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Abstract
The soil water characteristic curve (SWCC) reveals soil porosity and soil-water interactions at different matric suctions. Numerous methods, such as laboratory
determination, CT-scan, image analysis, and predictive models, have been employed to investigate soil porosity system and their correlation with the SWCC.
Image analysis techniques offer valuable insight into soil pore system, providing data that cannot be obtained by other methods. This study aims to compare
the role of image analysis technique in reconstructing the SWCC with the laboratory measurement method. Eight machine learning models and algorithms,
including Gradient Boosting (GB), Ada Boost (AB), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), Support Vector Machine (SVM), K-
Nearest Neighborhood (KNN), and Linear Regression (LR), were utilized for the reconstruction of the SWCC using the Orange-3 data mining software. The
predicted SWCCs by models were compared with the measured SWCC. The models used to reconstruction of SWCC were categorized as capable and
incapable to SWCC prediction. Four statistical parameters, namely RMSE, MAE, Willmott’s index of agreement (d1), and R2, were utilized to assess the
performance of the models using all input data. The GB, AB, DT were the top best models in correct prediction of SWCC. Among them the GB model achieved
near-perfect predictions, with RMSE, MAE, d1, and R2 values of 0.016, 0.011, 0.94, and 0.982, respectively. However, when the matric suction was used as only
input data, the performance of all the models declined. This study demonstrates that Orange-3 is user friendly software to predict SWCC, without labor
preprocessing activities.

1. Introduction
The Soil Water Characteristic Curve (SWCC) is closely associated with soil physical properties and plays a crucial role in soil and water management (Shwetha
and Varija, 2015). The SWCC provides valuable direct and indirect information about the behavior of water in unsaturated soils (Zhai and Rahardjo, 2012; van
Genuchten et al., 2015). There is a need to reliable determination of the SWCC of any given soil using a combination of both measurement and predicting
techniques. However, all the field, laboratory, and computer vision-based measurements of SWCC are expensive, tedious, time-consuming, and sometimes
impossible due to issues related to scaling, spatial variability, and stud-site inaccessibility (Achieng, 2019) thus use of modeling procedures is a very common
approach to predict SWCC (Dobarco et al., 2019).

While multiple linear regression (MLR), ANN, and SVR, have been commonly used in the development of pedo-transfer functions (PTFs) (Rani et al., 2022).
There has been a significant increase in the application of machine learning (ML) algorithms such as LR, ANNs, SVMs, classification and regression tree
(CART), and RF, in soil moisture researches. These ML algorithms are preferred for their non-parametric nature and ability to capture complex and non-linear
relationships (Padarian et al., 2020).

Machine learning techniques for estimating SWCC fall under the category of supervised learning, where a labeled training dataset is provided with known
output values. The model is trained using algorithms applied to the input dataset to predict the desired output. Training continues until the model achieves the
desired accuracy on the training dataset. Supervised learning is commonly used for classification and regression tasks (Rani et al., 2022).

Achieng (2019) conducted a comparative study of several ML algorithms for modeling SWCC in loamy sand soil. They found that the RBF-based support
vector regression (SVR) outperformed SVR with linear and polynomial kernels, single-layer ANN, and deep neural network (DNN) models. In another study,
Araya and Ghezzehei (2019) demonstrated the superior performance of the Boosted Regression Tree (BRT) model compared to other algorithms, such as KNN,
SVR, and RF, for predicting saturated hydraulic conductivity. However, the RF model closely followed the BRT model in terms of performance. These findings
highlight the satisfactory performance of various ML algorithms in predicting environmental events. For instance, Hong and Pai (2007) and Hu et al., (2013)
observed the effective use of techniques such as ANN, SVM, and KNN for forecasting soil water evaporation. Furthermore, Baydaroglu and Kocak (2014)
observed the valuable performance of these algorithms in predicting free water surfaces, while Valipour et al., (2012; 2013) utilized these algorithms to predict
water reservoir inflows. As a result of their high flexibility, accurate predictive performance, and consistent results, data mining techniques have become a
preferred choice for many researchers seeking to enhance their understanding of unsaturated soil hydrological properties (Botula et al., 2013).

The capability of machine learning methods to accurately fit the SWCC is directly influenced by the availability of measured soil water content data at various
soil matric potentials (Hastie et al., 2009; K. Lamorski et al., 2013). Toth et al. (2014) analyzed the SWCC using the RF model at four matric suctions (0.1, 33,
1500 kPa, and 150 MPa). The results demonstrated that the significance of soil properties in predicting soil water content varies across different soil types
and matric suctions. In another study, Gunarathna et al. (2019) evaluated ML algorithms, including ANN and KNN, to estimate the volumetric water content at
matric suctions of 10, 33, and 1500 kPa. Pekel (2020) applied decision tree regression, specifically the CART algorithm, to estimate soil moisture. The input
variables were air temperature, time, relative humidity, and soil temperature. In other study, Cai et al. (2019) proposed the use of a Deep Learning Regression
Network (DLRN) with big data fitting capability for constructing soil moisture prediction models. Numerical models like HYDRUS-2D often require a large
amount of input data for simulating the time-series of soil moisture. However, if limited input data is available, ML algorithms such as SVM and Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) can efficiently handle the task (Karandish & Simunek, 2016). While the accuracy of ML algorithms may be
comparatively lower than numerical models, they can serve as a better alternative under limited and missing data conditions.

Although machine learning techniques have been explored in various soil moisture-related studies, the use of boosting techniques for this purpose is relatively
rare (Araya and Ghezzehei, 2019). Boosting methods aim to iteratively combine weak learners to create a strong learner that can provide more accurate
predictions. One popular technique in boosting is gradient boosting, which involves sequentially adding predictors to an ensemble, with each predictor
correcting the errors made by its predecessor. Unlike AB, which adjusts the weights of data points, gradient boosting trains on the residual errors of the
previous predictor. In this study, gradient boosting and AB were selected as the most popular boosting-based algorithms for the estimation of SWCC using ML.

Vereecken et al. (2010) concluded that incorporating soil structure information as one of the predictors in PTFs is likely to enhance their performance. Nguyen
et al. (2014) found that including categorical soil structure information in point PTFs developed using the MLR technique improved the accuracy of SWCC
estimation for tropical paddy soils. They also suggested further investigation to explore whether these improvements would hold true when using different
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data mining techniques and for other types of PTFs. Passoni et al. (2014) utilized ImageJ software to characterize the porosity of Oxisols in the southeastern
region of Brazil by relying on shape factors or pore form. ImageJ offers a convenient built-in option for analyzing soil porosity. This feature provides valuable
output parameters including the number of porosity surface area (Total Area of Porous Regions, cm2), volume (Total Number of Porous Voxels × Voxel
Volume, cm3), elongation (Major Axis Length/Minor Axis Length, dimensionless), flatness (Average Length of Major Plane/Average Length of Minor Plane),
sphericity (4π × area/perimeter2, dimensionless), and compactness (volume of the porous region/surface area of the porous region, dimensionless). Building
upon these findings, we utilized detailed soil structural properties derived from image analysis as inputs in the machine learning technique employed in this
study. The aim was to assess whether the incorporation of such soil structure information would contribute to improved SWCC estimation.

Data mining techniques have shown superiority in modeling the interactions of the soil-water complex system compared to traditional MLR techniques.
However, these techniques also have some drawbacks, including susceptibility to over fitting, high data demand, and expert knowledge requirements. In this
study, machine learning methods were employed to analyze soil structure using selected soil properties. Therefore, our objective is to predict SWCC in soil
samples with different properties using data mining algorithms. The prediction process was conducted under two conditions: 1) using matric suction as the
only predefined input, and 2) using a range of input parameters obtained from laboratory and image analysis methods.

2. Material and Methods

2.1. Soil sampling
The characteristics of soil porosity and SWCC of two soil samples with textural classes of loamy sand and silty clay, taken from Arenosols (located at
coordinates 35° 54′ N and 50° 32′ E), and Vertisols (located at coordinates 36° 22′ N and 49° 35′ E) of Central Iran. These soil samples were subjected to
various treatments, including amendments such as CaCO3, Fe2O3, vermin-compost, their combined treatment, cation treatment, and a structural degradation
treatment. The aim of this study was to examine the effects of these treatments on the soil porosity and SWCC. The topsoil (0–10 cm) was sampled, dried
and sieved to pass a 2 mm sieve and analyzed to determine typical soil characteristics. The basic soil properties that have been widely used for SWCC
estimation (Wassar et al., 2016), including soil organic carbon (SOC) (Walkley & Black, 1934), particle size distribution (PSD) (Gee & Or, 2002), cation exchange
capacity (CEC) (Rhoades, 1983), electrical conductivity (EC) (Rhoades, 1996), pH (Thomas, 1996) and the parameters of soil porosity (a, n, Θs, Θr, hi) (Dexter et
al., 2008) were determined using the standard methods. The bulk density of soil samples was determined using the core method (Grossman & Reinsch, 2002),
in the undisturbed samples collected using Kopecky rings (5 cm in height and 5 cm in diameter). Machine learning (ML) models, known for their ability to
predict target properties without limitations (Bell, 2022), were employed to model the data obtained from the studied soils and analyze the effects of different
treatments.

2.2. Preparation of the treatments
The soil samples were subjected to various treatments, including four levels of CaCO3 (0%, 1.5%, 3%, 5%), Fe2O3.7H2O (0%, 0.5%, 1%, 2%), vermicompost (0%,
0.6%, 1%, 2%) with the composition of vermicompost (OC, N, etc.) incorporated, and a combination of these treatments (including the blank, 1st level: CaCO3 = 
1.5%, Fe2O3.7H2O = 0.5%, vermicompost = 1%, as well as the 2nd and 3rd levels combined). Furthermore, to assess the effects of cations on soil structure, the

soil pots were irrigated with solutions containing CaCl2 and NaCl at concentrations of 0, 5, 10, and 20 meq L− 1 during the incubation period, as explained
subsequently. In addition to the aforementioned amendment treatments, three replicates of degraded treatments were included in the study. These degraded
treatments were prepared through a consolidation process specific to each soil texture. The treated samples were weighed and filled in 1 kg pots (without
drain) and incubated at room temperature 24 ~ 26°C. To investigate the effect of shrink-swell on soil structure development, all treated samples (including
disturbed and structure-less soils) were subjected to a series of periodic shrink-swelling and wetting and drying cycles, repeated 20 times. The soaked pots
were weighed daily to track minimal variations. Rewetting until field capacity is achieved by carefully adding water to the sponge cover placed on top of the
columns to avoid disturbing soil conditions. Detailed information about the studied treatments can be seen in Table 1. The total number of samples studied
was 128, which consisted of 5×4×3×2 (amendment treatments) + 4×2 (degraded treatments). One of the replicates was utilized to prepare intact samples for
measuring the soil water characteristic curve using pressure plate and pressure membrane methods, while the other two replicates were impregnated with a
mixture of polyester resin, catalyst, hardener, and fluorescent dye for UV photography and subsequent image analysis.

2.3. Determination of the soil water characteristic curve
The soil water characteristic curve (SWCC) was constructed by combining the results obtained for water content at both low matric suctions (0, 10, 20, 40, and
70 cm) using a sandbox apparatus and higher matric suctions (100, 300, 500, 1000, 3000, 5000, 9000, and 15000 cm) using pressure plate/pressure
membrane apparatus. Undisturbed samples were used to determine the lower matric suctions ranging from 0 to 1000 cm, while disturbed samples were
utilized for matric suctions ranging from 3000 to 15000 cm.

2.4. Preparation of samples for imaging after SWCC construction

2.4.1. Impregnation with fluorescent dye resin
A total of 128 pre-treated samples were impregnated with a mixture of polyester resin and styrene in a 5:1 ratio, along with an appropriate amount of hardener
and catalyst. To enhance the visibility of soil pores for digital imaging, 2 g.L− 1 of fluorescent dye was added as a brightener (Ringrose-Voase 1996). The
mixture was added up to the middle height of the samples placed in plastic containers within a vacuum desiccator. The desiccator was connected to a
compressor and evacuated to 8 psi for 2 h to ensure resin filling and air removal from the pores. Subsequently, the samples were taken out of the desiccator,
refilled with the same mixture up to a height of 1 cm from the upper surface of the samples and subjected to a vacuum for an additional two hours. Following
the vacuum process, the samples were refilled to their upper level and sealed to prevent rapid volatilization of styrene (Wei et al., 2019; Liu et al., 2016). After
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one week, the sealed samples were opened to let the styrene to volatilize at room temperature. Approximately 75 days later, the polyester resin reached the
desired hardness.

2.4.2. Cutting, polishing, and imaging
The hardened samples were cut and polished to facilitate imaging and visualization of soil pores and potential structure development in the treated soils (Wei
et al., 2019). Two horizontal and two vertical cuts were made on each sample, exposing the four nearest horizontal and vertical surfaces (2 sides × 2 cuts) for
digital imaging. Imaging was conducted in a dark room equipped with two UV lamps to maximize the brightness of the fluorescent dye impregnated in the
pores, enabling visibility of even the smallest pores. The images were captured using a digital camera with a resolution of 12 MP and an f/1.8 aperture.
Subsequently, the captured images were imported into the ImageJ software for preprocessing and analysis of soil pores.

2.4.3. Image preprocessing
The color images were imported into the ImageJ software and then scaled, calibrated, and converted into grayscale using the image conversion module. The
grayscale images were further processed by applying a thresholding method to convert them into binary images, where pores were represented as white pixels
and solids as black pixels. The resulting binary images were stacked together to obtain four 3D volumes (two horizontal and two vertical) for each sample.
Key parameters of the pores, including 3D porosity (defined as the total volume of pore voxels divided by the number of voxels), pore sphericity (ranging from
0 for elongated pores to 1 for spherical pores), aspect ratio (calculated as the ratio of the short axis to the long axis), and object orientation, were determined
using 3D and 2D plugins in ImageJ. Object orientation refers to two angles: φ (ranging from 0° to 90°), which represents the angle between the horizontal
plane and the particle's long axis (pore channel), and θ (ranging from 0° to 180°), which represents the direction of the long axis (pore channel) projected onto
the horizontal plane. Some of the 2-D and 3-D properties, such as pore space surface area and sphericity, were directly determined using ImageJ software.
Porosity was calculated as the fraction of image volume occupied by the pore space.

2.5. Machine learning procedure
The Orange.3 data mining software, which is a visual-based version of the Python programming language, was utilized for preprocessing the raw data
collected from laboratory and image analysis methods. Ahangar-Asr et al. (2012) emphasized that the simplicity of a procedure and its capability to apply
multiple models simultaneously are key factors in determining the priority of a method for estimating SWCC. In line with this, we utilized Orange.3 software,
which offers a user-friendly and efficient machine learning process. This software provides comprehensive data mining, modeling, and evaluation tools
without requiring complex and time-consuming coding. The results of this procedure enable a quick comparison of various fitted models, including Gradient
Boosting, Ada Boost, Decision Tree, Random Forest, Neural Network, Support Vector Machine, k-Nearest Neighbors, and Linear Regression, to identify the most
effective machine learning algorithm for predicting SWCC from the input raw dataset. Furthermore, the Feature Importance widget was used to determine the
relative importance of input features in predicting SWCC with a minimal dataset. This widget assesses the contribution of each feature to the prediction by
measuring the increase in prediction error when the values of the feature are permuted. Additionally, Orange.3 software was used to analyze the impact of
different values of each feature on the model output. This analysis helps identify critical values of important features in modeling the SWCC, providing
researchers with insights into the most influential range of feature values. The statistical analysis included the calculation of R-squared (R2) and root mean
square error (RMSE) to assess the predictive capabilities of machine learning algorithms for SWCC prediction using features obtained from laboratory and
image analysis methods.

3. Results and discussion

3.1. The properties of initial soil samples
Table 1 presents the routine properties parameters obtained from the SWCCs of soil samples prior to any treatment. The selection of these two samples was
done deliberately to ensure a wide range of variations in their physical, chemical, and hydraulic properties, allowing for a comprehensive evaluation. The
loamy sand sample has a high sand content of 82.6% with approximately 12% clay, while the silty clay sample has a clay content exceeding 40% and a lower
sand content of around 10%. Both samples are non-saline and slightly alkaline, but they differ significantly in terms of organic carbon (OC) content (0.12% vs.
0.42%) and cation exchange capacity (CEC) values (4.8 cmol+ kg− 1 vs. 24.1 cmol+ kg− 1). The matric suction at the inflection point (hi) of the soil water
characteristic curve (SWCC) varies from 300 cm in the loamy sand sample to 70 cm in the silty clay sample. The shape factor (n) of the SWCC in Van
Genuchten's (1980) model ranges from 2.07 in the loamy sand sample to 1.0 in the silty clay sample. The bulk density of the samples did not show significant
differences. However, there were significant differences in the alpha coefficient, which corresponds to the inverse value of air entry into the soil (α, cm− 1), as
well as in the saturation water content (Θs, g.g− 1) and residual water content (Θr, g.g− 1) between the two samples.

Table 1
Initial soil samples properties

Soil Texture Particle size distribution Structural and hydraulic properties CEC

(cmol+.kg− 1)

EC

(µS.cm− 1)

OC

(%)

pH

Clay

(%)

Silt

(%)

Sand

(%)

Bulk Density

(kg.m− 3)

α

(cm− 1)

n

(-)

Θs

(g.g− 1)

Θr

(g.g− 1)

hi

(cm)

Loamy Sand 12.1 5.3 82.6 1340 0.023 2.07 0.247 0.058 70 4.8 782 0.12 8.12

Silty Clay 41.8 48.1 10.1 1290 0.003 1 0.382 0.175 300 24.1 426 0.42 7.49
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3.2. Changes in properties of treated samples and the results obtained from image
analyses
Table 2 presents the changes in the physical and chemical properties of the treated samples after the incubation period, compared to the blank samples.
Additionally, Table 2 provides the results from image analyses of the soil pores developed as a result of the treatments. In the loamy sand samples, all
measured properties (BD, CEC, EC, and OC except the pH values) were increased in all treatments, except for the Fe2O3 treatment, compared to the blank
sample. On the other hand, in the silty clay samples, bulk density was decreased in most treatments compared to the blank, except for the treatments involving
cations and degraded samples. In the loamy sand samples, CEC showed a slight increase in the CaCO3 and OC treatments, while it decreased in the other
treatments. On the other hand, in the silty clay samples, EC, OC, and pH values increased in all treatments compared to the blank sample. The results obtained
from image analyses revealed that the properties examined, including porosity surface area, volume, elongation, compactness, sphericity, and flatness, did not
exhibit consistent variations across different treatments. In the loamy sand sample, the porosity surface area increased in the CaCO3, Fe2O3, and combined
treatments, while decreasing in the other treatments. In the silty clay sample, there was a slight increase in the OC treatment, but a decrease was observed in
all other treatments compared to the blank.
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Table 2
Properties of treatments at the end of incubation and the results obtained from image analysis

Treatments Level   Bulk
Density

(kg.m− 

3)

CEC

(cmol+.kg− 

1)

EC
(µS.cm− 

1)

OC
(%)

pH Porosity
surface
area
(cm2)

Porosity

Volume
(cm3)

Structural
flatness
(-)

Porosity
elongation
(-)

Pore

sphericity
(-)

Porosity
Compactnes
(-)

  Loamy sand

  Blank   1310 5.24 877 0.14 8.12 1.240 1.2×10− 

1

4836 1.44 0.08 0.08

CaCO3 1   1380 5.48 1091 0.16 7.96 1.100 1.4×10− 

1

4115 3.5 0.21 0.13

2   1480 5.77 1307 0.15 8.2 3.830 1.2×10− 

1

5421 2.3 0.11 0.17

3   1400 5.45 1030 0.16 8.05 3.430 1.1×10− 

1

5127 2.1 0.1 0.2

Fe2O3 1   1390 5.36 1027 0.14 7.87 1.180 0.9×10− 

1

4826 1.7 0.09 0.1

2   1520 5.7 994 0.15 7.94 1.250 1.1×10− 

1

5215 2.0 0.07 0.09

3   1290 5.56 1076 0.14 8.06 1.430 1.3×10− 

1

5625 1.6 0.06 0.1

OM 1   1340 5.41 915 0.17 8.21 1.070 1.1×10− 

1

4023 4.8 0.29 0.08

2   1440 5.10 947 0.17 8.1 1.200 1.3×10− 

1

3745 5.6 0.33 0.07

3   1500 5.96 917 0.18 8.07 1.000 1.0×10− 

1

4715 3.7 0.22 0.11

Cations 1   1330 5.42 1124 0.15 7.83 1.010 1.0×10− 

1

3965 4.9 0.14 0.11

2   1360 5.24 1173 0.15 7.96 1.110 1.0×10− 

1

3928 5.0 0.21 0.09

3   1470 5.31 1271 0.14 7.86 1.030 1.0×10− 

1

4236 4.7 0.16 0.1

Combined 1   1370 5.57 1210 0.16 8.11 4.730 1.4×10− 

1

4830 4.4 0.13 0.2

2   1310 5.49 1240 0.15 8.07 3.658 1.3×10− 

1

5022 4.2 0.21 0.2

3   1250 5.33 1320 0.17 7.91 3.354 1.4×10− 

1

5266 4.4 0.17 0.1

Removed

CaCo3

-   1410 5.19 948 0.13 7.62 1.270 1.4×10− 

1

3215 6.0 0.37 0.06

Removed

Fe2O3

-   1270 5.34 982 0.13 8.11 0.965 1.0×10− 

1

5118 3.1 0.17 0.13

Removed

OM

-   1460 5.29 1031 0.12 7.98 0.925 1.0×10− 

1

5084 4.2 0.28 0.1

Degraded

Treatment

-   1620 5.41 916 0.14 8.16 1.000 1.0×10− 

1

4425 1.4 0.11 0.05

  Silty clay
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Treatments Level   Bulk
Density

(kg.m− 

3)

CEC

(cmol+.kg− 

1)

EC
(µS.cm− 

1)

OC
(%)

pH Porosity
surface
area
(cm2)

Porosity

Volume
(cm3)

Structural
flatness
(-)

Porosity
elongation
(-)

Pore

sphericity
(-)

Porosity
Compactnes
(-)

  Blank   1290 25.95 492 0.47 7.62 1.280 1.2×10− 

1

5987 4.8 0.41 0.2

CaCO3 1   1280 26.87 687 0.5 7.54 1.050 1.1×10− 

1

2549 4.7 0.32 0.19

2   1220 27.12 841 0.49 7.78 0.986 1.1×10− 

1

2989 3.2 0.29 0.23

3   1180 25.9 945 0.51 7.62 1.010 1.0×10− 

1

4216 3.5 0.31 0.2

Fe2O3 1   1250 23.7 646 0.44 7.56 1.100 1.3×10− 

1

6395 3.1 0.37 0.17

2   1280 24.1 633 0.47 7.71 1.170 1.2×10− 

1

4987 3.7 0.26 0.22

3   1310 23.7 657 0.54 7.64 1.110 1.1×10− 

1

4529 4.0 0.29 0.17

OM 1   1260 26.6 704 0.58 7.73 1.020 9.5×10− 

2

3825 4.4 0.32 0.2

2   1220 27.9 647 0.61 7.66 1.420 1.4×10− 

1

2744 6.3 0.37 0.09

3   1280 29.1 686 0.61 7.84 1.530 1.5×10− 

1

4988 7.3 0.46 0.06

Cations 1   1320 26.4 724 0.49 7.76 1.340 1.2×10− 

1

4074 5.1 0.43 0.14

2   1440 25.6 693 0.47 7.82 1.090 1.1×10− 

1

4765 3.6 0.35 0.19

3   1190 24.9 686 0.5 7.72 1.220 1.1×10− 

1

3956 4.2 0.38 0.16

Combined 1   1370 23.8 712 0.51 7.86 0.922 9.2×10− 

2

3019 3.2 0.26 0.24

2   1190 24.3 734 0.53 7.90 1.100 1.0×10− 

1

2552 3.8 0.33 0.17

3   1160 25.4 746 0.52 7.8 1.050 1.0×10− 

1

3118 3.5 0.3 0.2

Removed

CaCo3

-   1210 23.2 634 0.47 7.73 1.200 1.5×10− 

1

4512 5.7 0.22 0.11

Removed

Fe2O3

-   1210 21.7 706 0.49 7.84 0.976 1.0×10− 

1

4311 4.2 0.24 0.17

Removed

OM

-   1280 23.9 691 0.48 7.93 0.942 9.8×10− 

2

6236 5.0 0.27 0.14

Degraded

Treatment

-   1550 23.4 669 0.46 7.72 0.903 8.7×10− 

2

3721 2.7 0.31 0.26

Similar to Table 2 and Table 1, a dataset of individual treatments was prepared, which was automatically divided into model training and test datasets.
Orange.3 software, based on a machine learning procedure, applied the mentioned features from Table 2 and Table 1 in eight algorithms to predict the soil
water content at different matric suction levels. Soil matric suction is used as a predefined input feature, while the other features are applied separately in all
evaluating models. The most important features are determined based on their effects on the model output, as shown in Fig. 1.
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3.2. Impacts and relative importance of the input parameters on the models
Researchers have utilized various soil properties, including the percentages of clay, silt, and sand, as well as void ratio and water content at saturation, along
with soil matric suction related to gravimetric water content, for the estimation of SWCC (Ahangar-asr et al., 2012). Identifying the most significant features in
SWCC estimation can greatly reduce time and energy consumption while increasing accuracy. As input features of models Fig. 1 (1.a to 1.h) illustrates the
effects of different input parameters on model outputs and their relative importance in terms of the model's accuracies (RMSEs) in eight machine learning
models. Among these models, matric suction was identified as the most important parameter in the GB (Fig. 1.a), AB (Fig. 1.b), RF (Fig. 1.d), and SVM (Fig. 1.f)
models. On the other hand, organic carbon percentage, soil texture, porosity surface area, and electrical conductivity emerged as the most significant
parameters in the DT (Fig. 1.c), ANN (Fig. 1.e), KNN (Fig. 1.g), and LR (Fig. 1.h) models, respectively. Matric suction was identified as the most important
parameter among the first three influential parameters affecting the model outputs in all models, except for the ANN model (Fig. 1.e). Lower matric suction
values resulted in higher prediction accuracy in the models, while higher matric suction values led to a decrease in accuracy. The results indicated that, except
for the ANN model, three to five of the input characteristics were identified as the most influential parameters for prediction accuracy in different models.

After matric suction, soil pore characteristics emerged as the next important parameters in predicting accurate results, except in the case of the ANN model. At
least one or two pore characteristics played a role in predicting the SWCC, with structural flatness and porosity surface area being particularly influential
compared to other pore characteristics. In their study, Ahangar-Asr et al. (2012) attempted to incorporate soil void ratio as an input parameter in a model
aimed at predicting SWCC and soil porosity characteristics. However, they did not specifically investigate the influence of these properties on the model's
results.

3.3. Comparison of the models’ predicted results

3.3.1 The output of the models when all parameters used
When comparing the SWCCs generated by the models using all the studied parameters, it was found that the GB, AB, RF, and DT models produced the most
accurate results with lower RMSE (< 0.028) and MAE (< 0.018), and higher d1 (> 0.93) and R2 (> 0.968), as shown in Table 3. This means that the mean
difference between the predicted and measured water contents was less than 0.02 g g− 1 for all matric suctions used to plot the SWCCs. Achieng (2019)
conducted research using machine learning techniques, including ANN, DNN, and SVM models, to estimate SWCC. In most cases of drying SWCC, the models
achieved an RMSE of less than 0.01, with R2 and d1 values exceeding 0.99 and 0.94, respectively. The study demonstrated high accuracy in the estimation of
SWCC in the studied Loamy Sand soil sample. Lamorski et al. (2017) employed various SVM models trained with physical soil properties, including SWCC
drying branch, BD, Sand%, Silt%, clay%, OC, and soil specific surface, as input variables. The resulting models successfully estimated SWCC wetting branches
with an R2 greater than 0.98 and an RMSE less than 0.02. Srivastava et al. (2013) utilized the SVM algorithm, which yielded an RMSE of 0.013 and an R2 of
0.69. In contrast, the performance of the random forest algorithm varied across different studies. Long et al. (2019) and lm et al. (2016) reported RMSE values
greater than 0.04 m3 m− 3, while Bai et al. (2019) achieved accurate results with an RMSE less than 0.02 m3 m− 3.

However, in this study (ANN, SVM, KNN, and LR) showed a significant decrease in model accuracy (as indicated by higher values of RMSE, MAE, and lower
values of d1 and R2) compared to the acceptable limits of accuracy. Consequently, these models were unable to generate SWCCs that met the required level of
accuracy. Similar to the findings of Hastie et al. (2009), which demonstrated that regression-based methods may yield non-accurate results in pedo-transfer
function methods, the LR algorithm in this study produced an R2 of 0.66 and an RMSE of 0.69 when applied in the machine learning method, categorizing it as
a non-accurate model. Nguyen et al. highlighted the benefits of the KNN model, including its flexibility, simplicity, accuracy in limited data availability
conditions, and the ability to incorporate new observations into training datasets without the need to redevelop the PTF models. However, Guevara and Vargas
(2019) examined the performance of the KNN algorithm for predicting soil moisture content based on DEM data and found that the prediction RMSE exceeded
0.05 m3 m− 3. In another study, Liu et al. (2018) observed an RMSE greater than 0.07 m3 m− 3 in the prediction of moisture content using the KNN algorithm
with inputs derived from satellite-derived data.

Table 3
The statistics obtained for the models used to generate

SWCC using all parameters
Model RMSE MAE d1 R2

Gradient Boosting 0.016 0.011 0.94 0.982

AB 0.020 0.014 0.93 0.971

Random Forest 0.021 0.015 0.93 0.968

Tree 0.028 0.018 0.93 0.944

Neural Network 0.087 0.071 0.65 0.462

SVM 0.077 0.070 0.58 0.583

KNN 0.085 0.071 0.62 0.490

Linear Regression 0.069 0.059 0.69 0.664

Table 4 presents the Pearson correlation (r) between the measured water content (θMeasured) and the evaluating models, along with the identified important
features. Previous studies have reported correlation coefficients greater than 0.9 between estimated and measured SWCC or soil moisture content using the



Page 9/20

random forest algorithm (Im et al., 2016; Bai et al., 2019; Long et al., 2019; Zappa et al., 2019). However, it is important to note that the ability of the same
algorithm to estimate soil moisture content may vary depending on the input features used in the modeling procedure. For example, the aforementioned
studies utilized different sets of input features, including satellite-derived data, soil texture (Zappa et al., 2019), and leaf area index (Im et al., 2016). These
variations in input features can result in different levels of correlation with the target values. As illustrated in Fig. 1 and further supported by Table 4, certain
features exhibit a stronger correlation with the measured soil moisture content. Notably, matric suction has shown a strong negative correlation with θMeasured,
indicating its influence on soil moisture dynamics.

As anticipated, soil bulk density and sand percentage exhibit a negative correlation with soil water content. Additionally, a negative correlation was observed
between water content and structural flatness, indicating that increased soil pore compaction leads to a decrease in water content at varying matric suction
levels. Notably, based on Pearson correlation coefficients, structural flatness (r = -0.625) demonstrates a more explicit effect on the decrease of soil water
content compared to soil bulk density (r = -0.469).

Table 4
Pearson correlation (r) between model

and used features with measured
water content

Parameters θMeasured

θGradient Boosting 0.991

θAB 0.985

θRandom Forest 0.984

θTree 0.972

θLinear regression 0.817

θSVM 0.802

θNeural Network 0.743

ΘKNN 0.710

Matric Suction -0.704

EC -0.640

OC 0.640

CEC 0.640

pH -0.640

Silt percentage 0.640

Sand percentage -0.640

Clay percentage 0.640

Structural Flatness -0.625

Pore Sphericity 0.558

Porosity Elongation 0.547

Porosity Volume 0.536

Bulk Density -0.469

Porosity Compactness 0.438

Porosity Surface Area 0.335

3.3.2 Just Appling soil matric suction as model input feature
To assess the necessity of incorporating additional input features for improving the model outputs, we conducted an evaluation using only the matric suction
feature as the input. While soil matric suction has a significant impact on model learning and prediction accuracy, the results presented in Table 5
demonstrate that models trained solely using matric suction and related water content data did not achieve acceptable precision. The models exhibited high
error rates and low R2 values when tested on the dataset. These findings indicate the need for additional input features to improve the accuracy and reliability
of the models.

Despite the negative correlation observed between soil water content and matric suction in the evaluating models (Table 6), the calculated RMSE values
revealed relatively high errors in the model outputs. The mean absolute errors further indicated significant inaccuracies in the prediction of soil water contents
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at different matric suction levels, with values ranging from 0.08 to 0.09. Such errors are far from acceptable in this context. Moreover, the considerably low
values of R2 highlight the inconsistency between the predicted SWCC patterns and the observed data.

Table 5
Statistics of models in the case where matric suction

was used as the only input parameter
Model RMSE MAE d1 R2

Gradient Boosting 0.093 0.083 0.52 0.391

AB 0.093 0.083 0.50 0.386

Tree 0.093 0.083 0.52 0.391

Random Forest 0.093 0.082 0.51 0.389

Neural Network 0.104 0.083 0.46 0.229

SVM 0.095 0.083 0.46 0.356

kNN 0.097 0.087 0.53 0.332

Linear Regression 0.109 0.091 0.33 0.154

The use of soil matric suction as the sole input feature in the eight evaluating models significantly reduces the correlation between the models and the
measured water content (θMeasured). This, in turn, causes the correlation of the linear regression model with θMeasured to be lower than the correlations
between matric suction and θMeasured (as shown in Table 6). Based on these findings, it can be concluded that utilizing matric suction values alone in the
prediction of the Soil Water Characteristic Curve (SWCC) yields better results compared to using the Linear regression model with only matric suction values.
This observation suggests that in this case the modeling process was not effective and did not produce useful outcomes.

Table 6
Pearson correlation (r) when

the matric suction is included
as the only modeling

parameter
Parameters θMeasured

θGradient Boosting 0.627

θTree 0.627

θRandom Forest 0.624

θAB 0.623

θSVM 0.608

θkNN 0.588

θNeural Network 0.493

Matric Suction -0.404

θLinear regression 0.392

3.4. Predicted SWCCs with Evaluating models based on the machine learning procedure
Figures 2 and 3 illustrate the soil water characteristic curves for Loamy Sand and Silty clay soil samples, respectively. As mentioned earlier, the evaluating
models can be categorized into two classes based on their prediction accuracy: high and low. In Figs. 2 and 3, we explicitly demonstrate these differences.
Specifically, for the Loamy Sand soil sample, Gradient Boosting, Ada Boost, Tree, and Random forest models (Fig. 2, a-d) exhibited almost perfect predictions
of SWCC. While the high accuracy prediction of the SWCC is consistent in Silty Clay soil samples, it is worth noting that for soil matric suctions higher than
1000 cm, the error of the mentioned models shows a relatively decreased trend. Previous studies have highlighted the flexibility and reliability of machine
learning algorithms such as ANN, kNN, and SVM in providing accurate estimations, as they do not rely on stringent assumptions about the underlying data
and can adapt to various situations (Nguyen et al., 2017; Hastie et al., 2009). However, in the present study, the performance of the Neural Network, SVM, KNN,
and Linear Regression models in predicting SWCC for both Sandy Loam and Silty Clay soil samples yielded errors that were deemed non-acceptable. Specific
details regarding the nature and magnitude of these errors would provide further insights into the limitations of these models in the context of the study. These
errors resulted in deviations between the predicted SWCC patterns and the measured SWCC pattern across the entire range of matric suctions (Figs. 2 and 3, e 
~ h). Specifically, the models showed underestimation at low matric suction and overestimation at high matric suction for all studied soil samples. The SVM
and KNN models fail to exhibit the expected decreasing trend with respect to matric suction in the Loamy Sand sample, rendering them unable to adequately
explain the Soil Water Characteristic Curve (SWCC). Similarly, the KNN model yields inaccurate outputs for the Silty Clay soil sample.

3.5. Evaluating models uncertainty
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Table 7 presents the error percentages to quantify the mean differences between the observed and predicted SWCCs in both the Loamy Sand and Silty Clay
soil samples. These error percentages provide insights into the uncertainty associated with each evaluating model. Although Wang et al. (2021) demonstrated
high accuracy in determining SWCC for soils with a high clay fraction, this study found that the average error of the eight models used for Loamy Sand soil
samples was considerably higher at 35% compared to Silty Clay Soil samples. However, the four well-predicted models, namely Gradient Boosting, AB, Tree,
and Random Forest models, exhibited an equal average error percentage of approximately 5% in both Loamy Sand and Silty Clay soil samples, and no
significant difference in the estimation of SWCC was observed between the two studied soil textures. The Gradient Boosting model demonstrated superior
prediction capability in both studied soil textures, and it exhibited the lowest error percentage in Loamy sand soil samples, with an average uncertainty of
2.7%. The other evaluating models, such as Neural Network, SVM, KNN, and Linear regression, exhibited unreliable outputs with error percentages exceeding
20%. In particular, the SVM model performed poorly in Loamy Sand soil samples, reaching approximately 90% errors. Interestingly, these models showed
comparatively better prediction performance in Silty Clay soil samples compared to Loamy Sand soil.

Table 7
Uncertainties of evaluating models (error percentage between observed and predicted results) in prediction of soil moisture content at different soil matric

suction of Loamy Sand and Silty Clay soil samples
Matric Suction Gradient Boosting AB Tree Random Forest Neural Network SVM KNN Linear Regression

Loamy Sand

0.01 0.0 0.2 1.6 0.4 36.6 34.0 51.9 41.9

10 1.2 0.8 1.9 3.8 35.6 30.5 36.3 37.8

20 1.3 3.8 0.1 1 37.2 29.6 47.2 33.1

40 1.6 4.9 1.5 1.1 24.3 22.7 26.5 21.1

70 3.5 2.1 1.5 1.8 1.1 3.1 26.7 17.3

100 3.1 0.5 16.5 8.6 36.1 35.5 30.4 18.2

300 1.5 3.5 11.1 9.6 71.8 76.2 42.4 51.0

500 2.4 2.2 9.2 3.2 67.3 113.7 61.4 81.0

1000 3.0 0.7 3.6 0.4 133.9 142.1 108.5 128.1

3000 0.4 2.3 5.2 2.4 36.9 153.0 102.6 89.6

5000 8.3 5.6 1.9 10.4 37.2 167.7 121.3 57.3

9000 4.3 11.9 8.9 8 40.5 162.4 96.9 43.4

15000 4.6 12.2 50.0 11.1 92.5 174.0 113.3 143.2

Silty Clay

0.01 0.5 0.9 3.5 0.1 9.2 23.6 22.9 17.3

10 0.0 2.3 2.5 0.4 13.0 19.4 25.1 16.8

20 1.6 1.7 3.0 0.8 13.2 20.1 20.6 16.2

40 2.0 0.9 3.2 1.9 18.6 18.3 17.4 14.7

70 2.6 1.9 1.8 4.8 3.5 11.1 11.4 6.7

100 0.5 2.8 4.7 0.5 7.3 2.8 3.1 0.8

300 1.2 2.2 0.5 0.5 13.5 10.8 9.0 16.1

500 0.8 1.9 3.6 2.8 30.5 18.0 22.7 21.3

1000 1.0 0.1 0.0 0.8 31.0 27.6 27.0 31.7

3000 15.1 13.7 16.8 7.9 39.4 36.3 43.4 38.3

5000 18.9 22.7 21.2 16 23.8 53.8 55.3 38.8

9000 1.3 4.1 0.9 0.5 28.4 40.6 59.0 24.8

15000 8.1 6.4 10.0 5.5 39.6 28.4 57.0 19.3

3.6. Prediction errors at two sides of the inflection point
Some researchers have observed that their models underestimated the water content of the SWCC at relatively high suction heads (Nguyen et al., 2017; Hwang
and Powers, 2003a; Meskini-Vishkaee et al., 2014; Mohammadi and Meskini-Vishkaee, 2012; Tuller and Or, 2001; Tuller et al., 1999). Nguyen et al. (2017)
attributed the underestimation of SWCC to the lack of measurement of input features at high matric suction situations. Other studies have shown the
existence of corner water, lens water, and film water in soils, which may be one of the main causes of the underestimation phenomenon (Mohammadi and
Meskini-Vishkaee, 2012; Or and Tuller, 1999; Shahraeeni and Or, 2010; Tuller and Or, 2005; Tuller et al., 1999). However, Wang et al. (2021) claim that their
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improved prediction model can effectively predict soil-water characteristic curves, especially for soils at high matric suctions, in contrast, in this study, we
observed visual evidence of increasing model errors with higher soil matric suction in Figs. 2 and 3, as well as in Table 7. To further support this observation,
we compared the error percentages of the evaluating models at matric suction values below and above a matric suction related to SWCCs inflection point (hi).
For the Loamy Sand soil samples, we calculate hi equal to to 70 cm, while for the Silty Clay soil samples, hi was calculated equal to to 300 cm. Figure 4
presents the results of this comparison. In both studied soil textures, we observed that the error percentages of all evaluating models are considerably higher
at matric suctions greater than hi compared to matric suctions less than hi. Among the models, the DT model exhibited the maximum difference between the
measured and predicted SWCCs at the two sides of the inflection point. Moreover, the prediction error percentages at matric suctions greater than hi were
found to be ten times higher than those at matric suctions less than hi. Additionally, we observed that SVM and KNN models exhibit minimal changes in
prediction errors with respect to matric suction. Consequently, there is a minimum difference between the prediction errors of SWCC at the two sides of the
inflection point for these models. Based on this concept, the best performance models are identified as those with lower error percentages and a minimal
difference in prediction errors at the two sides of the inflection point. Models such as Gradient Boosting, AB, and Random forest exhibit these characteristics.

3.7. Residual contents of predicted SWCCs
To quantify the absolute differences between predicted and measured SWCCs, we have presented the difference curves for both Loamy Sand and Silty Clay
soil samples. Figure 5 depicts the difference curves for Loamy Sand samples, while Fig. 6 displays the difference curves for Silty Clay samples. Each figure
includes multiple subfigures (a ~ h) representing different scenarios or conditions within each soil sample. Building upon the previous discussions regarding
the high capability of the Gradient Boosting, AB, Tree, and Random forest models, it is evident from Figs. 5 and 6 (subfigures a-d) that these models exhibit
minimal fluctuation relative to zero. Furthermore, the other studied models, including Neural Network, SVM, KNN, and Linear regression, demonstrate
significant underestimation at low matric suction and overestimation at higher matric suctions, as depicted in Figs. 5 and 6 (subfigures e-h). Similar to the
results of this study, Achieng (2019) observed residual SWCC values of about − 0.1 to 0.1 g.g-1, but did not find a specific pattern for changes in errors with
increasing matric suction. However, as illustrated in Figs. 5-f and 6-f for both the studied Loamy Sand and Silty Clay soil textures, the highest estimation errors
are observed at the two ends of the SWCC. In other words, the SVM model shows the highest error in the estimation of the structural-based and textural-based
sections of the SWCC, and around the inflection point, the estimation error of the SVM model diminishes to about zero.

Conclusion
The utilization of orange.3 data mining software has facilitated a simple and efficient modeling procedure for predicting the soil water characteristic curve
(SWCC) based on variations in soil properties. This software enables the seamless integration of a diverse range of measured physical soil properties into the
model, without requiring extensive programming knowledge. In this approach, the training, testing, and evaluation of machine learning models were conducted
to predict the SWCC. Interestingly, it was observed that models relying solely on soil matric suction as a predefined feature were unable to accurately predict
SWCC. The evaluation of the models in this form revealed that the Mean Absolute Error (MAE) exceeded 0.08, and (R2) value was below 40%. Therefore, this
study examined the effects of using all possible soil properties as model features to enhance its performance of any of these features resulted in a significant
decrease in model prediction accuracy. our findings indicate that for a more accurate estimation of SWCC, it is crucial to consider not only soil matric suction
as a predefined feature, but also important soil properties such as soil structural (bulk density), physicochemical (organic carbon), and morphological
(structural flatness or porosity surface area) properties. These properties were included as measured features in the model, demonstrating their significance in
achieving a more precise estimation of SWCC. Based on the findings of this study, we can draw conclusions regarding the necessity of considering other soil
properties, in addition to matric suction, for accurate prediction of SWCC using ML. It is determined that SWCC prediction requires the input of soil properties,
thus, we successfully determined which properties have the most significant impact on the models' outputs. A negligible error was identified in the models
mentioned above which is related to matric suctions greater than SWCC inflection point matric suction. Due to the low susceptibility of soil properties on soil
water content at specified matric suction in this part of SWCC, we can regardless of this error and assume perfect prediction in mentioned models.
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Figures

Figure 1

Input parameters and their relative importance in accurate prediction of GB, AB, RF, SVM, DT, ANN, KNN, and LR models
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Figure 2

Comparison of the predicted and measured SWCCs by different models in Loamy Sand soil sample
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Figure 3

Comparison of the predicted and measured SWCCs by different models in Silty Clay soil samples
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Figure 4

Comparisons evaluating models error percentages at two side of SWCC inflection point in a) Loamy Sand and b) Silty Clay soil samples
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Figure 5

Absolute difference of prediction and measured SWCC at evaluating models in Loamy Sand soil samples
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Figure 6

Absolute difference of prediction and measured SWCC at evaluating models in Silty Clay soil samples


