and insects or meteorological events such as
hail. These nets make a significant difference to the spectral
signature and must be taken into account when classifying
land cover.

The second most important cover in this area is urban
(CARM 2023). There are large urbanised areas along the
lagoon’s coastline, whose population growth during the hol-
iday season is difficult to quantify.

Workflow

Figure 2 shows the work flow designed for this study. The
first stage is the pre-segmentation of an RGB-Nir image of
the study area into sub-regions, followed by the optimisation
of the parameters for each segmentation algorithm by each
different sub-region.

In parallel, the four different date images from Sentinel-2
and Sentinel-1 are pre-processed and the indices and texture
variables, as well as the variables derived from the LiDAR
data, are calculated. To build the final dataset, the central-
ity and dispersion statistics of the variables are calculated
for each segment of the sets obtained using the different
segmentation algorithms. Finally, the classification process
is performes with each of the other classification algorithm
tested.

Fig. 2 Flow chart of the
classification process RGB-
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Segmentation algorithms

Three algorithms based on similarity detection were used for
segmentation: (i) Region Growing (RG), implemented in the
Geographic Resources Analysis Support System (GRASS)
GIS (Mitasova and Neteler 2008); (ii) Mean-Shift (MS),
implemented in the ORFEO tools (McInerney and Kempe-
neers 2015); and (iii) Multiresolution Segmentation (MR)
(Baatz and Schape 2000), implemented in TerraLib (Câmara
et al. 2008).

Region-growing

Region Growing (RG) is a robust but simple and popular
method of segmentation (Adams and Bischof 1994). It starts
by using each pixelwithin the selected region as an initial seg-
ment that joins adjacent pixels as long as they do not exceed a
certain disimilarity threshold in the variable space set by the
user. Once the process is complete, the algorithm forces the
joining of segments or regions below a specified minimum
size. Therefore, the parameters necessary for the operation of
this algorithm are the similarity threshold (threshold) and the
minimum segment size (minsize). It is available in GRASS
GIS (Mitasova andNeteler 2008) through the i.segmentmod-
ule.

As with any algorithm, the problem is to determine the
optimal parameters a priori. This problem was solved with
a GRASS module created for this research which combines
different values of both parameters and checks the results of
1000 segmentations. Their metrics were interpolated in the
parameter space to find the optimal values.

Mean-shift

This algorithm was not originally intended for image seg-
mentation. It is a non-parametric method for estimating
gradients in the density function (Fukunaga and Hostetler
1975). It was Comaniciu and Meer (2002) who applied it
from a joint spatial and spectral point of view, grouping con-
tiguous pixels whose modal estimation converges in the joint
domain of both. This algorithm requires two parameters, a
spectral range (hs) and a spatial range (hr ) in which the pix-
els of an image converge in the local mode of the probability
density to which they belong. The segmentation process ends
when neighbouring pixels in the same mode are grouped
together.

The optimisation process was similar to that used for
the region-growing segmentation,where 1000 segmentations
were performed and their metrics were interpolated in the
parameter space.

Multiresolution segmentation

The Multiresolution Segmentation (MS) algorithm (Baatz
and Schape 2000) is a hierarchical region growing type of
technique where objects are grouped, starting from individ-
ual pixels, up to a threshold thatmarks themaximumvariance
between objects. It requires four input parameters: the scale
parameter refers to the variance threshold (threshold), which
in turn is weighted by the shape parameters (colour and com-
pactness); finally, it also requires a minimum size parameter
(minsize).

The optimisation was carried out using the same strat-
egy as the others, increasing the number of trials to 4000
due to the greater number of parameters to be determined.
It should be noted that during the execution of the segmen-
tation algorithms, the MR algorithm experienced problems
in execution, which were solved by dividing each region
into four sub-regions, keeping the parameters of the original
region for all four, and then rejoining them to form the final
map.

However, when analysing the results of the inverse dis-
tance interpolation in 4 dimensions, the compromise solution
was not as clear as for the other algorithms. Figure 3 shows
the values of the final metric against the logarithm of the
number of polygons generated. As can be seen, the lower
the number of polygons generated by the segmentation, the
lower the final metric. On the other hand, there are many seg-
mentations with very similar high metrics, but with a large
variation in the number of polygons obtained as a result. Both
the optimisation and the segmentation using this algorithm
were carried out using the SegOptim library of R (Gonçalves
et al. 2019), which is linked to the TerraLib software (Câmara
et al. 2008).

Fig. 3 Results of the optimization of the segmentation parameters with
TERRALib for region 1
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Fig. 4 Clusters obtained by
k-means with final delimitation
and region identifier

Region pre-segmentation

The most common problem in image segmentation is related
to the choice of parameters for object recognition. Since the
study area may contain different regions with different types
and scales of objects, the area was first subdivided. For this
purpose, land cover polygons resulting from a previous pixel-
based multisensor classification (Valdivieso-Ros et al. 2023)
were regrouped according to the location of each centroid
and their size using the k-means method, after estimating the
optimal number of clusters to be 10.

To complete the process of subdividing the basin into
smaller regions, the boundaries of the spatial clusters
obtained by k-means were redefined to homogenise the poly-
gons defined by the algorithm, resulting in the delineation of
the 10 regions shown in Fig. 4.

The parameter optimisation and segmentation processwas
performed for each regionwith each segmentation algorithm.
The Moran index and variance of 1000 different parameter
combinationswere calculated, and an objective function inte-
grating both metrics was generated. This was followed by an
interpolation procedure in the parameter space, fromwhich a
compromise solution of parameter values was taken for each
region. This was followed by segmentation of the regions
from the RGBI band combination. Finally, the segmentation
maps were merged to calculate the geometric information
and the statistics of the predictor variables of each segment.
These data form the predictor sets for classification.

Datasets generated from each segmentation

Six datasets were prepared. For each of the three segmen-
tation algorithms, the variables proposed in Cánovas-García

and Alonso-Sarría (2015) were calculated. These include a
set of geometric and morphological variables of the objects:
Length, area, width, perimeter, edge index, compacity, fit
to an ellipse, fit to a rectangle and circularity. These vari-
ables were combined with statistics derived from the most
relevant variables in a previous pixel-based classification
(Table 1). Means and standard deviations were computed in
one case, and medians and ranges in the other. This resulted
in 6 datasets, each containing 262 features. The descrip-
tion of the features can be found in Valdivieso-Ros et al.
(2023).

Table 1 Summary of datasets and features selected in Valdivieso-Ros
et al. (2023)

Dataset Variables

S1 VV, VH

S1 indices DPSVI

S2 B01, B02, B03, B04, B05, B06, B07, B08,
B08A, B11, B12

S2 indices NDVI, SAVI, NDBI, MNDWI, TCB

S2 texture PC1, NDVI, Entropy, Contrast, Second angu-
lar moment

LiDAR ppA, ppM, ppB, ppH, ppE, mZG, mZB, mZM,
mZH, mZA, mZE, sZG, sZB, sZM,

sZA, sZE, sZH, Hv, He, Nk, Nke, Nvv, wCv,
wCd, wDv, wDd

The LiDAR date is 2018/08/01; Sentinel2 dates are 2018/11/07,
2019/02/25, 2019/04/11, 2019/06/10; Sentinel1 dates are 2018/11/08,
2019/02/24, 2019/04/13 y 2019/05/19
The Sentinel-1 and Sentinel-2 dates were chosen to be as close as pos-
sible between sensors and spread across the different seasons of the
year to best match the most relevant crop ephemerides in the study area
(Valdivieso-Ros et al. 2023)
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Training segments and classification scheme

A training dataset was obtained from the segments produced
by each of the three segmentation algorithms, avoiding over-
lap with training polygons used in a previous pixel-based
classification (Valdivieso-Ros et al. 2023) in order to use
these polygons as a test set for the final classifications of the
polygons producedby each algorithm. The training segments
weremanually selected based on themost recent ortophotog-
raphy of theNational Plan ofAerealOrtopotography (PNOA,
by its initials in Spanish) of 2019, with a stratified sampling
design to ensure a reasonable presence of segments of all
classes containing only one, although this condition was not
always easy tomeet. Table 2 shows the classification scheme,
the number of segments for each class in the three training
datasets, and the number of pixels for the final test validation.

Figure 5 shows the location and geometry of the training
segments selected from those obtained by each segmentation
algorithm.

Classification algorithms

Classifications were performed with two algorithm, Random
Forest (RF) and Multilayer Perceptron (MLP), validating
the models by LOO-CV cross-validation. In addition, we
checked the suitability of other supporting validation of the
accuracy results by performing a confusion matrix between
the final predictions of each GEOBIA model and an indepe-
dent set of training pixels.

Random forest

RandomForest (RF) (Breiman 2001) is an ensemble learning
method for non-parametric classification, based on decision
trees. It reduces the correlation between trees through two
modifications that better fit to the concept of ensemble (James

et al. 2013; Gomariz-Castillo et al. 2017): training each tree
with a subset of the training data and selecting a random
subset of predictors for each node. The class of each pixel in
an image is assigned based on the majority vote of the trees,
with the option to obtain uncertainty metrics.

RF has several advantages (Liaw and Wiener 2002;
Rodriguez-Galiano et al. 2012; Belgiu and Drǎgu 2016;
Cánovas-García et al. 2017; Maxwell et al. 2018), includ-
ing robustness in cases of high dimensionality, correlated
variables, small training datasets, or anomalous data. It can
also provide an importance ranking of variables and can be
used as an explanatory model and an internal goodness of fit
metric using the out-of-bag technique (OOB-CV). In addi-
tion, it requires less computation than othermachine learning
methods and generates an internal metric of validation using
the out-of-bag technique (OOB-CV), which is an unbiased
estimation of the generalisation error as the training data are
randomly sampled.

For this study, the number of trees was set to 2000, and a
two-stage variable selection using the Variance Inflation Fac-
tor (VIF) and the importance ranking of the variables of the
model (Valdivieso-Ros et al. 2023) wass applied to deal with
the multicollinearity of the variables and the high dimen-
sionality. The RF model was carried out using the package
randomForest (Liaw et al. 2014), available for the R software
(Team 2020).

Multilayer perceptron

A Multilayer Perceptron (MLP) is an artificial neural net-
work that uses multiple layers of interconnected neurons and
non-linear activation functions to learn to perform specific
tasks through a supervised training process. It consists of at
least three layers of neurons: an input layer, one (or more)
hidden layers and the output layer. The layers of neurons are
connected by a mathematical function (activation function).

Table 2 Classification scheme,
including the number of training
and validation segments of
every dataset from every
algorithm: Region Growing
(RG), Mean-Shift (MS) and
Multiresolution (MR), as well as
the number of pixels for every
class in pixel test validation
dataset

Id Class Description Segments Test pixels
RG MS MR

1 Forest Mediterranean forest 42 27 48 1000

2 Shrubland Low vegetation 40 31 53 1200

3 Dense woodland Fruit and citrus crops 42 40 57 1800

4 Irrigated arable crops Horticultural crops 40 41 39 1000

5 Impermeable Artificial Surfaces 44 38 36 1639

6 Water Water bodies, including 41 24 41 1158

Artificial reservoirs

7 Bare soil Bedrock without cover 41 26 20 1055

or sparsely vegetated

8 greenhouses Irrigated areas covered with plastic 30 29 29 2600

9 Netting Irrigated crops covered with netting 19 17 13 1400
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Fig. 5 Maps of training and validation segments distribution of every segmentation algorithm dataset. (a) Region-growing (rg), (b) Mean-Shift
(MS) and (c) Multiresoution (MR)

The input data is transmitted as a linear combination towhich
the activation function is applied and its output is redirected
to the next layer, following the same computational pattern.
The final layer, or output layer, produces the output of the net-
work, which can be a number, a vector or amatrix, depending
on the type of problem being solved. The output is computed
in a similar way to the hidden layers, but with a different
activation function.

The goal of learning in an MLP is to adjust the weights
of the connections between the nodes so that the network
can perform a specific task, such as classification, through
supervised training. This training consists of providing the
network with an input along with the expected output so that
the network adjusts theweights tominimise the error between
the predicted output and the expected output.

The neural network used in this study consists of an input
layer with the predictors, three dense hidden layers of 300,
100 and 50 neurons, and an output layer of 9 neurons, one
for each possible output class. A ReLU (Rectified Linear
Unit) activation function (Hahnloser et al. 2000) was applied
to each hidden layer, and a normalised exponential func-
tion (softmax) to the output, as this allows each output to be

interpreted as a probability for each class, guaranteeing that
the sum of all probabilities is equal to one. An Adaptative
Moment Estimation (ADAM) was chosen as the gradient
optimisation algorithm. This algorithm was proposed by
Kingma and Ba (2015) and is commonly used to train neural
networks. In addition, it has the advantage of also having an
internal adaptive method for setting the best learning rate.
The dropout or dropout rate is a technique to prevent over-
fitting of neural network models by temporarily deactivating
some randomly selected neurons during each training itera-
tion. Testing different values of the drop rate allows to avoid
the problems of overfitting due to an overparameterised net-
work (several layers with many neurons) without having to
change the actual architecture of the network.

The number of neural network iterations (epochs) is 100,
although the early stopping technique (callback early stop-
ping) is used by setting a patience threshold of 20. If the
accuracy does not improve in this number of epochs, no fur-
ther epochs are run and the best model is selected from those
already obtained. In this study, the tensorflow (Abadi et al.
2015) python package was used to build and train the neural
networks.
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Validation

The validation of the models was done in two ways, first
with a cross-validation procedure leaving out one polygon
at a time (LOPO-CV) and later by calculating a confusion
matrix of the segment prediction datasets compared to the
pixel dataset used as a reference for the selection of the train-
ing areas of the aforementioned pixel-based classification
(Valdivieso-Ros et al. 2023). The latter method could pro-
vide insight into the performance of the classification but
also into the segmentation process.

Results

Segmentation

Table 3 shows a compromise solution from the optimisation
processes. Apart from the number of parameters, two for RG
and MS but four for MR, there are significant differences
in the values from one algorithm to another. However, the
parameters of each algorithm measure different aspects of
the process to determine the optimal segmentation of the
image, making them difficult to compare. It is also worth
noting that the optimisation processeswere time and resource
consuming, being higher and more complex for MR due to
the number of parameters to optimise.

Table 3 shows, per region, the total number of segments
obtained with each segmentation algorithm. The number of
segments per region refers to the full extent of each region.
The final number of segments in the study area, after applying
the masks to each region and merging them, is shown in the
Total column.

MS is the algorithm that produces the smallest number
of segments and with the largest size, as can be seen as an
example in Fig. 6. In some regions the three algorithms agree

in calculating smaller segments and therefore a larger number
of segments compared to the other regions, as in region 3. A
similar problem occurred in region 6, whose area is mainly
occupied by water, as it includes the lagoon and its coastline.

From a qualitative point of view, Fig. 6 shows an extract
of the segment maps obtained, which are clearly different
in size, with those calculated by the MS algorithm being
the largest. The figure shows how these segments tend to
mix objects belonging to different classes, such as irrigated
grass plots or buildings next to plots with andwithout vegeta-
tion. There is clearly an under-segmentation, whereas in the
examples corresponding to the other two algorithms, there
is a clear over-segmentation; this is clear in both, but in the
RG segments more concentrated in the urban area. The seg-
ments of the RG andMS algorithms also show a more varied
geometric segmentation of different sizes. The appearance of
linear objects such as roads is noticeable, although sometimes
mixed with neighbouring objects such as ponds. In contrast,
the MR algorithm does not seem to have resolved these geo-
metric differences well, producing much smaller objects that
do not seem to respond well to an over-segmentation of
larger objects, as theywould include part of the neighbouring
objects when joined.

Classifications with RF

Following the two-step variable selection, the dimensional-
ity of the datasets is significantly reduced from the original
262 variables (Table 4). The first VIF-based step reduces the
number of predictors by about 50 % in all cases. The second
step, based on RF importance, generally leads to a greater
reduction, but with greater variability.

The accuracy metrics per algorithm, dataset and valida-
tion type are shown in Table 5 with their 95 % confidence
intervals. The segmentation produced by the MR algorithm
has the highest accuracy values, but the differences are only

Table 3 Optimal parameters estimated and number of segments obtained for each region with each algorithm

RG MS MR
Region Thres. Minsize Nseg. hs hr Nseg Compact. Color Minsize Thres. Nseg

1 0.05 25 6729 0.05 6 119643 0.032 0.022 27 0.003 47260

2 0.05 6 14691 0.035 4 120575 0.075 0.025 38 0.004 47090

3 0.01 2 225702 0.045 6 140655 0.031 0.031 15 0.002 102417

4 0.05 2 23111 0.025 6 104848 0.015 0.092 40 0.025 33167

5 0.01 6 44721 0.035 5 81364 0.092 0.082 16 0.012 24550

6 0.02 4 94207 0.05 9 82212 0.058 0.018 28 0.006 59781

7 0.05 2 27585 0.045 6 95616 0.934 0.623 12 0.262 23914

8 0.05 10 8933 0.045 8 101361 0.045 0.020 30 0.005 23725

9 0.05 10 10504 0.4 6 95835 0.074 0.030 25 0.007 45697

10 0.05 2 45051 0.4 4 53438 0.090 0.061 46 0.005 28308
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Fig. 6 Segments obtained with
each algorithm in a peri-urban
agricultural area

significant in the pixel test not in the LOPO-CV test. The dif-
ferences between using mean and standard or using median
and range are not significant. Figure 7 clearly shows that there
are no significant differences between the different accu-
racy metrics, according to their confidence intervals, except
between the datasets of mean+stdev of MS and MR, which
is the one with the lowest confidence intervals.

By class, there is more variation in the accuracy of the
different models (Table 8 in Appendix A). The segment sets
obtained with RG give better results for all classes, although
it is not the best overall model. On the contrary, the seg-
ment sets of the MR algorithm present serious problems for
the classification of class 9 (netting), being the models that
present the best global accuracies.

The obtained omission and commission errors between
classes (Table 9 in Appendix A) are very high for green-
houses and nets in almost all datasets. Figure 8 shows the

Table 4 Number of variables remaining after each stage of the selection
process

Data set VIF selection Final predictors

RG mean+stdev 127 27

median+range 141 20

MS mean+stdev 127 16

median+range 185 162

MR mean+stdev 137 61

median+range 131 20

confusion errors of the best-accuracy dataset for each seg-
mentation algorithm.

The natural vegetation classes are best classified with
the MS median+range dataset, while the other classes are
more evenly distributed between the RG and MR datasets.
The algorithm that performs best with the most problematic
vegetation class of irrigated crops is RG, in principle with
mean+stdev, but with median+range following closely and
above the others. In this class, irrigated crops, the diversity
of crop types and the fragmentation of the fields are a problem
to be solved for the classification of land use in the area. The
highest errors of commission and omission in all the classi-
fications are concentrated in class 9, well above 0.2, which
also exceeds class 8 (greenhouses) in all classifications and
class 7 (bare soil) in some.

The usual confusion in identifying and predicting the
classes of nets for greenhouses and dense tree crops can be
explained by the fact that, on the one hand, the materials
from which these nets are made are similar to those used
for some types of greenhouse cover in this area and, on the
other hand, they are mainly used as protective cover for tree
crops.

Regarding the finalmaps, the differences aremostly found
between MR and the other algorithms (Fig. 9). The MR
accuracy is the highest, and it can be concluded that the
classification tends to predict the predominant class in the
segment, even when the segments do not clearly correspond
to an object (plots, ponds or greenhouses, among others), nor
when they are combined with adjacent ones.
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Table 5 Accuracy of RF
classifications by dataset and
segmentation method with 95%
confidence intervals. The dataset
with the highest accuracy per
algorithm is highlighted in bold

Validation type Data set Accuracy CI 95% Kappa Index CI 95%

LOPO-CV RG mean+stdev 0.867 0.826, 0.902 0.850 0.809, 0.890

RG median+range 0.870 0.830, 0.904 0.853 0.813, 0.893

MS mean+stdev 0.802 0.750, 0.848 0.775 0.722, 0.828

MS median+range 0.861 0.814, 0.899 0.842 0.795, 0.888

MR mean+stdev 0.905 0.868, 0.934 0.891 0.855, 0.926

MR median+range 0.893 0.855, 0.924 0.877 0.839, 0.915

Pixels Test RG mean+stdev 0.926 0.924, 0.928 0.907 0.904, 0.909

RG median+range 0.916 0.915, 0.918 0.895 0.893, 0.897

MS mean+stdev 0.886 0.884, 0.888 0.857 0.854, 0.859

MS median+range 0.905 0.903, 0.907 0.881 0.878, 0.883

MR mean+stdev 0.930 0.928, 0.932 0.912 0.910, 0.914

MR median+range 0.930 0.927, 0.931 0.910 0.908, 0.912

Conversely, larger objects can be identified despite the
under-segmentation produced by the MS algorithm, e.g.
linking ponds and buildings with agricultural plots in cul-
tivated areas. A similar situation can be observed with the
RF classification of the RG dataset. An example is shown in
Fig. 10.

Figure 11 shows prediction maps of the whole basin
obtained with the best dataset of each segmentation algo-
rithm. Differences in the global surfaces of the classes can
be observed; RG and MR are qualitatively more accurate,
without taking into account the problem of classifying green-
houses and netting. Classification with datasets from both
algorithms shows a high tendency to confuse these classes,
not only among themselves, but also with both cultivated

classes (dense tree crops and irrigated grass crops) and imper-
meable which is translated in the final map into observable
differences in the predicted total areas of crop classes: while
in the RG dataset prediction with RF dense tree crops and
scrub seem to be the classes with more area, in MR irri-
gated crops and greenhouses area is higher. There may also
be differences in the total area of impermeable surfaces. It is
mainly confused with bare soil in both predictions. However,
omission and commission errors in the RG classification of
impermeable segments are distributed over a larger number
of classes (greenhouses, netting, bare soil, water and scrub).
TheMRproblems in detecting and predicting bare soil shown
in Fig. 8, are reflected in less area of this class in theMRmap
than in the maps of RG and MS.

Fig. 7 Accuracy metrics and
confidence intervals of the final
rankings with test pixels
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Fig. 8 Cross-class confusion plots of the best-accuracy datasets for each segmentation algorithm: (a-b) RG mean+stdev, (c-d) MRmean+stdev and
(e-f) MS median+range
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Fig. 9 Comparison of classification results in a residential area surrounded by crops parcels with RF. (a,d) RG mean+stdev and median+range,
(b,e) MS mean+stdev and median+range, (c,f) MR mean+stdev and median+range

Fig. 10 Comparison of
classification results in
agricultural area with RF. (a)
RG, (b) MR and (c) MS
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Fig. 11 Final maps obtained with best models by algorithm with RF. (a) RG, (b) MS and (c) MR

Classification with MLP

Tables 6 and 7 show the accuracy metrics obtained by the
MLP model per segmentation algorithm, dataset and valida-
tion type. In this case, several values of the drop rate were
tested.

Table 6 shows that there are no clear differences in accu-
racy when the drop rate is changed, except for the maximum
value tested (0.8). This means that although the model was
probably over-parameterised, this over-parameterisation did
not result in a clearly over-trained model. Table 7 shows that
the MR segmentation model using the mean and range of
the spectral and LiDAR features achieves significantly bet-
ter results than the other methods. The RG model appears in
second place with no significant differences between using
mean and standard deviation or median and range. In gen-
eral, there are no significant differences between the types of
statistics used, but the differences between the segmentation
methods are significant.

Analysing the performance by classes, there are large dif-
ferences between models (Table 10 in Appendix A). There
is no single dataset that shows better classification results
for all classes. In fact, they all show classification problems,
especially for the netting class.

The highest errors of omission and commission occur in
greenhouses and netting (Table 11 in Appendix A), which
are very susceptible to confusion within each other and with
other related classes such as dense tree crops, irrigated crops
and impermeable, as can be seen in the graphs in Fig. 12.
Both natural vegetation classes are well classified with the
MS dataset, while MR only correctly classifies the forest
class. The problem of confusion between the two vegetation
types is not solved by any of the segmentation algorithms,
although that of RG seems to solve it more efficiently. How-
ever, the remaining omission and commission error rates
obtained with this dataset are similar or even higher than
those obtained with theMS orMR datasets. Interestingly, the
variety of confusions between classes obtained with the MR
algotithm seems to be reduced to a group of classes dom-
inated by soil (with no, low or sparse vegetation as scrub,
impermeable and bare soil), and another group dominated
by cultivated vegetation (both classes of crops, greenhouses
and netting).

There are large differences between the maps produced
by MLP and those obtained with RF. Qualitatively, the worst
classification results coincidewith the quantitave results: The
map produced with the MS dataset had the lowest qualitative
accuracy (Fig. 13). In the area predicted by the RG dataset,
the prevalence of dense tree crops is noticeable, as is the
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Table 6 Accuracy of MLP classifications by dataset and segmentation
method

Data set Drop Rate Accuracy Test Accuracy

RG mean+stdev 0.0 0.8642 0.8348

0.2 0.8658 0.8466

0.4 0.8928 0.8720

0.6 0.8883 0.875

0.8 0.5228 0.4702

RG median+range 0.0 0.8563 0.8289

0.2 0.8625 0.8407

0.4 0.8613 0.8407

0.6 0.8513 0.8259

0.8 0.3219 0.2507

MS mean+stdev 0.0 0.8698 0.8242

0.2 0.8652 0.8461

0.4 0.8592 0.8278

0.6 0.8365 0.7985

0.8 0.3410 0.2821

MS median+range 0.0 0.8607 0.8425

0.2 0.8645 0.8242

0.4 0.8617 0.8095

0.6 0.8427 0.8425

0.8 0.3218 0.2344

MR mean+stdev 0.0 0.9002 0.8958

0.2 0.8986 0.8780

0.4 0.8928 0.8720

0.6 0.8883 0.875

0.8 0.5228 0.4702

MR median+range 0.0 0.8906 0.875

0.2 0.8959 0.8661

0.4 0.8963 0.8690

0.6 0.8842 0.8720

0.8 0.5034 0.4494

The dataset with the highest test data accuracy per algorithm is high-
lighted in bold, along with the dropout rate at which it is achieved

case with the RF dataset, while the MR dataset predicts irri-
gated crops. In this dataset, in the area where greenhouses
and nets actually dominate, the former were mostly labelled.

However, in general, the separability is really low, not only
between spectrally similar classes, the diversity of crop types
and the fragmentation of the landscape, a real problemof land
use and land cover classification in the area, are not handled
as well as other ML algorithms with any other dataset.

It is noteworthy the case of the south-eastern part of the
catchment, where some areas are clearly under-segmented
and misclassified as water or bare soil with the MS dataset
(Fig. 14).

Discussion

The qualitative analysis of the 3 segmentations obtained
shows that the 10 meter resolution of Sentinel-2 is probably
not sufficient for segmentation in this particular study area
because of the fragmentation of the landscape. A higher spa-
tial resolution is required. The intra-class variability in some
of the classes of the classification scheme, which is expected
to be very high, poses a problem similar to that pointed out by
Blaschke et al. (2008, 2014), among others, when referring
to the problem of pixel-based classifications. They also con-
cluded that, in an urban context, there is no optimal scale for
identifying different objects and that each algorithm deals
with the scale problem in a different way, a statement that
can be observed in the results obtained in this study. One of
the peculiarities of this study area is the presence of small
urban-like structures scattered across a predominantly agri-
cultural landscape. TheRGandMRsegmentation algorithms
have solved the problemmore efficiently in qualitative terms,
achieving better quantitative results in the global classifica-
tion metrics, while MS undersegmented the image, with the
worst results in both qualitatively and quantitatively terms.

Hossain and Chen (2019) identifies good performance
with low computational cost as an advantage of RG-type
algorithms. Certainly, in this study, the overall accuracy,
although lower than that obtained with the MR algorithm,
it is not quite lower in either of the two datasets extracted
from its segments. Furthermore, it is implemented in an open
software GIS and can be easily optimised. It is themost accu-
rate of the three in terms of class classification accuracy using

Table 7 Pixel test accuracy of
MLP classifications by dataset
and segmentation method with
95% confidence intervals

Predictors Accuracy CI 95% Kappa Index CI 95%

RG mean+stdev 0.924 0.922, 0.926 0.904 0.902, 0.906

RG median+range 0.925 0.923, 0.926 0.905 0.903, 0.907

MS mean+stdev 0.894 0.892, 0.896 0.866 0.863, 0.868

MS median+range 0.902 0.899, 0.904 0.876 0.873, 0.878

MRmean+stdev 0.945 0.943, 0.946 0.930 0.928, 0.932

MR median+range 0.913 0.911, 0.915 0.890 0.888, 0.892

The dataset with the best accuracy per algorithm is highlighted in bold
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both RF andMLP, especially using RF, even for those classes
with similar geometric and radiometric characteristics in the
segments. This aspect was highlighted in the review by Hos-
sain and Chen (2019), when analysing similar techniques to
determine their applicability, as one that needs further inves-
tigation. In the same study, the segmentation of linear objects

such as roads or paths was identified as a key challenge due to
their spectral similarity to, for example, some roofs or turbid
water. In this study, both RG and MS algorithms were found
to properly extract linear objects, albeit in a fragmentedman-
ner, although MS did associate them with water bodies such
as irrigation ponds at their edges.

Fig. 12 Cross-class confusion plots of the best-acccuracy datasets for each segmentation algorithm: (a,b) RG mean+stdev, (c,d) MR mean+stdev
and (e,f) MS mean+stdev
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Fig. 13 Final maps obtained with better MLP datasets of every segmentation algorithm: RG mean+stdev (a), MS mean+stdev (b) and MR
mean+stdev (c)

Fig. 14 Comparison of
classification results with MLP
in the south of the basin area. (a)
RG mean+stdev, (b) MR
mean+stdev and (c) MS
mean+stdev
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Many methods of parameter optimisation for segmenta-
tion, as well as evaluation of the results, have been proposed,
with these aspects still remaining as issues to be solved
(Hossain and Chen 2019), the trial and error method is still
the most widely used due to its reliability. However, it is
time-consuming, so this study proposes the automation of
both methods, interpolating the results and selecting the
most appropriate combination of parameters. Being aware
of the partial subjectivity of this selection and of the fact that
the classification statistics would have been different if the
parameters had been slightly varied, the aimwas to obtain the
segmentation parameters together with the evaluation met-
rics of segmentation at the same time and with the same
resources required for trial and error type tests. These met-
rics were based on minimising the intra-segment variability
and maximising the inter-segment variability. In this way,
the interpolation procedure provided a much wider range of
parameter values from which the best compromise solution
could be selected.

Kucharczyk et al (2020) highlights as a good practice to
reduce the dimensionality of the models with a selection of
variables, being according toMa et al. (2017) between 15 and
25 the recommended number for RF. The selection made in
this study with the RF models manages to reduce the num-
ber of variables to this range or very close to it in several
of the datasets, and at least in one of the datasets of each
segmentation algorithm.

However, the final assessment of the results of each seg-
mentation algorithm is given by the evaluation of the entire
GEOBIA process, carried out using the metrics obtained in
each of the classifications. As some authors have considered
the kappa index and the global adjustment to be insufficient
and even of little use for remote sensing applications (Liu
et al. 2007; Pontius and Millones 2011; Stehman and Foody
2019; Foody 2020), it was decided to additionally analyse the
metrics by class from the confusion matrix, following Foody
(2020). This improved the initial position of RG between the
segmentation methods. Although it did not produce the best
overall accuracy with either of the two classificationmethods
used, is indeed the one with more balanced accuracy metrics
by class.

In terms of classification method, the best performance
was obtained with RF, as it was able to produce models with
better per-class results as well as global accuracies. This is
probably due to the greater robustness of RF to small datasets
and the sensitivity of MLP to sparse training data.

RF also produced the best results in a previous study using
a multi-sensor and multi-temporal pixel-based classification
in the same area (Valdivieso-Ros et al. 2023), similar to
those obtained with the best dataset in this study by cross-
validation, with an overall accuracy (OA) of 0.91 ± 0.005
(α = 0.05) and a kappa (K) of 0.898 ± 0.006 (α =
0.05). However, per class and qualitatively, the pixel-based

approach was more accurate than the de GEOBIA approach,
with the omission and commission errors of the major-
ity of classes being less than 0.1. Only the netting class
obtained higher errors, 0.25 and 0.27, but still lower than
those obtained in this GEOBIA approach. Similarly, the
results obtained with MLP in the pixel-based approach, an
OA of 0.877 ± 0.006 (α = 0.05) and a K of 0.859 ± 0.006
(α = 0.05), are almost equal to those obtained with the most
accurate dataset in this study.

The reason for this is probably related to the resolution
of the images, which is insufficient to obtain a good seg-
mentation in this particularly fragmented area. When the
pixel-based validation is carried out on the three segmenta-
tions, a very high accuracy and kappa values are achieved
as the undersegmented objects are classified as the test
pixel class, but without a proper delineation of recognisable
objects. In this way, the quantitative results were extremely
accurate, in contrast to the qualitative results. Nevertheless,
the confusion observed between some classes (greenhouses
and netting or between them and crops) is easily explained
and does not represent a significant difference in agronomic
terms.

Considering all the above means, it was found that finding
an algorithm that produces perfect segmentation is very dif-
ficult due to the complexity of implementing the algorithms
and the lack of free, easy to use and powerful software and
tools with which to implement them, in agreement with Hos-
sain and Chen (2019). Nevertheless, the proposed method to
obtain the compromise parameters for segmentation algo-
rithms has facilitate the selection of a good combination
consuming less time than the usual trial and error method.

However, it is not only the segmentation process that influ-
ences the accuracy metrics in a GEOBIA process, but also
the features extracted from the segments to form the pre-
dictor datasets in classification. Problems with segmentation
could be compensated by a good selection of these features.
Blaschke et al. (2008) pointed out that the objects obtained
from the segmentation are analysed on the basis of their spec-
tral, textural and geometrical characteristics, among others.
In this study, these characteristics were obtained by calculat-
ing shape metrics of the segments, in addition to centrality
and a dispersion statistic for the values of the variables within
each segment. As the variables were multi-sensor, includ-
ing textural and contextual variables derived from optical,
SAR and LiDAR data, the overall classification approach
was very complete. The improvement in the use of multi-
sensor variables over results obtained using only one source
of data, either optical or SARor derived variables, in the same
area has been demonstrated using a pixel-based approach
(Valdivieso-Ros et al. 2023). There are little research in
the same area using an object-based approach, although
the doctoral thesis carried out by Fructuoso (2015) per-
formed several classifications using optical data and some
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segmentation techniques achieving OA results around 0.83
and K of 0.81. Furthermore, the results are consistent with
those obtained using GEOBIA with multitemporal and mul-
tisensor variables in other areas, such as those carried out by
Ruiz et al. (2021),Maxwell et al. (2019), Gbodjo et al. (2020)
or Wu et al. (2016), with OA of more than 0.90. However,
the use of multisensor data for GEOBIA classification is an
aspect that, according to Johnson and Ma (2020), has not yet
been well researched.

Conclusions

The optimisation procedure has facilitated the selection of
parameters from a wider range of values. Although not
entirely based on trial and error, it is still a partially subjective
selection, as the parameters are estimated by interpolation
and the user chooses a compromise solution from the results;
it cannot be excluded that some of the problems encountered
in the subsequent segmentation would not have arisen with
the choice of other parameters.

The segmentation algorithm that produces the best global
metrics, the MR algorithm, is not effective in classifying
some of the classes with either of the two algorithms used
for classification. However, the second segmentation algo-
rithm based on global accuracy metrics, RG, is better at
classifying some difficult classes. In fact, this problem is
partly due to a small training dataset. However, in a previous
study byValdivieso-Ros et al. (2023), which performed pixel

classification in the same area and with the same dataset, the
global metrics were similar and the results did not show the
misclassification of the netting class when using RF. On the
other hand, RF has shown a better performance compared to
the other classification method tested on the same data, MLP,
which confirms that it is the best method to classify the area
for the data used. Moreover, the proposed method of vari-
able selection has proved its validity, in particular reducing
the number of variables from 262 to a range of 15-27 among
the best performing datasets.

The use of multi-sensor data increases the accuracy met-
rics compared to the use of a single data source when using
a pixel-based approach, as appears to be the case with GEO-
BIA, although more research is needed on this topic.

Another important conclusion is the importance of using
not only global accuracy metrics, but also class metrics in
the evaluation of GEOBIA.

Some aspects remain unexplored and constitute future
lines of research, such as the exploration of automatic meth-
ods for the selection of training segments, which could
increase the number of samples to solve the problems of the
most difficult classes. It would also be interesting to extend
the variety of segmentation algorithms to determine whether
other types, such as edge-based, watershed or neural network
based models would be more effective in this area.

Appendix A: Classification performance by
class

Table 8 RF accuracy metrics per class of each dataset and segmentation method

Metrics Data Forest Scrub Dense tree
crops

Irrigated
crops

Impermeable Water Bare soil Greenhouses Netting

RG Precision mean+stdev 0.94 0.864 0.902 0.907 0.923 0.870 0.860 0.686 0.556

median+range 0.974 0.809 0.900 0.886 0.923 0.889 0.848 0.767 0.667

RG Recall mean+stdev 0.905 0.950 0.881 0.975 0.818 0.976 0.902 0.800 0.263

median+range 0.905 0.950 0.857 0.975 0.818 0.976 0.951 0.767 0.316

RG Balanced
Accuracy

mean+stdev 0.951 0.965 0.934 0.981 0.904 0.978 0.941 0.882 0.625

median+range 0.951 0.960 0.922 0.979 0.904 0.979 0.964 0.872 0.653

MS Precision mean+stdev 0.929 0.706 0.780 0.796 0.917 0.920 0.739 0.688 0.600

median+range 0.964 0.833 0.854 0.833 0.944 0.958 0.760 0.774 0.750

MS Recall mean+stdev 0.963 0.774 0.800 0.951 0.868 0.958 0.654 0.759 0.176

median+range 1.000 0.968 0.875 0.976 0.895 0.958 0.731 0.828 0.176

MS Balanced
Accuracy

mean+stdev 0.977 0.866 0.881 0.954 0.928 0.975 0.815 0.859 0.584

median+range 0.998 0.971 0.925 0.971 0.943 0.977 0.853 0.899 0.586

MR Precision mean+stdev 0.960 0.877 0.897 0.897 0.944 0.953 0.944 0.765 1.000

median+range 0.958 0.836 0.881 0.897 0.895 1.000 0.875 0.794 −
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Table 8 continued

Metrics Data Forest Scrub Dense tree
crops

Irrigated
crops

Impermeable Water Bare soil Greenhouses Netting

MR Recall mean+stdev 1.000 0.943 0.912 0.897 0.944 1.000 0.850 0.897 0.077

median+range 0.958 0.962 0.912 0.897 0.944 1.000 0.700 0.931 0.000

MR Balanced
Accuracy

mean+stdev 0.997 0.959 0.945 0.942 0.969 0.997 0.923 0.935 0.538

median+range 0.976 0.963 0.944 0.942 0.966 1.000 0.847 0.954 0.500

LOPOCV type validation. The dataset with the highest accuracy per algorithm is highlighted in bold

Table 9 RF omission and commission errors by class for each dataset and best-accuracy segmentation method with RF for each segmentation
algorithm: RG mean+stdev, MR mean+stdev and MS median+range

Forest Scrub Dense tree
crops

Irrigated
crops

Impermeable Water Bare soil Greenhouses Netting

RG Err.Om. 0.026 0.136 0.098 0.093 0.077 0.130 0.140 0.314 0.444

Err.Com. 0.095 0.050 0.119 0.025 0.182 0.024 0.098 0.200 0.737

MS Err.Om. 0.036 0.167 0.146 0.167 0.056 0.042 0.240 0.226 0.250

Err.Com. 0.000 0.032 0.125 0.024 0.105 0.042 0.269 0.172 0.824

MR Err.Om. 0.04 0.123 0.103 0.103 0.056 0.047 0.056 0.235 0.000

Err.Com. 0.00 0.057 0.088 0.103 0.056 0.000 0.150 0.103 0.923

Table 10 MLP accuracy metrics per class of each dataset and segmentation method. CV5F type validation

Estatistic Data 1 2 3 4 5 6 7 8 9

RG Precision mean+stdev 1.000 0.774 0.850 0.951 0.895 0.958 0.500 0.828 0.000

median+range 0.952 0.850 0.905 0.975 0.841 0.951 0.780 0.833 0.053

Recall mean+stdev 0.931 0.615 0.850 0.830 0.895 0.920 0.619 0.750 0.000

median+range 0.930 0.791 0.905 0.886 0.860 0.886 0.821 0.658 0.333

Balanced Accuracy mean+stdev 0.966 0.649 0.675 0.815 0.697 0.793 0.500 0.683 0.053

median+range 0.765 0.695 0.702 0.860 0.661 0.800 0.629 0.690 0.217

MS Precision mean+stdev 1 0.871 0.875 0.951 0.921 0.958 0.692 0.862 0.118

median+range 1.000 0.839 0.900 0.951 0.895 1.00 0.577 0.862 0.235

Recall mean+stdev 1 0.818 0.875 0.848 0.921 0.958 0.692 0.735 0.400

median+range 0.964 0.684 0.923 0.848 0.919 0.96 0.682 0.758 0.800

Balanced Accuracy mean+stdev − 0.709 0.688 0.813 0.711 0.729 0.596 0.714 0.283

median+range 0.982 0.695 0.676 0.813 0.674 0.98 0.535 0.712 0.436

MR Precision mean+stdev 1.000 0.943 0.912 0.872 0.917 0.976 0.850 0.862 0.154

median+range 0.979 0.943 0.895 0.846 0.833 1 0.800 0.828 0.154

Recall mean+stdev 0.941 0.862 0.881 0.895 0.868 1.000 0.944 0.806 0.667

median+range 0.959 0.847 0.879 0.825 0.938 1 0.842 0.800 0.250

Balanced Accuracy mean+stdev 0.971 0.795 0.732 0.670 0.747 0.500 0.597 0.703 0.375

median+range 0.813 0.799 0.709 0.682 0.594 − 0.635 0.673 0.301

The dataset with the highest Balanced Accuracy by class is highlighted in bold
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Table 11 MLP accuracy
metrics per class of each dataset
and segmentation method.
CV5F type validation

1 2 3 4 5 6 7 8 9

RG Err.Om. 0.071 0.275 0.071 0.075 0.159 0.049 0.195 0.167 1

Err.Com. 0.114 0.237 0.152 0.140 0.075 0.093 0.283 0.342 1

MS Err.Om. 0 0.129 0.125 0.049 0.079 0.042 0.308 0.138 0.882

Err.Com. 0 0.182 0.125 0.152 0.079 0.042 0.308 0.265 0.600

MR Err.Om. 0.000 0.057 0.088 0.128 0.083 0.024 0.150 0.138 0.846

Err.Com. 0.059 0.138 0.119 0.105 0.132 0.000 0.056 0.194 0.333
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