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Abstract

In this study, we employed our previously developed data mining method
to show that a thermodynamic state shift occurred preceding the 2011
Mw 9 East Japan Earthquake (GEJE), coinciding with the onset of
crustal stress manifestations. Our discussion starts with the insights
obtained from our prior research, which revealed that small ground vibra-
tion fluctuations (GVF) detected near the epicenter of the GEJE are
thermodynamically equivalent to a cellular automaton (CA). This equiv-
alence allowed us to consider the ”Process to GEJE,” defined as the
transition from GVF to catastrophic rupture in the GEJE, as analo-
gous to the nonequilibrium-to-equilibrium thermodynamic transition in
the CA. Therefore, if we find a thermodynamic state shift in the CA,
it is reasonable to assume that a similar thermodynamic state shift
may exist in the ”Process to GEJE.” We successfully derived a ther-
modynamic state function that exhibits a significant change before the
nonequilibrium-to-equilibrium thermodynamic transition in the CA. By
evaluating this thermodynamic state function using the GVF data of
the ”Process to GEJE,” we discovered its maximum value occurring
1231 days before the GEJE. This maximum value can be considered
as an indication of a thermodynamic state shift prior to the GEJE.
It has been found that during this thermodynamic state shift prior
to the GEJE, the GVF state approaches thermodynamic equilibrium,
and an increase in crustal stress becomes visible for the first time.
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1 Introduction

We have dedicated our efforts to extracting physically meaningful information
from ground vibration fluctuations (GVF) observed during most of the ground
vibration observations, which have weak amplitudes and lack specific wave-
forms. This is because earthquakes typically last less than a minute, and the
dominant state of ground motion is seismically silent. We firmly believe that
the GVF contains valuable information about the evolution of ground dynam-
ics before and after the megathrust earthquake (excluding the earthquake
itself).

The GVF, as a fluctuating system, can be stochastically treated within
the framework of the master equation and characterized by thermodynamic
parameters. However, the current understanding of how these thermodynamic
characteristics of the GVF are linked to physically and practically meaningful
phenomena remains limited.

On the other hand, stochastic cellular automata (CA) can simulate complex
phenomena such as traffic jams and identify the conditions that lead to them.
If CA can establish a connection between the complex thermodynamic param-
eters calculated from CA data and physically meaningful information, and if
GVF and CA are thermodynamically equivalent, we can extract physically
meaningful information from GVF data through the analysis of CA.

Our previous study introduced the Data Mining Method in Seismology
by Applying Cellular Automaton Equivalence of Ground Vibration Fluctua-
tions Recorded Near the Epicenter of the 2011 Mw 9 East Japan Earthquake
(GEJE) to extract physically meaningful information from the GVF (Kikuchi,
2023). We initially demonstrated the equivalence of the GVF and CA. In the
data mining process, we established the relationship between thermodynamic
parameters in the CA and stress relaxation, and then evaluated these ther-
modynamic parameters for the GVF to extract stress relaxation signals in the
GVF.

In this paper, we apply the data mining method to discover the thermo-
dynamic state shift prior to the GEJE. We define the “Process to GEJE”
as the transition from a long-term ground vibration fluctuation (GVF) to a
catastrophic rupture in GEJE. The starting time of the “Process to GEJE” is
arbitrarily chosen between the last occurrence of a megathrust earthquake in
eastern Japan and the GEJE.

First, we demonstrate the equivalence between the “Process to GEJE”
and the thermodynamic transition of a cellular automaton (CA) from non-
equilibrium to equilibrium. Next, we derive the thermodynamic state function
that yields a significant change prior to the thermodynamic transition in the
CA, and then evaluate this thermodynamic state function using the GVF data.
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Before delving into the main discussion, let us briefly review the data
handling procedures and the key terms explained in our previous paper.

2 Review of data handling procedures and key
terms (Kikuchi, 2023)

The ground vibration velocity data, or the source of the GVF, was recorded
both before and after the occurrence of the GEJE occurred at the epicenter
with latitude 38.06N, longitude 142.51E, and depth 24 km on March 11, 2011,
at 14:46 (Japan Standard Time, JST). The survey period spans from 00:00 on
January 1, 2006, to 23:59 on August 30, 2018.

The data was obtained from the seismic station KSN and downloaded
in chronological order from the F-net website, which is the broadband seis-
mograph network of the National Research Institute for Earth Science and
Disaster Resilience (NIED, 2019), using the ”BLZ” option. In this context,
”B,” ”L,” and ”Z” respectively indicate that the data has a sampling interval
of 0.05 seconds, the instrument type is a strong motion velocity meter, and
the velocity direction is up-down (UD). The seismic station KSN is situated
at latitude 38.98N, longitude 141.53E, and altitude 260 m.

The instrument response is corrected by multiplying it by a correction fac-
tor, As, which is the product of the transfer function, the normalizing constant,
and the ratio of sensitivity to gain (SEED, 2012). For the ’KSN BL’ data
from 2006 to 2016, As was calculated from the instrument data provided with
the ’KSN BL’ data and treated as a real constant (= 6.168853e−08 m/s/V
for ’KSN BLZ’). This is because the imaginary component of As is small in
the frequency range of 1-10Hz, where the GVF signal is most relevant to our
analysis.

The downloaded data is converted into piecewise deviation, which repre-
sents the difference between the velocity and the velocity averaged over the
subsequent 10 data points. This piecewise deviation, fluctuating around zero,
is referred to as the Ground Vibration Fluctuation (GVF). For the remainder
of this study, GVF specifically denotes the GVF recorded at KSN.

To analyze the GVF data, it is divided into blocks of 1024 data points,
corresponding to a data acquisition time of 51.2 seconds. The Fourier ampli-
tude of each block is then calculated using the Fast Fourier Transform (FFT)
algorithm without any overlap or filtering. The frequency domain ranges from
0.02 Hz (determined by the block size of 1024) to 10 Hz, which is half the data
acquisition frequency.

In our previous paper, we reported the discovery of ”anomalous noise,”
which forms a convex curve in the high-frequency region of the Fourier ampli-
tude spectrum of the GVF. We found that this convex curve is qualitatively
preserved when transforming the GVF data into a binary sequence, leading
us to consider the GVF and the binarized GVF as equivalent. We converted
the recorded GVF data into a sequence of ”1”s and ”0”s and analyzed the
binarized GVF instead of the original GVF.
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By binarizing the GVF, we were able to define its thermodynamic states,
whose time evolution is governed by the master equation. This equation
describes the time change of a thermodynamic state vector in terms of the
state transition rate matrix and the thermodynamic state vector. Additionally,
the state transition rate matrix and the thermodynamic state vector define a
scalar quantity called the entropy production rate (EPR), which indicates the
thermodynamic stability of the GVF. In this manner, we treat the GVF as a
thermodynamic system.

To quantify the ”anomalous noise,” we introduce the concept of ”A-noise,”
which takes into account whether the spectrum is convex or concave, as well
as the magnitude of the convexity.

On the other hand, there exists a mathematical scheme called Cellular
Automaton (CA), which generates a binary sequence by following an evo-
lution law known as the ”local rule.” This binary sequence can be viewed
as a sequence of thermodynamic states that evolve according to the mas-
ter equation. Consequently, the CA can also be treated as a thermodynamic
system.

We compared the GVF and CA, two thermodynamic systems, and demon-
strated that for a given GVF data set, there exists a corresponding CA data
set whose thermodynamic parameters match the thermodynamic parame-
ters calculated for the GVF data set. This result suggests that the GVF is
thermodynamically equivalent to the discussed CA.

This section briefly reviews the thermodynamic parameters, namely A-
noise, thermodynamic states, the density of states, and EPR, along with the
CA that is thermodynamically equivalent to the GVF.

2.1 Definition of A-noise

In order to quantify the anomalous noise or the convex-curve-like spectrum,
we need to define a parameter that takes into account whether the spectrum
is convex or concave, as well as the magnitude of the curve. The shape and
magnitude of a curve in a flat two-dimensional x-y coordinate system are
defined by the ’curvature’, which is proportional to the second derivative of the
curve. Therefore, a ’convex’ curve (i.e., one that curves outward) has negative
curvature, and a ’concave’ curve has positive curvature.

The curvature of the Fourier amplitude spectrum is defined for a GVF
acquired with a sampling time of 51.2 seconds, a sampling frequency of 20 Hz,
and a data length of 1024. This is given by the expression sign(Pni−Pi) times
the ratio of |Pni −Pi|,to |P2 −P1|, as illustrated in Fig. 1. Here, Pi represents
a point within the frequency range of 2.97 to 9.8 Hz. The frequency of P1

and P2 are 2.97 Hz and 9.8 Hz. The average spectrum value of the nearest 5
points (red circles in Fig. 1) is assigned as the spectrum value for the P1 and
P2. Pni is determined so that the line from Pi to Pni is perpendicular to the
line connecting P1 and P2. If the spectrum value of Pi is greater than that of
Pni, then the spectrum is convex, and the curvature is negative. Hence, the
definition of curvature presented in Fig. 1 is in line with the standard definition
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of curvature in two-dimensional space. Note that no overlap or filtering is
applied in the Fourier transform.

The A-noise is defined as the product of ”-1” and the curvature with the
largest absolute value among all the curvatures within the frequency range
of 2.97 to 9.8 Hz (Fig. 1). Consequently, an arbitrary GVF signal can be
categorized as either positive A-noise or non-positive A-noise based on this
definition.

Fig. 1 Definition of spectrum curvature and A-noise.

2.2 Binarization of GVF

The A-noise is calculated based on the binarized GVF. Fig. 2 illustrates the
binarization process of the GVF. In Fig. 2(a), if each GVF data is greater than
the mean of the dataset, it is converted to ”1”; otherwise, it is converted to ”0”.
The resulting binarized GVF data is then expressed as a time sequence of ”1”
and ”0”, as shown in Fig. 2(b). The binary sequence of the GVF and the timing
to calculate the A-noise are defined by Eq. (1)-(2), where the timing and the
data length are more explicitly described than before to avoid confusion, as
additional parameters are newly introduced in this paper. Eq. (1)-(2) indicate
that n = 1024(j − 1) + 1 and n = 1, 1025, and 2049 if j = 1, 2, and 3. This
indicates that A-noise is calculated for every 1024 binarized GVF data points.
The ∆t is set to 1/20 (sec) due to the sampling frequency of the recorded data
being 20 Hz.
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BS(tn) ≡ {a(t1), a(t2), · · · , a(tn), · · · , a(tN )} : binary sequence

a(tn) ∈ {0, 1}

tn = t0 + (n− 1)∆t : sampling time

t0 = 0, corresponds to 2006-01-01 00:00

∆t =
1

20
(sec), n = 1, 2, · · · , N

N = 1024× 104 ×M, M = 1, 2, 3, · · · (1)

A-noise ≡
{

A-noise(t′′1), A-noise(t′′2), · · · , A-noise(t′′j ), · · · , A-noise(t′′J)
}

:

A-noise sequence

A-noise(t′′j ) : Calculated from the binary sequenceBS(t′′j )

BS(t′′j ) ≡
{

a(t′′j ), a(t
′′

j +∆t), · · · , a(t′′j = t′′j + (1024− 1)∆t)
}

t′′j = t0 + 1024(j − 1)∆t, j = 1, 2, · · · , J ; J = N/1024 (2)

Fig. 2 Binarization of GVF. The origin of time is 2011-03-03 12:27 (JST). (a) GVF for
51.2 seconds. (b) The binarization result of (a).

2.3 Definition of thermodynamic states

To define the thermodynamic state, the binarized GVF sequence (Fig. 3(a)) is
divided into blocks of 10 data points, and the number of ”1” clusters (Ni) is
counted in each block. To preserve the total number of clusters, the rule shown
in Fig. 3 is applied, where xi ∈ 0, 1 is the binary number in the ith cell in a
10-data block (0 ≤ i ≤ 10). In the 10-data block, we scan the cells from left to
right and count one if the sequence of ”10” is found. At the end of the scan, at
the 10th data point, we count one only if the 10th data point is “1” and the
11th data point is ”0” (Fig. 3 (b)). The counting rule restricts the maximum
number of clusters in a block to five, and defines five thermodynamic states:
s1, s2, s3, s4, and s5, each containing 1, 2, 3, 4, and 5 clusters, respectively
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(Fig. 3(c1)-(c5)). The sequence of the thermodynamic state is defined by Eq.
(3), where the timing and the data length are more explicitly described than
before to avoid confusion, as additional parameters are newly introduced in
this paper. Eq. (3) indicates that the thermodynamic state is defined for every
10 data points of the binary sequence.

Fig. 3 Definition of thermodynamic states. The xi ∈ {0, 1} is the binary number of the
ith cell from the left of the 10-data block (1 ≤ i ≤ 10). (a) A sequence of binarized GVF
and Ni, which is the count of “1” clusters. (b) Blocks with 10 data points, divided from the
sequence in (a), and the count Ni for the “1” cluster. (c1)-(c5) Examples of thermodynamic
states s1, s2, s3, s4, and s5 which contain 1, 2, 3, 4, and 5 clusters of “1”, respectively.

S ≡ {s(t′1), s(t
′

2), · · · , s(t
′

k), · · · , s(t
′

K)} : sequence of thermodynamic states

t′k = t0 + 10(k − 1)∆t, k = 1, 2, · · · ,K; K = N/10

s(t′k) : thermodynamic state in t′k ≤ tn ≤ t′k + (10− 1)∆t;

s(t′k) ∈ {s1, s2, s3, s4, s5} : thermodynamic state of the binary sequence of

{a(t′k), a(t
′

k +∆t), · · · , a(t′k + (10− 1)∆t)} (3)

2.4 Thermodynamics of GVF

The binarized GVF that fluctuates over time with no apparent regularity,
implies that the state of the binarized GVF is non-equilibrium or stochastic.
It is known that the thermodynamics of fluctuating non-equilibrium systems
is described by the master equation defined by Eq. (4), and the EPR defined
by Eq. (5) (Haitao, Y. & Jiulin, D., 2014, and Ito, S., 2020). Note that for
equilibrium systems, which are time-independent, the left-hand side of the
master equation is zero and EPR is also zero. In contrast, for non-equilibrium
systems, EPR is positive.
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dpi
dt

=

n
∑

j=1

Jij(t) (4)

EPR(t) =
1

2

n
∑

i=1

n
∑

j=1

Jij(t)Fij(t) (5)

Jij(t) = Wij(t)pj(t)−Wji(t)pi(t)

Fij(t) = ln
Wij(t)pj(t)

Wji(t)pi(t)

where Jij and Fij are called the flow from i-state to j-state and thermodynamic
force, respectively. “t” is time.Wij is the (i, j) component of the 5×5 transition
rate matrix which defines the total number of transitions from i-state to j-
state. The Wij is increased by one when a transition occurs from i-state to
j-state. Here, the term “state” corresponds to the si as depicted in Fig. 3. Fig.
3 (b) shows the three-cluster state, two-cluster state, and two-cluster state
in chronological order. The first transition from s3 to s2 increases the value
of W32 by 1, and the second transition from s2 to s2 increases the value of
W22 by 1. The pi, which corresponds to the state si, is the probability density
of states defined in Eq. (6), where the timing and the data length are more
explicitly described than before to avoid confusion, as additional parameters
are newly introduced in this paper. Eq. (6) indicates that pi is calculated from
the first 1000 data points extracted from the 1024 data points of the binary
sequence, which is the same data used for calculating A-noise. The initial 1000
data points consist of 100 thermodynamic states, with each state comprising
10 binary digits.
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pi ≡
{

pi(t
′′

1), pi(t
′′

2), · · · , pi(t
′′

j ), · · · , pi(t
′′

J)
}

: sequence of

probability density of states

t′′j = t0 + 1024(j − 1)∆t, j = 1, 2, · · · , J ; J = N/1024

pi(t
′′

j ) =
N(si(t

′′

j ))
∑5

i=1 N(si(t′′j ))
: probability density of states

N(si(t
′′

j )) : number of state si in t
′′

j + t′1 − t0 ≤ tn ≤ t′′j + t′100 − t0;

i = 1, 2, 3, 4, 5
5

∑

i=1

N(si(t
′′

j )) : total number of states in t′′j + t′1 − t0 ≤ tn ≤ t′′j + t′100 − t0

si(t
′′

j ) ∈ {s1, s2, s3, s4, s5} : state si in t
′′

j + t′1 − t0 ≤ tn ≤ t′′j + t′100 − t0

S(t′′j ) =
{

s(t′′j + t′1 − t0), s(t
′′

j + t′2 − t0), · · · , s(t
′′

j + t′100 − t0)
}

:

sequence of states in t′′j + t′1 − t0 ≤ tn ≤ t′′j + t′100 − t0

s(t) ∈ {si(t) | i = 1, 2, 3, 4, 5} (6)

The thermodynamic parameters in this study are defined as follows: the
EPR, the A-noise, the density of states (which is the ratio of the number of
”1” cells to the total number of cells), the five components of the probability
density of states, and their combinations and distributions. The A-noise is
considered a thermodynamic parameter because it corresponds to the pair of
EPR and the transition rate matrix, as shown in our previous study.

2.5 CA review

In this sub-section, we review the CA-184 (or Rule 184) cellular automaton,
as well as the (d, p)-CA184, which is a stochastic extension of CA-184. We
then review the data generation protocol that uses the periodic (d, p)-CA184
(i.e., the (d, p)-CA184 with periodic boundary conditions), and the equilibrium
characteristics of the periodic (d, p = 1)-CA184.

2.5.1 CA-184 (Nishinari & Takahashi, 1999)

CA-184 is commonly used for modeling traffic jams. It is a one-dimensional
array of cells, with each cell containing either ”1” or ”0”. The time evolution of
each cell, which depends solely on the cells on both sides of it, follows rule-184:

U t
i−1U

t
iU

t
i+1

U t+1
i

=
111

1
,
110

0
,
101

1
,
100

1
,
011

1
,
010

0
,
001

0
,
000

0
(7)

where t and i are natural numbers indicating the discrete time and discrete
space, respectively. The denominator U t+1

i represents the cell value at (time,
space) = (t+1, xi), and it is determined by the numerator U t

i−1U
t
iU

t
i+1, which

is a sequence of three binary numbers at time t. Rule 184 states that when the
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sequence ”10” (one followed by zero) appears at time t, it becomes ”01” (zero
followed by one) at time t+ 1”. In other words, assuming ”0” and ”1” denote
an empty cell and a cell occupied by ”1”, respectively, if there is an empty cell
to the right of an occupied cell at time t, the ”1” in the occupied cell moves
right and occupies the empty cell at time t+ 1.

Therefore, the occupied cells move to the right as time passes. There are
eight possible time evolution patterns as shown on the right side of Eq. (7).

2.5.2 (d, p)-CA184 : CA with probabilistic fluctuations

Probabilistic fluctuations need to be introduced in cellular automata to express
complex phenomena, such as ground vibration on Earth. By introducing the
moving or hopping probability, p (1 ≤ p ≤ 1), Rule 184 (Eq. 7) can be
rephrased such that if there is a sequence “10” in the numerator at time t,
then with a probability of p = 1, the sequence becomes “01” at time t+ 1.

Extending the probability p to an arbitrary real number, we define the p-
CA184 as follows: if there is a sequence “10” in the numerator at time t, then
with probability p, the sequence becomes “01” at time t + 1. In other words,
when the p-CA184 evolves, it evolves with probability p. The CA-184 with
the hopping probability p is also known as the Asymmetric Simple Exclusion
Process (ASEP). However, in this paper, we refer to the ASEP as p-CA184
because p is a key parameter associated with thermodynamic characteristics,
which are emphasized in this study.

Moreover, since the initial density of states, d, determines the maximum
number of “1” clusters in a state, we define the (d, p)-CA184 as the p-CA184
calculated with the initial density of states d. Here, the density of states d is
the ratio of the number of “1”s to the total number of cells in the cell set under
consideration.

2.5.3 Periodic (d, p)-CA184 and data generation

The (d, p)-CA184 introduced in this paper consists of 10 cells in space, denoted
as (xi, 1 ≤ i ≤ 10), and employs periodic boundary conditions (Fig. 4 (a)-
(b)). At the boundaries, x10 and x1, the cell value at time t+ 1 is determined
by referring to the cells on both sides at time t. The boundary conditions are
established by applying the rule-184 to (U t

10U
t
1U

t
2)/U

t+1
1 and (U t

9U
t
10U

t
1)/U

t+1
10

(Fig. 4 (b)). The CA data is generated by reading the cell value of x10 at each
time step t (Fig. 4 (c)).

2.5.4 Equilibrium and non-equilibrium CA

When generating data using periodic (d, p)-CA184 under the condition of p =
1, after sufficient time steps, a periodicity in time occurs in the (xi, tj) space,
and the same pattern is repeated in the x− t diagram (Fig. 5). From the x− t
diagram, we can extract a square unit of 10 space-steps × 10 time-steps, that
repeats over time. In this repeating space-time unit, the number of “1” clusters
per row, which defines the thermodynamic state, remains constant, implying
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Fig. 4 Periodic (d, p)-CA184 and data generation. (a) Periodic CA. (b) Periodic boundary
condition. (c) Data generation.

that the repeating unit is in equilibrium. Therefore, periodic (d, p = 1)-CA184
is an equilibrium CA.

It is important to note that the periodic (d, p < 1)-CA184 is non-
equilibrium because the number of “1” clusters per row generally varies over
time in the periodic (d, p < 1)-CA184.

Fig. 5 Equilibrium CA. The blue and white cells indicate respectively Uj
i = 1 and Uj

i =
0. tj and xi are discretized time and discretized space, respectively. d is the cell density
obtained by dividing the number of occupied cells in a row by the total number of cells in a
row. (a) A x− t diagram exhibiting the periodicity in time. Since U17

x =U7
x , the blue-white

pattern between j = 7 and j = 16 is repeated after j = 17. (b) Periodic (d, p = 1)-CA184
with d = 0.1. (c) Periodic (d = 0.2, p = 1)-CA184. (d) Periodic (d = 0.3, p = 1)-CA184.
(e) Periodic (d = 0.4, p = 1)-CA184. (f) Periodic (d = 0.5, p = 1)-CA184. (g) Periodic
(d = 0.6, p = 1)-CA184. (h) Periodic (d = 0.7, p = 1)-CA184. (i) Periodic (d = 0.8, p = 1)-
CA184. (j) Periodic (d = 0.9, p = 1)-CA184.
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3 Methods

3.1 Equivalence between the “Process to GEJE” and CA
transition

The commutative diagram in Fig. 6 is introduced to show the equivalence
between the “Process to GEJE” and the non-equilibrium-to-equilibrium ther-
modynamic transition of CA. The “Process to GEJE”, which is the transition
from GVF to catastrophic rupture, is denoted by the right-pointing horizon-
tal arrow indicated by “(a)” in Fig. 6. Our objective is to demonstrate that
this arrow “(a)” corresponds to the arrow “(f)” which indicates the thermo-
dynamic transition from the periodic (d = 0.5, p < 1)-CA184 to the periodic
(d = 0.5, p = 1)-CA184.

It is important to note that the CA depicted in Fig. 6 is periodic, although
it is not explicitly mentioned.

The arrow “(b1)” indicates that EPR(10days) is positive in GVF, which
will be further explained in a later section. The arrow “(b2)” signifies that
a positive EPR(10days) corresponds to a non-equilibrium state, as per the
definition of EPR. The arrow “(b3)” implies that the non-equilibrium state
corresponds to the periodic (d = 0.5, p < 1)-CA184, which holds true based
on the definition of the periodic (d = 0.5, p < 1)-CA184. In this context, the
periodic (d = 0.5, p < 1)-CA184 is specifically chosen because previous studies
have shown that the GVF is equivalent to the periodic (d = 0.5, p < 1)-CA184
(Kikuchi, 2023), as indicated by the dashed arrow “(b)”.

Note that the “Process to GEJE” necessarily includes the sub-processes
“(a1)” and “(a2)” via “Near-catastrophe,” as the catastrophe itself cannot be
discussed within the framework of the GVF. We attempt to infer the nature
of the catastrophe by examining the “Near-catastrophe”. The arrow “(c)”
indicates that EPR(10days) is approximately zero near the catastrophe (This
is an observation and will be discussed in a later section). By extension, we
assume that EPR is exactly zero at the “Catastrophe” (dashed arrow “(d1)”).
In this context, the data length for the EPR is not specified, as the time
scale of the corresponding “Catastrophic event” is unknown and expected to
be much shorter than 10 days.

Then, the arrow “(d2)” is generated based on the definition of EPR. It
is worth noting that the “Process to GEJE” can be viewed as the transition
from the non-equilibrium state (EPR(10days)) to equilibrium (EPR = 0), as
indicated by the arrow “(e)”. The arrow “(d3)” is generated with reference
to the equilibrium properties of periodic (d = 0.5, p = 1)-CA184. Finally, the
arrow “(f)” is generated in parallel to the arrow “(e)” since the transition from
periodic (d = 0.5, p < 1)-CA184 to periodic (d = 0.5, p = 1)-CA184 represents
the transition from a non-equilibrium state to an equilibrium state, a transition
already indicated by the arrow ”(e)”.

Here, the periodic (d = 0.5, p = 1)-CA184 is specifically chosen as the
destination of the non-equilibrium-to-equilibrium transition from the periodic
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(d = 0.5, p < 1)-CA184 since the periodic (d = 0.5, p < 1)-CA184 exists and
fluctuates very close to the periodic (d = 0.5, p = 1)-CA184.

So far, we have demonstrated that the “Process to GEJE” (“(a)”) is equiv-
alent to the transition from the periodic (d = 0.5, p < 1)-CA184 to the periodic
(d = 0.5, p = 1)-CA184 (“(f)”), assuming EPR = 0 at the “Catastrophic rup-
ture” (“(d1)”) and postponing the discussion on “(b1)” and “(c)”. Now, we
need to further explain the thermodynamics of GVF, specifically focusing on
“(b1)” and “(c)”.

Fig. 6 Commutative diagram to discuss equivalence between “Process to GEJE” and CA
transition. Although not described, the CAs are periodic.

3.1.1 Thermodynamics of the GVF (Fig. 6 (b1) and (c))

This subsection completes the deferred discussion on Fig. 6 (b1) and (c). The
EPR(10days), which represents the EPR calculated every 10 days, and the
logarithmic A-noise are extracted from the previous paper (Kikuchi, 2023)
and presented in Fig. 7 along with earthquake events. The elapsed time has
been extended by 20 months from the original plot, covering the period from
00:00 on January 1, 2006, to 23:59 on August 30, 2018. Fig. 7 (a) illustrates the
location of the KSN (white-filled circle), where the ground vibration data was
recorded, the measurement point of the seismic intensity (blue-filled square),
and the epicenters of the earthquakes that recorded a seismic intensity of 5
or greater (red plus-circle). These earthquakes are identified as A, B, C, and
D , with earthquake B being the GEJE of magnitude 9. The table in Fig. 7
includes the identifiers, dates, magnitudes, seismic intensities, and epicenters
of the earthquakes, retrieved from the website of the Japan Meteorological
Agency of the Ministry of Land, Infrastructure, Transport and Tourism (JMA,
2019). The search conditions used are a seismic intensity greater than 4, the
location of seismic intensity observation, and the search period. For the GVF of
the UD velocity data acquired every 0.05 seconds at KSN, EPR is calculated
every 10 days, and the results are shown in Fig. 7 (b). Fig. 7 (c) illustrates the
time evolution of positive A-noise in a log-scale.
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Fig. 7 (b) shows that EPR(10days) is consistently positive, confirming the
validity of the arrow ”(b1)” in Fig. 6, which indicates that EPR(10days) is
positive in the GVF.

From the beginning of 2008 to the end of 2014 (731 to 3285 days),
EPR(10days) occasionally decreases to a minimum of 0.03 (Fig. 7 (b)). The
timing of the EPR(10days) decrease is similar to the occurrence of a strong
peak of positive A-noise (Fig. 7 (c)). For instance, near the timing of the
GEJE, marked by the green vertical line “B”, EPR(10days) drops to around
0.04 (red solid circle), while log10(A-noise) sharply increases and reaches
approximately 0.5, the maximum axis value (black dot). The sharp decrease
in EPR(10days) near the GEJE suggests that “Near-catastrophe” in GVF
corresponds to EPR(10days) ≈ 0 and validates the arrow (c) in Fig. 6. Con-
sequently, by assuming EPR = 0 at the rupture, we have demonstrated
that the “Process to GEJE” is equivalent to the transition from the periodic
(d = 0.5, p < 1)-CA184 to the periodic (d = 0.5, p = 1)-CA184.

Since the state of EPR(10days) = 0 corresponds to the equilibrium state
in which no state transition occurs, the decrease in EPR(10days) implies a
change from a non-equilibrium state towards an equilibrium state. Therefore,
the arrow (e) in Fig. 6 is confirmed to be correct.

The decrease in EPR(10days) does not coincide with the timing of earth-
quakes A, C, and D, which have magnitudes less than or equal to 7.2.
However, the timing of the GEJE (earthquake B of magnitude 9) is close to
the sharp decrease in EPR(10days). This implies that a state change from
non-equilibrium toward equilibrium is a phenomenon associated only with
earthquakes of magnitude greater than 7.2.

3.2 Derivation of thermodynamic state functions in CA

We are searching for thermodynamic state functions that fulfill two condi-
tions: their significant change should occur only once prior to the GEJE, and
there should be a clear thermodynamic state shift associated with it. The
first condition, the uniqueness of the significant change of the thermodynamic
state function, is based on the prior observation that the onset of the crustal
stress manifestation occurs only once before the GEJE, and we believe this
manifestation likely corresponds to a thermodynamic state shift or a signif-
icant change in the state function. Earthquakes, positive peaks in A-noise,
and sharp decreases in EPR do not uniquely appear before the GEJE and
are unsuitable as thermodynamic state functions. We expect the thermody-
namic state functions to be weaker than these signals and to manifest during
the seismically silent period. To detect these weak signals, we focus on the
distribution of thermodynamic parameters rather than the thermodynamic
parameters themselves. One potential candidate is the A-noise distribution.

We are interested in analyzing the large positive A-noise, so we employ
Extreme Value Analysis (EVA), which statistically evaluates the positive max-
imum values of the subsets within a given sample of A-noise. In EVA, the
r stochastic variables are divided into s subsets, and the maximum value
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Fig. 7 The EPR(10days) and A-noise at KSN during the period from 2006-01-01 00:00
to 2018-08-30 23:59, and the major earthquakes detected near KSN during the same period.
For the earthquakes with a seismic intensity greater than 4, the identifier (uppercase letters
A, B, C, and D), time, magnitude, seismic intensity, and epicenter location are summarized
in the table. (a) The location of the KSN (white filled circle), the earthquake epicenter (red
plus-circle), and the point of seismic intensity measurement (blue-filled square). The seismic
intensity is recorded at Kesennuma-city, approximately 10 km from KSN, which is 188 km
from the GEJE epicenter. (b) EPR(10days). The green line indicates the timing of the
earthquake identified by the uppercase letter at the top of the line. (c) Positive A-noise.

of each subset is extracted to create a new set Ms comprising the positive
maximum values. This new set undergoes statistical operations. Accord-
ing to the Fisher-Tippett-Gnedenko theorem (Charras-Garrido & Lezaud,
2013), after the proper normalization, Ms converges in distribution to one of
three distributions: the Gumbel distribution, the Fréchet distribution, or the
Reversed-Weibull distribution (Eq. (8)). In the Gumbel distribution in Eq.
(8), for the limit of γ → 0, the term 1 + γz is approximated as 1 + γz ≈
∑

∞

n=0(γz)
n/n! = eγz. We opt for the Gumbel distribution as it fits well with

the frequency distribution of the positive A-noise data, as shown in Fig. 8.

Gγ(z) = exp
(

−(1 + γz)−1/γ
)

, 1 + γz ≥ 0, γ, β, x ∈ R, γ > 0

Gumbel : G0(x) = exp
(

−e−x
)

Fréchet : G1/β(β(x− 1)) = exp
(

−x−β
)

Reversed−Weibull : G−1/β(β(x+ 1)) = exp
(

− (−x)
β
)

. (8)
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Fig. 8 Distribution of A-noise. Recorded at KSN from 2010-02-19 00:00 to 2010-02-28
23:59. (a) Time evolution of A-noise. (b) Frequency distribution of A-noise. (c) Frequency
distribution of positive A-noise and its Gumbel approximation (red curve).

3.2.1 Protocol of the EVA with Gumbel distribution

Extreme Value Analysis (EVA) is conducted on the A-noise sequence calcu-
lated from either binarized GVF or the binary sequence generated by CA. For
the binarized GVF, the A-noise is calculated as described in Eq. (2). When
applying Eq. (2) to the binary sequence generated by CA, we need to set
∆t ≡ 1 and t0 ≡ 1. Consequently, t′′j becomes t′′j = 1 + 1024(j − 1).

In EVA, for both of the binarized GVF and CA, the r sets of A-noise
(={A-noise(t′′j ), A-noise(t

′′

j+1) · · · , A-noise(t
′′

j+r−1)}) is divided into 20 sub-
sets to create M30 s; s = 1, 2, · · · , 20, with each subset containing r/20
A-noise values. M30 s, and ω, which contains 160 sets of A-noise inter-
vals, are defined as (Eq. (9)). Eq. (9) indicates that for (s, j1) = (1, 1),
M30 s(τj1)=M30 1(τ1)=

{

A-noise(t′′j ) | j = j2 = 1, 2, · · · , r/20
}

={A-noise(t′′1),
A-noise(t′′2), · · · , A-noise(t′′r/20) }, which is the first r/20 terms of

the A-noise sequence in Eq. (2). For (s = 1, 2, · · · , 20, j1 = 1),
M30 s=1,2,··· ,20(τ1)={A-noise(t′′1), A-noise(t′′2), · · · , A-noise(t′′r ) }, which is
the first r terms of the A-noise sequence in Eq. (2), and on which the first
EVA is conducted.

M30 s ≡ M30 s(τj1) ≡ M30 s(t
′′

(j1−1)r+1) = M30 s(t0 + 1024(j1− 1)r∆t)

≡
{

A-noise(t′′j ) | j = (j1− 1)r + (s− 1)r/20 + j2
}

j1 = 1, 2, · · · , N/1024/r

j2 = 1, 2, · · · , r/20

ω = {ωj3 ≡ [−4.0 + (j3− 1)× 0.05, −4.0 + j3× 0.05)}

j3 = 1, 2, · · · , 160. (9)

For each τj1, the histogram of M30 s with class interval ω is calculated, and
then the maximum ωj with non-zero frequency is extracted and defined as A-
noise s. A new set of M20 j1 consisting of 20 sets of A-noise s is formed to
approximate the histogram of M20 j1 with a Gumbel distribution using class
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interval ω. In the Gumbel approximation, the input data xj ≡ (ωj + ωj+1)/2
represents the mean of the class interval ωj , and the input data yj represents
the frequency of occurrence for the ωj in the histogram for M20 j1. Gumbel
fitting is applied in the domain of xj > 0.

For the Gumbel fitting, G0(x) in Eq. (8) is rewritten as follows:

G0(x) = exp

(

−exp

(

−
x− λ

η

))

⇒ − log (−log(G0(x))) =
1

η
x−

λ

η
, − 4.0 ≤ x < 4.0 (10)

where −log (−log(G0(x))) is expressed as the linear function of x. The cumu-
lative distribution, G0(xj), is calculated from yj as shown in Table 1, where
ysj denotes the cumulative frequency, G0(xj) ≡ ysj/(ytotal +1) is the cumula-

tive distribution, and ytotal ≡
∑160

i=1 yi. The 20 pairs of (xj , G0(xj)) are fitted
to a Gumbel distribution using linear regression, and the gradient, y-intercept,
and Pearson’s coefficient in Eq. (11) are calculated.

Table 1 A detailed example of calculating the cumulative distribution G0(xj).

Class(j) ωj xj yj
∑j

i=1
yi ≡ ysj G0(xj) ≡ ysj/(ytotal + 1)

1 [0, 0.05) 0.025 2 2 2/(ytotal + 1)
2 [0.05, 0.1) 0.075 3 5 5/(ytotal + 1)
...

...
...

...
...

...
160 [3.95, 4.0) 3.975 1 ytotal ytotal/(ytotal + 1)

Gumbel fitting parameters :

gradient =
1

η
in Eq. (10)

Intercept = −
λ

η
in Eq. (10)

R2 = Pearson’s correlation coefficient (11)

3.2.2 Thermodynamic state function derived with the
periodic (d = 0.5, p)-CA184

The Gambel fitting parameters defined by Eq. (11) are calculated for the
periodic (d = 0.5, p)-CA184 and plotted with respect to the hop probability p
as shown in Fig. 9. The bottom graph in Fig. 9 shows the top graph averaged
for each p. The Grad, abs(intercept), and R2 represent the gradient, absolute
value of intercept, and Pearson’s correlation coefficient, respectively (Fig. 9
(a)-(c)). It should be noted that the A-noise in CA is notationally identical to
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the definition in Fig. 1, but is calculated from the data generated by CA. For
each of the 36 cases of p = {0.1, 0.125, · · · , 0.95, 0.975}, the fitting parameter
is calculated for 9 initial conditions. Each fitting parameter is calculated from
a binary sequence of length 2.15 × 107, corresponding to r=20,996 A-noise
values, resulting in M30 s consisting of r/20 = 1049 A-noise values.

Large values are observed around p = 0.7 in the averaged graphs of gradi-
ent, absolute intercept, and R2 (lower graphs in Fig. 9 (a)-(c)). Additionally,
for R2, the data fluctuation is significantly reduced near p = 0.7, and the
bottom-line envelope of R2 forms a convex curve (red curve in the upper graph
in Fig. 9 (c)). To approximate this convex curve, the 100 moving minimum of
R2 is defined as minR2(τj1) ≡ min(R2(τj1), R2(τj1+1), · · · , R2(τj1+99)).

If we have a system in which the hop probability increases over time, for
example, if R2(p) corresponds to R2(t), we would expect to see large values of
R2 and large values of minR2 before the hop probability reaches 1. Therefore,
R2 and minR2 can be appropriate thermodynamic state functions for the
transition of the CA from periodic (d = 0.5, p < 1)-CA184 to periodic (d =
0.5, p = 1)-CA184.

Assuming that the hop probability increases with time, we propose a 500-
Simple-Moving-Average of R2 and a 100-moving minimum of R2 (denoted as
minR2) as thermodynamic state functions for the transition of the CA.

Fig. 9 Curve fitting parameters evaluated in the periodic (d = 0.5, p)-CA184. The top
graph consists of 324 points, with 9 points per each p value, while the bottom graph displays
the average for each p value. (a) Gradient calculated in the Gumbel approximation. (b) The
absolute value of the Intercept. (c) Pearson’s correlation coefficient between the fit and the
source data.

4 Results

4.1 Thermodynamic state shift prior to GEJE

In this section, we evaluate the thermodynamic state functions, the 500-
Simple-Moving-Average-R2 and minR2, on the GVF data to discover a
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thermodynamic state shift prior to the GEJE and rationalize the assumption
in Fig. 6.

Note that the thermodynamic state functions derived in CA are applicable
to GVF. We assume the maximum possible hop probability, p = 1, at the
timing of GEJE, causing the hop probability to increase with time in the period
leading up to GEJE. This condition satisfies the precondition for deriving the
thermodynamic state functions in CA, where it is considered that the hop
probability increases with time.

4.1.1 Evaluation of thermodynamic state functions in GVF

In each EVA calculation on the GVF data, the total number of A-noise is
defined as 600 (r = 600) and ∆t is 1/20 as defined in Eq. (1). Each EVA is
performed on the binary sequence of BS(t′′600(j1−1)+1 ≤ tn < t′′600 j1+1; ∆t =

1/20).
For the GVF data (source data for Fig. 7 (b)-(c)) recorded at KSN from

2006-01-01 00:00 to 2018-08-30 23:59, the thermodynamic state function, the
minR2, is evaluated and plotted in Fig. 10 (a). The two prominent peaks
labeled “State shift” are visible in Fig. 10 (a) around t=664 days, which is
1231 days before the GEJE. The GEJE occurred on t=1895 days, indicated by
the short green vertical line “B”. The short green vertical lines labeled “A”,
“B”, “C”, and “D” correspond to the earthquake timings shown in the table in
Fig. 7. The dashed red stepped line in Fig. 10 (a) is defined at time point t as
the maximum value of minR2 prior to and including time point t. Given that
the red dashed line remains unaltered following the peaks labeled as ”State
shift,” these two peaks stand out as the highest within the elapsed time range,
making them both unique and significant. Consequently, they can be regarded
as the sought-after indicators of the thermodynamic state shift. Fig. 10 (b)
shows that the 500-Simple-Moving-Average-R2 also reaches its maximum at
a similar timing to the minR2 state shift, suggesting that this maximum is
another indicator of the thermodynamic state shift prior to the GEJE.

After the timing of the thermodynamic state shift prior to GEJE, indicated
by the vertical dotted line “STM”, the probability density of states p1 and
p2 of the GVF are clearly separated, and the value of p1 becomes smaller
than that of p2 (Fig. 10 (c)). The fluctuation in the lower level of p1 than
p2 continues even after the timing of the thermodynamic state shift prior to
GEJE, extending up to the GEJE occurrence. This suggests that the GVF
state undergoes a state shift towards the GEJE state at the timing of the ”State
shift” prior to GEJE. In this context, it is important to remember that The
GEJE, the “Catastrophic rupture” is assumed to correspond to the periodic
(d = 0.5, p = 1)-CA184 as shown in Fig. 6 (d1)-(d3). Furthermore, it should
be noted that the thermodynamic state of the periodic (d = 0.5, p = 1)-CA184
is independent of time, consistently comprising five clusters of ”1,” which is
the potential maximum number of the cluster in a given state (as indicated
in Fig. 5 (f)). Therefore, the GEJE is assumed to be the state s5 with the
probability density of {pi | p5 = 1.0 and pi = 0; i = 1, 2, 3, 4}. Following the
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“State shift” prior to GEJE, in a GVF state, a decrease in the p1 component,
representing the state with a single ”1” cluster, leads to an increase in the
other components, pi; , i = 2, 3, 4, 5, corresponding to states with more than
one ”1” cluster. Consequently, the total count of ”1” clusters in the GVF state
increases after the “State shift”, causing the GVF state to move closer to the
GEJE state, characterized by the maximum number of ”1” clusters.

Fig. 10 (d) illustrates the temporal evolution of the R+A-noise(10days),
which is defined as the ratio of the number of positive A-noise values to the
total number of A-noise values within a 10-day data block of A-noise. The
peak in R+A-noise(10days) in Fig. 10 (d) aligns with the peak in A-noise in
Fig. 10 (e), as indicated by the vertical red line shown between these figures.
Previous research (Kikuchi, 2023) has demonstrated that the peaks in A-noise
are linked to the stress peaks induced by seasonal storm surges. Furthermore,
it has been shown that R+A-noise(10days) corresponds to the stress develop-
ment underground: a large R+A-noise(10days) corresponds to a high-stress
level.

The stress peak, or the R+A-noise(10days) peak, becomes first visible at
the “State shift” timing (STM) during the elapsed time (Fig. 10 (d)), implying
that a change in the underground-stress state undergoes at the “State shift”
timing.

Fig. 10 (f1)-(f5) shows the time evolution of the state probability density
pi; i = 1, 2, 3, 4, 5. The p5 graph exhibits prominent upward peaks (Fig. 10
(f5)) that align with the peaks in the A-noise peaks (Fig. 10 (e)), as indicated
by the red vertical line between these figures, suggesting that p5 corresponds to
the stressed state. Similarly, the graph for p4 also displays pronounced upward
peaks corresponding to the A-noise peaks (Fig. 10 (f4)). p3 behaves similarly
to p4, but with fewer upward peaks (Fig. 10 (f3)). On the contrary, p2 exhibits
downward peaks that correspond to the upward peaks of p3 (Fig. 10 (f2)).
Similarly, p1 contains downward peaks that correspond to the three downward
peaks of p2 (Fig. 10 (f1)).

Hence, increasing stress results in higher probabilities for states
p3, p4, and p5, while decreasing probabilities for states p1, and p2. It’s con-
ceivable that a high stress level corresponds to the state with a higher p5
component. Considering the intuitive assumption that the maximum stress
is observed at the GEJE timing, it’s plausible that the state near GEJE
closely resembles the p5 state, or the s5 state depicted in Fig. 3 (c5), gen-
erated by (d = 0.5, p = 1)-CA184 (Fig. 5 (f)). This finding supports the
initial assumption (d1) and the deductions d2 and d3 presented in Fig. 6, indi-
cating that the catastrophic rupture (GEJE) is indeed associated with the
(d = 0.5, p = 1)-CA184.

5 Conclusions

Assuming EPR = 0 or equilibrium at the catastrophic rupture in the “Process
to GEJE”, we applied the data mining method to extract the thermodynamic
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Fig. 10 Evolution of thermodynamic state function and GVF dynamics. The elapsed time
starts and ends at 2006-01-01 00:00 and 2018-08-30 23:59. (a) The thermodynamic state
function minR2 is the 100 moving minimum of R2. The short green vertical lines labeled
“A”, “B”, “C”, and “D” indicate the earthquake timings shown in the table in Fig.7. The
red dashed line is the maximum value of minR2 before time t including t. The vertical
dotted line “STM” indicates the “State shift” timing. (b) Pearson correlation coefficient R2
(500-Simple-Moving-Average). (c) Probability density of state, p1 (green line) and p2 (red
line). (d) R+A-noise, calculated every 10days and corresponding to subsurface stress. The
vertical red line at the bottom shows the correspondence between the R+A-noise and A-
noise peaks. (e) A-noise in log10 scale. (f1)-(f5) State probability density pi; i = 1, 2, 3, 4, 5.
Red vertical lines connect the prominent peaks between (e) and (f5), (f5) and (f4), (f4) and
(f3), (f3) and (f2), and (f2) and (f1).

state shift prior to the GEJE from the GVF recorded at the seismic sta-
tion KSN. We first demonstrated the thermodynamic equivalence between the
“Process to GEJE”, defined as the transition from the GVF to catastrophic
rupture, and the transition in CA from periodic (d = 0.5, p < 1)-CA184 to
periodic (d = 0.5, p = 1)-CA184. Subsequently, we derived thermodynamic
state functions that yield a thermodynamic state shift in the CA transition
and evaluated these thermodynamic state functions in the GVF to discover
the thermodynamic state shift prior to GEJE.

The thermodynamic state function of hop probability p, denoted as R2 ≡
R2(p), was derived as the Pearson’s correlation coefficient in the curve fitting
using the Gambel approximation in the EVA applied to the A-noise calculated
from periodic (d = 0.5, p < 1)-CA184. The R2 showed a significant increase
around the hop probability p = 0.7. Considering a system in which time elapses
as p increases, the R2 ≡ R2(p) ∼ R2(t) can be considered a thermodynamic
state function of the transition from periodic (d = 0.5, p < 1)-CA184 to peri-
odic (d = 0.5, p = 1)-CA184. Similarly, the 100-point moving minimum of
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R2, denoted as minR2, which approximates the lower envelope of R2(t), is
considered another thermodynamic state function of the CA transition.

The thermodynamic state shift prior to GEJE were discovered by evaluat-
ing the R2 for the A-noise calculated from the GVF recorded at KSN during
the period from January 2006-01-01 00:00 to 2018-08-30 23:59. Two signifi-
cantly large peaks of the 500-Simple-Moving-Average-R2 appeared side by side
only once, 1231 days before the GEJE. A large minR2 peak also appeared at
similar times to the R2 peaks. Therefore, the large values of R2 and minR2
can be regarded as thermodynamic state shift prior to GEJE.

It is important to note that the thermodynamic state functions derived in
CA are suitable for applying to GVF. At the timing of GEJE, we assumed
the maximum possible hop probability p = 1, so the hop probability increases
with time in the period before GEJE, which is coherent with the precondition
for deriving the thermodynamic state functions in CA: the hop probability
increases with time.

The assumption that the hop probability p = 1 at the GEJE (Fig. 6 (d3)),
or equivalently that the GEJE corresponds to ERR = 0 (Fig. 6 (d1)), is ratio-
nalized as follows. It has been observed that the high-stress level corresponds
to the state with a higher p5 component. Considering the intuitive assumption
that the maximum stress is observed at the GEJE timing, it’s plausible that
the state near GEJE closely resembles the p5 state, or the s5 state depicted in
Fig. 3 (c5), generated by (d = 0.5, p = 1)-CA184 (Fig. 5 (f)).

The scope of this research is limited to the specific earthquake GEJE and
the data recorded at a specific seismic station KSN. Further investigation is
required for generalization.
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Introduction. Journal de la Société Française de Statistique, 154, 2, 66-97.
https://hal-enac.archives-ouvertes.fr/hal-00917995

JMA (2019). Japan Meteorological Agency under the Ministry of Land,
Infrastructure, Transport and Tourism. Seismic intensity database search.
https://www.data.jma.go.jp/svd/eqdb/data/shindo/index.php

Ito, S. (2020). Special Feature: Physics and Information Geometry.
Mathematical Sciences, No. 689, 38-45 (November 2020). ISSN 0386-2240.
Printed in Japan

Kikuchi, H. (2023). Data mining method in seismology by applying
cellular automaton equivalence of ground vibration fluctuations recorded
near the epicenter of the 2011 Mw 9 East Japan earthquake. Earth Science
Informatics 16, 2615?2633. https://doi.org/10.1007/s12145-023-01054-z


	Introduction
	Review of data handling procedures and key terms (Kikuchi, 2023)
	Definition of A-noise
	Binarization of GVF
	Definition of thermodynamic states
	Thermodynamics of GVF
	CA review
	CA-184 (Nishinari & Takahashi, 1999)
	(d, p)-CA184 : CA with probabilistic fluctuations 
	Periodic (d, p)-CA184 and data generation
	Equilibrium and non-equilibrium CA


	Methods
	Equivalence between the “Process to GEJE” and CA transition
	Thermodynamics of the GVF (Fig. 6 (b1) and (c))

	Derivation of thermodynamic state functions in CA
	Protocol of the EVA with Gumbel distribution 
	Thermodynamic state function derived with the periodic (d=0.5, p)-CA184 


	Results 
	Thermodynamic state shift prior to GEJE
	Evaluation of thermodynamic state functions in GVF


	Conclusions

