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Abstract
Zircon is the most important accessory mineral in geological research, and they record information on
isotopes and trace elements which is of great signi�cance in earth science research. Trace elements in
Zircons can be used for analyzing the genesis of zircons, calculating the magma temperature and oxygen
fugacity, and tracing the magma source. Due to the limitation of visual dimensions, the information on
the zircons is mainly shown with the method of low dimensional diagrams in the present studies, so the
high dimensional relationships during trace elements of the zircons are di�cult to be discovered.
However, with the development of machine learning, mining the high dimensional relationships during the
trace elements of the zircons becomes possible. In this paper, four supervised learning algorithms
including Random Forest, Support Vector Machine, Decision Tree, and eXtreme Gradient Boosting have
been implemented to analyze trace elements of 3907 magmatic zircons from the GEOROC database, and
a precise 13-dimensional data classi�er model has been established in order to distinguish the tectonic
settings of the rift, ocean island, and convergent margin. Based on the results of accuracy, precision,
recall, and F1-score, the machine learning approach of eXtreme Gradient Boosting is best in the paper and
the results of Accuracy, Precision, Recall, and F1-score are 0.948, 0.941, 0.922, 0.930, respectively. In
summary, eXtreme Gradient Boosting in the paper could provide a high-dimensional discriminative
approach to distinguish the tectonic settings.

1 Introduction
Zircon is a common accessory mineral in the intermedium-felsic igneous rocks (Zhong et al. 2020), they
are featured by physical-chemical durability and resistance to alteration. So, the geochemical trace
elements of the zircons could effectively record and reveal the process of geological evolutions including
crustal assimilation, magma mixing, crustal cycling, and metallogenetic process (Kemp et al. 2007; Szilas
et al. 2013; Van Kranendonk and Kirkland 2013; Grimes et al. 2015; Roberts and Spencer 2015; Buret et al.
2016; Lu et al. 2016; Spencer et al. 2017; Gao and Santosh 2020; Palin et al. 2020; Xing et al. 2020). With
the development of LA-ICP-MS technology in the zircon situ analysis, researchers have obtained a large
number of zircons from different tectonic settings, and analyze U-Pb geochronology and the distribution
of trace elements in the zircons (Belousova et al. 2002; Grimes et al. 2007; Carley et al. 2014; Kirkland et
al. 2015; Grimes et al. 2015; Zou et al. 2021). The trace elements of the zircons provide a sensitive
monitor for re�ecting its parental magma composition (Barth et al. 2013; Carley et al. 2014; Belousova et
al. 2015) and are also used for distinguishing zircon genetic types (Zhong et al. 2018), tracing magmatic
source (Bell 2017; Drabon et al. 2021), and calculating magmatic temperature (Siégel et al. 2018) and
oxygen fugacity (Loader et al. 2017; Zou et al. 2019).

Under thermodynamic equilibrium conditions, the content of trace elements in the zircons could re�ect
the composition of trace elements in the melt. So, the trace elements in the zircons are important ways to
identify the forming conditions, evolution process, and the source of the magma with the method of the
indicators, discriminant diagrams, and partitioning coe�cients of trace elements in the zircons. The
indicators such as U/Yb, Hf, Nb/Yb, Sc/Yb, and Lu/Hf are composed of the content or ratios of a
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certain/several elements in the zircons (Grime et al. 2007, 2015; Guo et al. 2017) while the discriminant
diagrams are developed on the pairs of the indicators. For example, the U/Yb value of the continental
zircons is signi�cantly higher than that of the ocean crust zircons, while the contents of Hf and Y in the
continental zircons are less than those of the ocean crust Zircons. The indicators mentioned above have
been used for discriminating oceanic zircons from continental zircons (Fig. 1a). Moreover, the contents of
Sc, Ti, Th, and Nb are combined to establish a discrimination diagram for the tectonic setting (Fig. 1b).

Due to the limitation of the visual dimensions, the studies based on the indicators or diagrams can only
simultaneously show the relationships of no more than three elements of content/ratios in the zircons.
However, there are more than 50 kinds of trace elements contained in the zircons from the GEOROC
database (Zou et al. 2021), all of the elements in the zircons are accord with the principle of charge
conservation, lattice strain model, and isomorphic substitution mechanism, which makes cooperative or
competitive substitution relationships between any two trace elements of the zircons exist in the forming
process of the zircons. However, low dimensional indicators and diagrams of trace elements in the
zircons neither fully demonstrate this cooperative or competitive substitution relationship, nor do they
effectively re�ect the high dimensional relationships of zircon trace elements (Zou et al. 2021).

The machine learning approach could solve the problems of visual dimensional limitations. High-
dimensional ways based on the machine learning approach make it possible to mine hidden internal
relationships between different elements in the zircons (Zhu et al. 2022).To mine the relationships
between zircon rare earth trace elements for establishing tectonic setting classi�cation, we adopt four
machine learning algorithms including Random Forest (RF), Support Vector Machine (SVM), Decision
Tree (Tree), and eXtreme Gradient Boosting (XGBoost) to analyze rare earth element data of 3907 zircons
collected from the convergent margin, oceanic island and rift volcanic settings in the GEOROC database.
In addition, sixteen classi�er models of reference datasets have also been established based on the
different machine learning approaches, classi�cation methods, and normalization processing methods.
Compared with the results of accuracy, precision, recall, and F1-score, a tectonic setting discrimination
model is �nally proposed in the approach of XGBoost.

2 Resource Of Reference Datasets
The reference datasets in this paper are from the REEs of 13475 zircons collected from the convergent
margin, ocean island, and rift volcanic tectonic settings in the GEOROC database.

To ensure the reliability and accuracy of the results, we select magmatic zircons and remove the
incomplete data of REEs. Three thousand eight hundred and seven data have been selected as the data
training set composed of 1203 data from rift volcanic zircons, 299 data from ocean island zircons data,
and 2405 data from convergent margin zircons data (Supplementary Table 1). The parameter of the data
training set including extremum, average, median, lower, and upper quartiles have been shown in Table 1,
while the concentrations of REEs are displayed in Fig. 2.
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The REEs contents of zircons from rift volcanic setting are as follows: The value of La is 0.001×10− 

6~1023.750×10− 6, the mean of La is 7.297×10− 6; the value of Ce is 0.853×10− 6~1965.619×10− 6, the
mean of Ce is 68.276×10− 6; the value of Nd is 0.118×10− 6~ 1035.604×10− 6, mean of Nd is 13.245×10− 6;
the value of Sm is 0.210×10− 6~ 241.765×10− 6, mean of Sm is 10.921×10− 6; the value of Eu is
0.005×10− 6 ~ 45.821×10 − 6, mean is of Eu 1.104×10− 6; the value of Gd is 0.857×10− 6~ 575.783×10− 6,
mean of Gd is 60.978×10− 6; the value of Tb is 0.270×10− 6~ 470.323×10− 6, mean of Tb is 255.290×10− 6;
the value of Dy is 2.338×10− 6~ 2206.460×10− 6, mean of Dy is 168.997×10− 6; the value of Ho is
0.779×10− 6~1355.710×10− 6, mean of Ho is 158.875×10− 6; the value of Er is 2.670×10− 6~
2026.280×10− 6, mean of Er is 4387.402×10− 6; the value of Tm is 0.500×10− 6~ 457.897×10− 6, mean of
Tm is 95.337×10− 6; the value of Yb is 4.064×10− 6~ 14867.000×10− 6, mean of Yb is 839.110×10− 6; the
value of Lu is 0.630×10− 6~501.149×10− 6, mean of Lu is 139.169×10− 6.

The REEs contents of zircons from oceanic island setting are as follows: the value of La is 0.004×10− 6 ~ 
1.408×10− 6, the mean of La is 0.123×10− 6; the value of Ce is 3.298×10− 6~ 886.120×10− 6, mean of Ce is
86.671×10− 6; the value of Nd is 0.313×10− 6~ 49.948×10− 6, mean of Nd is 6.755×10− 6; the value of Sm
is 0.941×10− 6~ 93.725×10− 6, mean of Sm is 15.909×10− 6; the value of Eu is 0.309×10− 6 ~ 20.647×10− 6,
mean of Eu is 3.354×10− 6; the value of Gd is 9.434×10− 6~732.299×10− 6, mean of Gd is 137.438×10− 6;
the value of Tb is 3.790×10− 6~244.006×10− 6, mean of Tb is 46.075×10− 6; the value of Dy is 45.601×10− 

6~ 2518.060×10− 6, mean of Dy is 483.443×10− 6; the value of Ho is 18.349×10− 6~ 875.210×10− 6, mean
of Ho is 173.005×10− 6; the value of Er is 81.122×10− 6~ 3299.880×10− 6, mean of Er is 688.004×10− 6; the
value of Tm is 16.796×10− 6~589.976×10− 6, mean of Tm is 129.433×10− 6; the value of Yb is
137.342×10− 6~ 4182.950×10− 6, mean of Yb is 954.788×10− 6; the value of Lu is 24.602×10− 

6~610.280×10− 6, mean of Lu is 149.543×10− 6.

The REEs contents of zircons from convergent margin setting are as follows: the value of La is
0.00028×10− 6~20500.000×10− 6, the mean of La is 122.222×10− 6; the value of Ce is 0.003×10− 6~
20300.000×10− 6, mean of Ce is 35.776×10− 6; the value of Nd is 0.010×10− 6~ 13200.000×10− 6, mean of
Nd is 11.953×10− 6; the value of Sm is 0.172×10− 6~ 2810.000×10− 6, mean of Sm is 8.868×10− 6; the
value of Eu is 0.021×10− 6~ 105.000×10− 6, mean of Eu is 1.832×10− 6; the value of Gd is 0.090×10− 6~
2670×10− 6, mean of Gd is 40.157×10− 6; the value of Tb is 0.530×10− 6~ 368.000×10− 6, mean of Tb is
14.887×10− 6; the value of Dy is 2.320×10− 6~ 2070.000×10− 6, mean of Dy is 159.761×10− 6; the value of
Ho is 0.750×10− 6~ 1770.000×10− 6, mean of Ho is 70.644×10− 6; the value of Er is 2.090×10− 6~
2507.860×10− 6, mean of Er is 283.136×10− 6; the value of Tm is 0.300×10− 6~ 2900.000×10− 6, mean of
Tm is 76.728×10− 6; the value of Yb is 1.970×10− 6~5081.000×10− 6, mean of Yb is 570.656×10− 6; the
value of Lu is 0.260×10− 6~5050.000×10− 6, mean of Lu is 140.458×10− 6.

‘Spider boxplot’ diagrams for REEs of the zircons in our reference datasets are displayed in Fig. 2. The
diagrams represent the statistical distribution of the REEs compositions. It is essential to note that REE
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patterns are not entirely discrete or unique, commonly occupying the same model space (Fig. 2d). ‘Spider
boxplot’ diagrams can help de�ne the trace element patterns of the zircons and understand the magmatic
source and petrogenic processes (Doucet et al. 2022). It is also apparent from the Fig. 2 that due to the
non-unique distributions of the REEs from each group, distributions of REEs analysis alone cannot
de�nitively classify the tectonic settings of zircons. So, it is necessary to set a �exible approach to
solving this limitation.
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Table 1
The Extremum, average, median, lower and upper quartile of the training data set

  minimum lower of
quartile

median upper of
quartile

maximum average

rift volcanic
zircons

           

La 0.001158 0.017553 0.044496 0.230205 1023.75 7.297253

Ce 0.853 27.45371 46.0755 82 1965.619 68.27596

Nd 0.118125 1.070127 1.770866 6.539723 1035.604 13.2446

Sm 0.2095 3.522988 5.844828 12.27144 241.7648 10.92116

Eu 0.005171 0.111182 0.198122 0.919696 45.82159 1.103603

Gd 0.85675 30.49054 54.70371 80.06089 575.7831 60.97843

Tb 0.269738 17.92728 30.2 97.64207 470.3228 55.29041

Dy 2.338216 23.03766 97 274.8118 2206.461 168.997

Ho 0.779125 65.23952 118.9524 244.172 1355.713 158.875

Er 2.670375 225.8575 441.8409 593.8212 2069.284 438.4024

Tm 0.49975 51 97.68733 127.9862 457.8972 95.33649

Yb 4.06375 460.5995 852.7231 1093.292 14867 839.1095

Lu 0.63 72.92607 137.5466 192.6749 501.1486 139.1694

ocean island
zircons

           

La 0.004242 0.025872 0.049832 0.129865 1.408443 0.123115

Ce 3.297587 16.07236 32.55352 85.1212 886.12 86.67124

Nd 0.313343 2.102593 3.685601 6.66614 49.94807 6.755016

Sm 0.941297 5.14742 8.656158 17.75065 93.72489 15.90914

Eu 0.309276 1.24386 2.366299 3.965356 20.64747 3.354946

Gd 9.434231 49.56764 81.23011 160.9371 732.2992 137.4384

Tb 3.7903 16.81107 27.96943 54.98023 244.0065 46.07475

Dy 45.60136 195.4219 317.767 573.9016 2518.06 483.4431

Ho 18.34848 72.14706 115.25 209.5005 875.2101 173.0054

Er 81.12233 308.7028 471.8786 845.7849 3299.879 688.0041
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  minimum lower of
quartile

median upper of
quartile

maximum average

Tm 16.796 60.12776 89.59938 159.5752 589.976 129.4326

Yb 137.3415 460.574 671.4237 1174.403 4182.954 954.7877

Lu 24.60187 76.07618 111.3371 183.3614 610.28 149.5427

convergent margin
zircons

           

La 0.000275 -0.1325 0.031 0.11 20500 122.2223

Ce 0.00302 -17.531 14.5 26.58382 20300 35.77596

Nd 0.01 -4.02223 1.667134 4 13200 11.95301

Sm 0.172113 -6.57238 3.67 7.71492 2810 8.867805

Eu 0.021435 -1.075 0.9 1.55 105 1.832488

Gd 0.0898 -32.6 23 44.9 2670 40.15706

Tb 0.53 -10.8262 8.62 16 368 14.88719

Dy 2.32 -115.088 102.2716 187 2070 159.7605

Ho 0.75 -44.4356 42.06825 75.84042 1770 70.64399

Er 2.09 -179.75 197 341 2507.859 283.1357

Tm 0.3 -36.5 45.26746 76 2900 76.72822

Yb 1.97 -291.485 430 683.6087 5081 570.6558

Lu 0.26 -56.7354 91.87293 144.157 5050 140.4575

3 A Machine Learning Approach
Machine learning presents an ideal framework to perform multivariate analysis, as it is particularly suited
to handle and evaluate large volumes of high-dimensional data (Doucet et al. 2022). Over the past
decade, a number of studies tested the use of a machine learning approach (Ueki et al. 2018; Guo et al.
2021). In this paper, we use machine learning algorithms to set up a classi�cation for distinguishing the
tectonic setting based on the REEs of the zircons. The work�ow is followed as Fig. 3.

3.1 Data preprocessing
REEs are featured by similar ionic radii and stable + 3-valent ions in nature (Yang et al. 2000) and have
similar physical and chemical properties. Nevertheless, the lanthanide contraction phenomenon in REEs
indicates there is a negative linear relationship between atomic number and the ionic radius. This



Page 8/23

phenomenon makes different REEs show different geochemical behaviors, so different rocks or minerals
show different distribution characteristics of the REEs. Especially, accessory minerals do cause a great
in�uence on the distribution patterns of the REEs. For example, the zircons and garnets cause the
depletion of HREEs; the titanites and apatites cause the depletion of MREES, and the monazites and
allanites cause the depletion of LREEs. Besides, the amphibole is compatible with REEs and shows the
highest partition coe�cient value between Dy and Er (Yang 2000). Because Pm elements in REE do not
exist in nature and Pr elements are missing in oceanic island data which will result in model over�tting, in
this paper, the REEs without Pm and Pr in the zircons are selected as the eigenvectors of the training data
set, and the tectonic setting is used as the judgment label. All the REEs are labeled as the �rst control
group (CG-1:∑REEs), and two control groups are labeled according to the atomic number as LREEs (CG-
2: La-Eu without Pr) and HREEs (CG-3: Gd-Lu). In addition, Zhong et al. (2019) and Loader et al. (2017)
infer that the contents of La to Pr in the zircons are commonly below the limit of detection and
susceptible to the contamination of mineral inclusions, so we de�ne REEs without La, Ce, Pr as the fourth
control group (CG-4).

Due to the oddo-Harskin effect, the abundance of REEs with odd atomic numbers is less than that of
REEs with even atomic numbers. To eliminate the oddo-Harskin effect, the data of standard rare earth
elements are usually used to normalize the REEs data of rocks or minerals (Haskin et al. 1968; Wakita et
al. 1971; Masua et al. 1973; Nakatuura 1974; Evensen et al. 1978; Boynton 1984; Taylor 1985; Mcdough
and Sun 1989). Because of the different normalized data, there are differences in the distribution patterns
of rare earth elements (Yang 2000). In this paper, we use non-normalized REEs of the zircons from four
control groups as the feature vector of the training data set and set up sixteen classi�er models with the
approaches of four machine learning algorithms. According to the results, an optimal classi�er model is
�nally obtained. Considering the REEs distribution pattern diagrams are usually normalized based on the
data of chondrite, primitive mantle, enriched mid-ocean ridge basalt, mid-ocean ridge basalt, and oceanic
island basalt, the training data set are normalized by the REEs of chondrites, primitive mantle, enriched
mid-ocean ridge basalt, mid-ocean ridge basalt, and oceanic island basalt. Then the normalized data set
are used as feature vector to explore the effects of different normalized or non-normalized data in the
optimal classi�cation model.

3.2 Classi�er models set up
Four machine learning approaches are composed of four supervised learning algorithms in this paper
including Random Forest (RF), Support Vector Machine (SVM), Decision Tree (Tree), and eXtreme
Gradient Boosting (XGBoost). The reference datasets are divided into training data and test data
according to the ratio of 9:1. RF is an ensemble learning method based on decision tree classi�ers
(Breiman 2001). Traditional decision trees are focused on an optimal attribute among the n attributes
(Zhou 2016). Based on each decision tree node, an optimal parameter is selected from the k subsets after
a subset including k attributes is set up. Meanwhile, RF is characterized by easy implementation, low
computational overhead, good classi�cation effect, high stability, and fast operation speed, but it is easy
to over�t when it solves problems with large noise (Zhu et al. 2022). The number of trees constructed in
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the RF classi�er model in this paper is 25 (25 weak classi�ers), and the randomness parameter value
(random_state) is 42. The SVM makes the linearly inseparable training samples in the low-dimensional
space be mapped into the high-dimensional feature space, and the optimal classi�cation hyperplane in
the high-dimensional feature space is determined. The principle of SVM is to convert the multi-
classi�cation problem into a binary classi�cation problem. Unfortunately, the dimension of the feature
space may be very high, even in�nitely multidimensional, it could be impossible to calculate the inner
product of the function in the SVM. But the kernel function makes it possible to calculate the inner
product of the function in the SVM. The kernel function of the SVM classi�er model in this paper is a
Gaussian function. The Tree contains a root node, several internal nodes, and several leaf nodes. The root
node containing all sample collections is aimed to classify with the process from the internal nodes of
the attribute test to the leaf nodes. Tree has the advantage of being easy to understand, interpret and
visualize. The maximum depth (max_depth) of the Tree classi�er model in this paper is 3, the random
parameter (random_state) is 42, and the numbers of leaf nodes including min_samples_leaf and
min_samples_split are 10 respectively. The XGBoost (Formula 1) is an enhanced algorithm of the
Gradient Boosting Decision Tree. Its core principle is to generate a new weak classi�er by generating a
new tree to �t the residuals from the �rst n weak classi�ers, and all weak classi�ers are combined and
become part of the �nal strong classi�er. The advantage of XGBoost is that when predicting the t-th weak
classi�er value, Taylor expansion is performed on the predicting value ft(xi) (Formula 2) and the second-
order expansion item is retained, which makes the prediction accuracy of each layer higher. So it makes
the overall convergence of the model faster, and it is more advantageous to obtain the dependencies
between complex data. The maximum depth of the XGBoost classi�er model in this paper is 26, the
learning rate (eta) is 0.1, and the minimum value of loss reduction (gamma) required for leaf nodes to
branch is 0.

 (Formula 1)

 (Formula 2)

(1)  is the loss function of each weak classi�er

(2)  is the true value of layer t

(3)  is the predicted value of the t-1th layer

(4)  is the predicted value of the t-th layer

(5)  is a regular term

3.3 Model evaluation
Model evaluation can not only evaluate the effectiveness of classi�cation results but also determine the
most effective classi�er algorithm. As evaluation indicators for the classi�er models, the accuracy rate
(Accuracy), precision rate (Precision), recall rate (Recall), and F1 score are obtained on the test data.

L (ft) = ∑n
i=1 L(yi, ŷi

t−1 + ft (xi)) + Ω(ft) + C

f (x + Δx) ≈ f (x) + f
′ (x) Δx + f

′′
(x) Δx

1
2

L (ft)

yi

ŷi
t−1

ft (xi)

Ω (ft)
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Accuracy is the ratio of the numbers of correctly predicted samples to the total numbers of samples.
Precision is the ratio of the numbers of actual positive samples predicted as positive samples to the
numbers of all predicted positive samples in the result (Formula 3). Recall is the ratio of the number of
actual positive samples predicted as positive samples to all the actual positive samples (Formula 4). F1
score with the range of 0–1 is the average value of Precision and Recall (Formula 5) and is an e�cient
way to evaluate the quality of the model in an imbalanced dataset.

Precision = TP/(TP + FP) (Formula 3)

Recall = TP/(TP + TN) (Formula 4)

F1 score = 2*1/(1/Precison + 1/Recall) (Formula 5)

Where TP = number of true positives, FP = number of false positives, TN = number of true negative

4 Results

4.1 Results of sixteen classi�er models
In this paper, training data has been trained independently for 50 times. The statistical results including
the average and variances of different learning models have been shown in Table 2 and Fig. 4.

In the RF classi�er model, the averages of Accuracy in control groups are 0.857, 0.890, 0.941, and 0.917,
respectively. The averages of Precision in the control groups are 0.803, 0.878, 0.940, and 0.916,
respectively. The averages of Recall in the control groups are 0.702, 0.844, 0.907, and 0.899, respectively.
The averages of F1 score in the control groups are 0.733, 0.854, 0.922, and 0.900, respectively.

In the SVM classi�er model, the averages of Accuracy in control groups are 0.806, 0.623, 0.619, and
0.623, respectively. The averages of Precision in the control groups are 0.816, 0.454, 0.466, and 0.505,
respectively. The averages of Recall in the control groups are 0.573, 0.336, 0.337, and 0.339, respectively.
The averages of F1 score in the control groups are 0.596, 0.261, 0.262, and 0.266, respectively.

In the Tree classi�er model, the averages of Accuracy in control groups are 0.666, 0.729, 0.708, and 0.723,
respectively. The averages of Precision in the control groups are 0.429, 0.733, 0.746, and 0.727,
respectively. The averages of Recall in the control groups are 0.412, 0.498, 0.459, and 0.490, respectively.
The averages of F1 score in the control groups are 0.394, 0.522, 0.463, and 0.511, respectively.

In the XGBoost classi�er model, the averages of Accuracy in control groups are 0.860, 0.897, 0.948, and
0.92, respectively. The averages of Precision in the control groups are 0.801, 0.878, 0.941, and 0.913,
respectively. The averages of Recall in the control groups are 0.730, 0.858, 0.922, and 0.892, respectively.
The averages of F1 score in the control groups are 0.755, 0.866, 0.930, and 0.901, respectively.

Table 2 Average and variance of Accuracy, Precision, Recall, and F1 scores of RF, SVM, Tree and XGBoost
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4.2 the results of the normalized ∑REE data with different
methods
Based on the results in this paper, the optimal XGBoost classi�er model (discussion in sections 5.1 and
5.2) is used to discuss the differences of the normalized ∑REE data with different methods, the ∑REE
data as feature vectors are normalized by the data of chondrites, primitive mantle, enriched mid-ocean
ridge basalts, mid-ocean ridge basalts, and oceanic island basalts, respectively. The experimental results
have been displayed in Fig. 5 and Table 3. 
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Table 3
Average and variance of accuracy, precision, recall, and F1

scores of normalization data and raw data. CL- the data
normalized after chondrites; PM- the data normalized after

primitive mantle; MORB- the data normalized after mid-
ocean ridge basalt; EMORB-the data normalized after

enriched mid-ocean ridge basalt; OIB- the data normalized
after oceanic island basalt

  Accuracy Precision Recall F1 score

CL 0.949 0.943 0.923 0.932

PM 0.950 0.938 0.925 0.930

MORB 0.950 0.940 0.923 0.931

EMORB 0.949 0.940 0.917 0.927

OIB 0.946 0.931 0.918 0.923

Raw Data 0.948 0.941 0.922 0.930

5 Discussion

5.1 Comparison of classi�er models
The optimal classi�er model is proposed based on the Accuracy, Precision, Recall, and F1 score. The
different CGs have different results in different classi�er models of RF, SVM, Tree, and XGBoost. The
average accuracy rates of 0.941 and 0.948 for ∑REE (CG-3) are higher than the ones of other CGs in RF
and XGBoost, indicating the classi�er models using ∑REE (CG-3) as the feature vector are the optimal
classi�er models in the RF and XGBoost, while their variances are 0.00017 and 0.00007, respectively. In
the SVM, the classi�er model using LREE (CG-1) as the feature vector has the highest quality with the
highest average accuracy rate of 0.806 and lowest variance of 0.00042, while the optimal classi�er
model in the RF is the one using HREE (CG-2) as the feature vector based on the average accuracy rate of
0.929 and the variance of 0.0003 in Tree.

The average accuracy rate and the variance indicate the models in RF and XGBoost are signi�cantly more
effective than the ones in SVM and Tree (Fig. 7). The reasons may be that the �nal prediction results of
RF and XGBoost are achieved through decision integration which has three advantages as follows
(Dietterrich, 2000): (1) Due to the large hypothesis space of the classi�cation tasks, the classi�cation
results of multiple hypotheses in the training data set are the same. Although a single hypothesis could
cause the results of poor generalization performance, combining multiple learners could reduce the risk
of poor generalization performance; (2) A single learner is easy to fall into the local minimum value
problem in the calculation process, resulting in poor generalization performance. By running multiple
decisions at the same time, the possibility of falling into the local minimum value may be reduced; (3)
The hypothesis adopted by a single strategy may not be in the hypothesis space of the current learning
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algorithm, which makes a single learner invalid. By combining multiple learners, the hypothesis space
becomes bigger, making the prediction results closer to the actual value.

Although the average accuracy in RF and XGBoost classi�er model is similar, the average accuracy of RF
is lower than that of the XGBoost, while the variance of RF is larger than that of the XGBoost. In addition,
the precision and recall of ∑REE classi�er method in RF are 0.940 and 0.907, they are also lower than the
precision and recall of ∑REE classi�er method in XGBoost, while the variance of ∑REE classi�er method
in RF is greater than that of ∑REE classi�er method in XGBoost. In summary, the XGBoost machine
learning algorithm is the best algorithm of the four machine learning algorithms, and the classi�er model
in XGBoost is proposed for distinguishing the tectonic setting based on the ∑REE.

5.2 Comparison of the classi�er models
The results clearly show that XGBoost is the most effective of the four machine learning algorithm (Fig. 6
and Fig. 7). Furthermore, the ∑REE classi�cation model is the optimal classi�er model in all classi�er
models (Fig. 6 and Fig. 7) and has more elements as feature vector. The reason could be that REEs
usually appear in groups in any geological process because of similar ionic radii and similar physical and
chemical properties (Zhang et al. 2012), in addition, REEs with stable geochemical properties remain
relatively inactive during the processes of low-grade metamorphism, weathering, and hydrothermal
alteration (Michard 1989; Yang 2000). Thereby, the ∑REEs can be used as an eigenvector. Based on the
discussion mentioned above, there is a positive correlation between the quality of the model prediction
results and the numbers of feature vectors. In summary, the ∑REE classi�er model is the optimal
classi�er model for discriminating the tectonic setting.

5.3 Comparison of �ve kinds of normalization
To con�rm the effects on the normalized REEs, �ve groups of factor vectors are obtained based on the
different normalization data including CL, PM, MORB, OIB, and EMORB and are used for calculating the
Accuracy, Precision, Recall and F1 score of different classi�er models (Fig. 8a). The results have been
furtherly compared to the ones of raw data (RD). The Accuracy of all data is about 0.95, and all the data
except the ones of normalization data after OIB have similar Precision and F1 scores. In addition, the
Recalls of normalization data after OIB and EMORB are slightly smaller than the ones of the RD and
normalization data after CL, PM, and MORB. Based on the results, the Accuracy, Precision, Recall, and F1
score of all the data are 0.9 and have a tiny difference between the normalization data and the RD. In
summary, we believe that whether the REEs in zircons are normalized or not has little effect on the
classi�er model to distinguish tectonic settings.

6 Conclusion
(1) We select four Machine Learning methods and four control groups, which are used to handle and
evaluate large volumes of REEs in zircons. The Accuracy, Precision, Recall, and F1 score of the sixteen
classi�er models are compared to determine the suitable Machine Learning method and feature vector.
The XGBoost classi�er using ∑REEs as feature vector has the highest average expectation and the
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smallest variance in terms of accuracy, precision, recall, and F1 score, which is the most suitable for
distinguishing the tectonic setting among the four machine learning approaches in this paper.

(2) Based on the XGBoost classi�er model using ∑REEs as feature vector, the Accuracy, Precision, Recall,
and F1 score of the raw data with normalization data is compared to determine the in�uence of
normalization data. The result shows that whether the REEs in zircons are normalized or not has little
effect on the classi�er model to distinguish tectonic settings.

This work demonstrates the feasibility of using big data to predict the tectonic settings of zircons.
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Figure 1

tectonic-magmatic setting discriminant diagram(a) Discriminant diagrams with continental and ocean
crust zircon �elds;(b) Discriminant diagrams with continental magmatic arc, ocean crust, and mid-
oceanic ridge zircon �elds (modi�ed after Grime et al.2007, 2015)

Figure 2

The distribution the REEs patterns of the zircons from the different tectonic settings in our reference
datasets: (a) the zircons from the rift volcanic tectonic setting; (b) the zircons from the ocean island
tectonic setting;(c) the zircons from the convergence margin tectonic setting; (d) rift volcanic, ocean
island, convergence margin overlay.
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Figure 3

Supervised machine learning work�ow block diagram used in this study: (a) Step 1, data preprocessing
and determining the suitable algorithm;(b) Step 2, determining the suitable classi�cation methods;(c)
Step 3, determining the in�uence of standardization data
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Figure 4

(a) The accuracy score line of the RF classi�er model. (b) The accuracy score line of the SVM classi�er
model. (c) The accuracy score line of the Tree Classi�er model. (d) The accuracy score line of the
XGBoost classi�er
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Figure 5

Accuracy scores line of different normalization data

Figure 6
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Plot of Accuracy, Precision, Recall, and F1 score for sixteen classi�er models.

(a) classi�er models with the different control groups in RF. (b) classi�er models with the different control
groups in SVM. (c) classi�er models with the different control groups in Tree. (d) classi�er models with
the different control groups in XGBoost.

Figure 7
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Comparison of different classi�er models in this study

Figure 8

(a) Plot of Accuracy, Precision, Recall, and F1 score for normalization classi�er models; (b) comparison of
Accuracy between normalization data and raw data in XGBoost classi�er model; (c) comparison of
Precision between normalization data and raw data in XGBoost classi�er model; (d) comparison of Recall
between normalization data and raw data in XGBoost classi�er model; (e) comparison of F1score
between normalization data and raw data in XGBoost classi�er model
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