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Abstract 

The increasing availability of hydrological and physiographic spatiotemporal data has boosted machine learning’s 

role in rapid flood mapping. Yet, data scarcity, especially high-resolution DEMs, challenges regions with limited 

access. This paper examines how DEM type and resolution affect flood prediction accuracy, utilizing a cutting-

edge deep learning (DL) method called 1D convolutional neural network (CNN). It utilizes synthetic hydrographs 

as training input and water depth data obtained from LISFLOOD-FP, a 2D hydrodynamic model, as target data. 

This study investigates digital surface models (DSMs) and digital terrain models (DTMs) derived from a 1 m 

LIDAR-based DTM, with resolutions from 15 to 30 m. The methodology is applied and assessed in an established 

benchmark, the city of Carlisle, UK. The models’ performance is then evaluated and compared against an observed 

flood event using RMSE, Bias, and Fit indices. Leveraging the insights gained from this region, the paper 

discusses the applicability of the methodology to address the challenges encountered in a data-scarce flood-prone 

region, exemplified by Pakistan. Results indicated that utilizing a 30 m DTM outperformed a 30 m DSM in terms 

of flood depth prediction accuracy by about 21% during the flood peak stage, highlighting the superior 

performance of DTM at lower resolutions. Increasing the resolution of DTM to 15 m resulted in a minimum 50% 

increase in RMSE and a 20% increase in fit index across all flood stages. The findings emphasize that while a 

coarser resolution DEM may impact the accuracy of machine learning models, it remains a viable option for rapid 

flood prediction. However, even a slight improvement in data resolution in data-scarce regions would provide 

significant added value, ultimately enhancing flood risk management. 

Keywords: Flood inundation, DEM resolution, Convolutional Neural Network, Rapid prediction, Machine 

learning, Artificial intelligence.  

 

 

1. Introduction 

Natural disasters cause great damage to human societies every year. According to the World 

Meteorological Organization (WMO), floods are the third most impactful disaster in the world 
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and have the highest number of deaths and injuries (Zahir et al., 2019). In addition, the impacts 

cascade to the buildings, transportation infrastructure, critical facilities, cultural heritage, 

environment, and economy, (Yu et al., 2013). Globally, the frequency of floods has increased 

by 40% in the last two decades (Khosravi et al., 2019). The impacts of floods may be mitigated 

by decision-makers with accurate and timely flood forecasting information (Chen et al., 2018). 

Flood management can be divided into four main processes: forecasting (Mosavi et al., 2018), 

detection (Van Ackere et al., 2019), mapping (Manavalan, 2017), and risk assessment. With 

more hydrologic and physiographic data available in recent years, machine learning (ML) 

techniques have proven to be a reliable tool that helps improve flood forecasting models, post-

flood mapping, and complex physical and dynamic modeling efforts (Mosavi et al., 2018; 

Muñoz et al., 2021). ML models are defined within the context of flood risk assessment to 

provide alternatives and complements to the historical disaster mathematical statistics method 

(HDMS), scenario simulation analysis (SSA), and multi-criteria decision analysis (MCDA) 

(Chen et al., 2021). HDMS assesses historical disasters reported by governments and officials 

and gives results that are generally consistent with reality (Xu et al., 2018; Wang et al., 2020; 

Chen et al., 2021). SSA typically requires 2D hydraulic/hydrodynamic models for high-

sensitivity flood zone detection, implementing through software such as Mike (Banks et al., 

2014; Kourtis et al., 2017; Jahandideh et al., 2020), Info Works ICM (Sameer and Rustum, 

2017; Liu et al., 2021), and LISFLOOD-FP (Bates and De Roo, 2000; Wu et al., 2017; Grimaldi 

et al., 2019; Liu et al., 2019), among others. The MCDA provides a flexible flood risk 

assessment plan that has been implemented in many areas (Tang et al., 2018; Mishra and Sinha, 

2020; Pham et al., 2021,2022). ML models assess floods by automatically learning past flood 

risk characteristics and predicting future conditions (Costache et al., 2019, 2021; Nevo et al., 

2022). ML models are equally adaptable as MCDAs but yield more objective results. These 

models are often better suited for predicting the likelihood and severity of future floods based 
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on historical data, while SSA is better suited for testing the effectiveness of different flood 

management strategies under different conditions. 

The majority of SSA models solve a simplified version of the Navier-Stokes equation (NS), 

coupled with the conservation of mass equation, to formulate the motion of a fluid (Janna, 

1993). Solving differential equations of conservation of mass and momentum for a large 

domain (national or continental scale) is tedious, time-consuming, and costly (Rahman et al., 

2021). This makes the use of hydraulic models for large-scale flood simulations generally 

impractical, especially when using fine-resolution topographic data in urban areas and other 

heterogeneous locations (Woznicki et al., 2019), which requires substantial simplifications in 

the modeling. Such simplifications increase the uncertainty and inaccuracy of predicted results 

(Zarzar et al., 2018). As a result, running simulations in real-time, such as those needed for 

emergency response, using the hydraulic model is almost unfeasible (Maidment et al., 2016). 

Therefore, there is a need for quick, robust, and versatile approaches for large-scale, real-time 

flood modeling. 

To mimic the complex mathematical expressions of physical processes of floods, during the 

past two decades, ML methods have contributed to the advancement of prediction systems 

providing better performance and cost-effective solutions (Mosavi et al., 2018). Such 

approaches are specifically useful when (a) the current models are not fully capable of 

capturing the physics in mathematical terms, (b) the computational cost is impractical, or (c) 

the available knowledge about the problems is limited (Hosseiny et al., 2020). This has made 

ML approaches powerful tools for assessing different aspects of flood risk assessment.  

ML techniques have evolved through time (Bhattacharya et al., 2007), focusing on learning 

from current data and experiences to enhance understanding of real-world problems (Mitchell, 

1997). Using new and advanced ML algorithms ultimately provides a model with greater 
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accuracy (i.e., the overall correctness of a model’s prediction) and sensitivity (i.e., the model's 

ability to correctly identify positive cases or instances of a particular class or condition) (Arora 

et al., 2021). Recently, new techniques and methods have been suggested based on ML (Kabir 

et al., 2020; Pham Quang and Tallam, 2022; Antwi-Agyakwa et al., 2023). Among all ML 

methods, ANNs are the most popular learning algorithms, known to be versatile and efficient 

in modeling complex flood processes with a high error tolerance and accurate approximation 

(Mosavi et al., 2018). In light of the difficulty of using ML approaches for precise and 

trustworthy flood forecasting, several neural networks such as Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Multilayer Perceptron (MLP), Wavelet Neural Network (WNN), 

Ensemble Prediction System (EPS), Decision Tree (DT), Random Forest (RF), Classification 

And Regression Trees (CART) and Convolutional Neural Network (CNN) have been 

suggested as potential solutions for strengthening the reliability of warning systems without 

sacrificing accuracy (Khosravi et al., 2019; Arora et al., 2021; Nevo et al., 2022; Chen et al., 

2022). When combined with image processing methods, the instruments available for flood 

control, both before and after a natural catastrophe become far more advanced (Munawar et al., 

2021; Singha and Swain, 2022; AlAli and Alabady, 2022; Zabihi et al., 2023). 

In recent years, several studies have been conducted to develop an ML-based flood risk analysis 

framework. Table 1 summarizes the most important and relevant studies, indicating the inputs 

and outputs of the ML model and the role of hydraulic models within the proposed framework. 

The majority of these studies have touched on how various machine learning methods may be 

used in flood prediction and early warning systems (Noymanee et al., 2017; Chen et al., 2018; 

Mosavi et al., 2018; Woznicki et al., 2019; Park et al., 2020; Arora et al., 2021; Avand et al., 

2022). Few research studies have used hydraulic models and ML, even though the combined 

models are substantially more reliable than the other cases (Liu et al., 2017; Jhong et al., 2017; 

Kabir et al., 2020). In the realm of ML techniques, shallow learning methods have received 
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considerable attention in research such as K-Nearest Neighbors (KNN) (Park et al., 2020), 

Kernel Functions (KF) (Liu et al., 2017), Support Vector Machine (SVM) (Jhong et al., 2017; 

Chen et al., 2021), Support Vector Regression (SVR) (Jhong et al., 2017; Kabir et al., 2020), 

ANN (Mosavi et al., 2019; Shafizadeh-Moghadam et al., 2018), MLP (Chen et al., 2021; Avand 

et al., 2022, Karamouz et al., 2022), ANFIS (Arora et al., 2021), RF (Woznicki et al., 2019; 

Gudiyangada et al., 2020), and Decision Tree (DT) (Gharakhanlou and Perez, 2023). In 

contrast, the application of deep learning algorithms for flood prediction has not been 

thoroughly explored and warrants further investigation. 

In flood management, DL algorithms can be valuable tools for analyzing flood data and 

predicting potential flood events. These algorithms can process large amounts of data and 

identify patterns that may not be apparent to human analysts and other techniques, leading to 

more accurate predictions and actionable insights (Pally and Samadi, 2022). Hydrological 

studies have benefited from different architectures of DL, such as recurrent neural networks 

(RNNs) (Wang et al., 2020), long short-term memory (LSTM) (Kratzert et al., 2019; Nevo et 

al., 2022; Adaryani et al., 2022; Foroumandi et al., 2023), and convolutional neural networks 

(CNNs) (Ni et al., 2020; Chang et al., 2022). Since CNN accelerates feature extraction and 

spatial analysis, it has garnered considerable interest in flood prediction (Kabir et al., 2020; 

Moy de Vitry et al., 2019; Wang et al., 2019; Kabir et al., 2020). In general, CNNs are counter-

neural networks with alternating layers of convolution and subsampling and mainly trained in 

a supervised manner. CNN's superiority lies in its capacity for self-learning, whereby it can 

autonomously learn and organize features from vast datasets via multiple neuron layers 

(Munawar et al., 2021). Additionally, CNNs have exhibited exceptional aptitude in tasks such 

as image classification, segmentation, and feature extraction, as evident from various studies 

(Chang et al., 2014; Bhandare et al., 2016). 



6 

 

Recent studies have demonstrated the potential of CNN models in flood risk management. In 

a comparative analysis by Kabir et al. (2020), the CNN model outperformed the Support Vector 

Regression (SVR) method for predicting flood depth in the urban landscape of Carlisle, UK. 

Liu et al. (2021) used a 1D-CNN model to overcome the learning process challenges of 

traditional artificial neural network (ANN) models and accurately identified flood-prone areas. 

Pally and Samadi (2022) employed CNNs to classify, label, and weigh flood data from images 

captured by surveillance cameras and geographical information, enabling them to determine 

the depth, intensity, and risk of flooding in sensitive areas. These studies suggest that CNNs 

may be a promising tool for flood risk management, enabling more accurate predictions and 

identification of flood-prone areas.  

In mapping the spatial extent of floods, the Digital Elevation Model (DEM), which provides 

information on the elevation and slope of the terrain, is proven to be a critical input (Saksena 

and Merwade, 2015; Karamouz and Fereshtehpour, 2019; Muthusamy et al., 2021; Avand et 

al., 2022). This data has been extensively used in the ML-based flood risk assessment models 

(Park and Lee., 2020; Muñoz et al., 2021; Chen et al., 2021; Saha et al., 2021; Lin et al., 2022; 

Gharakhanlou and Perez, 2023; Zeng and Bertsimas, 2023). However, in this context, there has 

been a scarcity of research that has specifically examined the impact of DEM spatial resolution 

and type on flood prediction. Recently, Saha et al. (2021) investigated the impact of different 

image and DEM data resolutions on flood sensitivity predictions using several shallow learning 

techniques, including ANN-multilayer perceptron (MLP), random forest (RF), bagging (B)-

MLP, B-gaussian processes (B-GP), and B-SMOreg. They identified elevation, drainage 

density, and flow accumulation as the most significant factors affecting flood sensitivity. 

Avand et al. (2022) conducted a study to investigate the impact of spatial resolution of DEMs 

on the accuracy of flood probability prediction using three machine learning models, namely 

RF, ANN, and GLM. They highlighted the importance of careful selection of DEM spatial 



7 

 

resolution based on specific modeling objectives and applications. While previous studies on 

flood prediction have shown the potential of shallow machine learning techniques, the use of 

deep learning methods has been identified as a promising approach for improving the accuracy 

of flood forecasts. However, there is a significant research gap regarding the impact of DEM 

resolution on the performance of deep learning models for flood prediction. This is especially 

important in areas where high-resolution DEM data is not readily available.  

This paper aims to evaluate the influence of DEM type and resolution on the rapid prediction 

of fluvial flood inundation using a state-of-the-art 1-D CNN-based model. The city of Carlisle 

in the UK serves as the case study which is used extensively as a benchmark in flood risk 

research. The study encompasses two key objectives. Firstly, it aims to investigate how the 

type and resolution of DEMs affect flood depth and extent within the framework of deep 

learning methods. Secondly, it aims to underscore the critical importance of providing higher-

resolution DEMs in regions with limited data availability, which are increasingly vital due to 

the escalating demand for machine learning techniques. 
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Table 1. Summary of the literature on flood prediction using Machine Learning 

Authors Study Area Inputs ML technique ML output 

Liu et al. (2017) Huai River, China Historical hydrographs KNN1, 

KF2 

Flood hydrograph 

Jhong et al. (2017) Chiayi, 

Taiwan 

Flow depth, 

Land use, 

DEM 

SVM3, 

SVR4 

 

Inundation map  

Noymanee et al. 

(2017) 
Pattani river, Thailand Water level, 

Rainfall, 

Flash flood hydrograph, 
Riverbed data 

MS Azure ML5 Water Level, 

Flood Peak 

Chen et al. (2018) Yangtze River, China Flow data, 

Runoff 

ELM6, 

ELM-BSA7, 
GRNN8 

Stream Flow Rate 

 

 

Mosavi et al. (2018) ___ River flows, 
River water level, 

Rainfall, 

Historical event hydrographs 

 

ANN9, 
MLP10, 

ANFIS11, 

WNN12, 

SVM, 
DT13, 

EPSs14 

Inundation map 

 
1 K-Nearest Neighbor (KNN) 

2 Kalman Filter (KF) 

3 Support Vector Machine (SVM) 
4 Support Vector Regression (SVR) 

5 Microsoft Azure Machine Learning (MS Azure ML) 

6 Extreme Learning Machine (ELM) 

7Extreme Learning Machine-Backtracking Search 

Algorithm (ELM-BSA) 

8 General Regression Neural Network (GRNN) 

9 Artificial Neural Networks (ANN) 

10 Multilayer Perceptron (MLP) 

11 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

12 Wavelet Neural Network (WNN) 
13 Decision Tree (DT) 

14 Ensemble Prediction Systems (EPSs) 
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Table 1. Continued. 

Authors Study Area Inputs ML technique ML output 

Moghadam et al. 

(2018) 

Haraz watershed, Iran TWI15, 

SPI16, 

Land use, 
NVDI17, 

Rainfall and Petrology, 

Slope degree, 
Curvature, 

Datasets DEM-20m18, 

Distance to River 

ANN, 

CART19, 

FDA20, 
GLM21, 

GAM22, 

BRT23, 
MARS24, 

MaxEnt25, 

Flood sensitivity map 

 

Woznicki et al. 
(2019) 

Floodplains, United States FIRMs26, 
Datasets DEM-30m27 

RF 
 

Inundation map 

Kim et al. (2019) Seoul, South Korea Rainfall data, 

Overflow 

 

NARX28, 

SVNARX29, 

SOFM30 

Inundation map 

 

Khosravi et al. 

(2019) 

Ningdu, China Flood Inventory Map, 

NDVI, 
Land use, 

Distance from river, 

Curvature, 
Altitude, 

TWI, 

SPI, 
Soil type, 

Slope, 

Rainfall 

NBT31, 

NB32, 
SAW33, 

TOPSIS34, 

VIKOR35 

Flood sensitivity map 

 
15 Topographic Wetness Index (TWI)  

16 stream power index (SPI) 
17 Normalized Vegetation Difference Index (NDVI) 

18 Datasets Digital Elevation Model-20 m 

19 Classification And Regression Trees (CART) 

20 Flexible Discriminant Analysis (FDA) 

21 Generalized Linear Model (GLM) 

22 Generalized Additive Model (GAM) 

23 Boosted Regression Trees (BRT) 

24 Multivariate Adaptive Regression Splines (MARS) 

25 Maximum Entropy (MaxEnt) 
26 Flood Insurance Rate Maps (FIRMs) 
27 Datasets Digital Elevation Model-30m 
28Nonlinear Auto-Regressive with Exogenous 

(NARX) 
29 Second Verification Algorithm of Nonlinear Auto-

Regressive with Exogenous (SVNARX) 

30 Self-Organizing Feature Map (SOFM) 
31 Naïve Bayes Trees (NBT) 
32 Naïve Bayes (NB) 
33 Simple Additive Weighting (SAW) 
34 Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) 
35Vise kriterijumska optimizacijaik ompromisno 

Resenje (VIKOR) 
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Table 1. Continued. 

Authors Study Area Inputs ML technique ML output 

Park et al. (2020) Coastal areas, South 

Korea 

Rainfall, 

Elevation, 

Slope, 
Tide data 

KNN, 

RF, 

SVM 

Risk probability map 

 

Nachappa et al. 

(2020) 

Salzburg, Austria Flood Inventory Map, 
Distance to Drainage, 

Rainfall, 

Elevation, 

Slope, 
NDVI, 

SPI, 

TWI, 
Distance to Roads, 

Land Cover 

RF, 

SVM 

Flood sensitivity map 

Kabir et al. (2020) Carlisle, UK Water Depth (from LISFLOOD-

FP), 

Hydrographs 

 

CNN, 

SVR 

Inundation map 

 

Chen et al. (2021) Pearl River, China DEM, 

Slope, 

Distance to River, 
Road Density, 

TWI, 

Curve Number 

SVM, 

RF, 

GBDT36, 
XGBoost37, 

MLP, 

CNN 

Flood risk map  

Arora et al. (2021) Middle Ganga Plain, 

India 

Flood inventory data, 
Conditioning factors (CgFs) 

ANFIS & 
ANFIS-GA (Genetic 

Algorithm), 

ANFIS-DE (Differential 
Evolution), 

ANFIS-PSO (Particle 

Swarm Optimization) 

Flood hazard classification 

 

 
36 Gradient Boosting Decision Tree (GBDT) 37 eXtreme Gradient Boosting (EGBoost) 
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Table 1. Continued. 

Authors Study Area Inputs ML technique ML output 

Avand et al. 

(2022) 

Tajan watershed, Iran Rainfall, 

Land use, 

Drainage density, 
Slope, 

Distance from the river,  

Altitude of the area 

SOM, 

RBFNN38, 

MLP 

Flood susceptibility map 

 

Nevo et al. 

(2022) 

India and Bangladesh Rainfall, 

Water level, 
DEM 

 

LSTM39, 

linear models, 
 

Inundation map 

 
 

Chen et al. 

(2022) 

Xinyang, China Longitude& latitude, 
Rainfall, 

Discharge 

 

CNN, 
LSTM, 

Conv LSTM40 

Streamflow rate 
 

Chang et al. 

(2022) 
Taipei, Taiwan Storm-induced rainfall 

data, 

Rainfall pattern, 

Water depth 
 

PCA41, 
SOM, 

NARX 

Inundation map 

Gharakhanlou 

and Perez 

(2023) 

Nicola & Fraser 

River, British 

Columbia 

Lithology, 

Drainage density, 

Distance from rivers, 
Soil, 

Rainfall, 

Land cover, 
NDMI42 

DT, 

RF, 

MLP-NN43, 
AdaBoost44, 

LR45, 

SVM 

Flood susceptibility map 

 

 
 

 

 

 

 
38 Radial Basis Function Neural Network (RBFNN) 
39 long short-term memory (LSTM) 
40 convolution LSTM (Conv LSTM) 

41 Principal Component Analysis (PCA) 
42 Normalized Difference Moisture Index (NDMI) 
43 Multilayer Perceptron Neural Network (MLP-NN) 

44 Adaptive Boosting (AdaBoost) 
45 Logistic Regression (LR) 
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2. Methodology  

To assess the performance of the CNN-based flood prediction model when using different types 

and resolutions of DEMs, a hydrological and topographic dataset is first generated. Using the 

observed and synthetic hydrographs and DEM dataset, the hydrodynamic model simulations are 

executed to derive the time series of water depth at each cell in the domain for the entire flood 

duration. The upstream synthetic hydrographs and the hydraulic simulation output (as the baseline 

rather than field observations) are then used as the input and target variables for training the CNN-

based model, respectively. The trained ML model for each DEM will then be evaluated for the 

pseudo-observed inundation obtained from the higher-resolution DEM. Figure 1 shows the 

workflow of the present study. The following subsections describe the details of the models and 

parameters used in this study. 
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Figure 1. A schematic diagram explaining the workflow of the present study. The colors of the 

arrows represent the workflow from the input to its corresponding output. It is important to note 

that the number of outputs in the convolutional neural network corresponds to the number of pixels 

for each resolution. As an example, the displayed “364,141 pixels” is associated with a spatial 

resolution of 20 m. 

2.1  Convolutional neural networks 

A convolutional neural network (CNN) is a subcategory of ANNs that takes its design cues from 

the visual brain of living organisms (Hu et al., 2015; Kiranyaz et al., 2021). When compared to 

other ML methods, CNN has the benefits of broad application, parallel processing capability, and 

weight sharing, which means that global optimization training parameters are substantially reduced 

(Vedaldi and Lenc, 2015; Chen et al., 2018). CNNs are essentially multilayer feed-forward neural 

networks that can automatically extract useful characteristics from raw input (Zhang et al., 2018; 

Wang et al., 2020). The basic components of a CNN model are an input layer, one or more hidden 

layers, and an output layer; the hidden layers may include either convolutional or pooling layers 
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(LeCun et al., 2015; Ghorbanzadeh et al., 2019). The convolutional layer, which is made up of 

several convolution kernels, pulls complex and useful characteristics from the original input 

repeatedly (Canziani et al., 2016; Mallat, 2016; Kiranyaz et al., 2021). After a convolutional layer, 

the pooling (sub-sample) layer is often used to decrease the dimensionality of feature maps using 

a down-sampling technique. This may help prevent overfitting and lower computing costs (Chen 

et al., 2016). The backpropagation (BP) algorithm is most often used to train CNNs in a supervised 

way (Kiranyaz et al., 2021). The gradient magnitude (or sensitivity) of each network parameter, 

such as the weights of the convolution and fully connected layers, is calculated during each 

iteration of the BP. The CNN parameters are then repeatedly updated using the parameter 

sensitivities until a predetermined stopping threshold is satisfied (Chauvin and Rumelhart, 2013; 

Ozcan et al., 2022).  

It is known that classic deep CNNs are only intended to work with 2D data such as images and 

videos (Kiranyaz et al., 2021). A recent development is a modified form of 2D CNNs known as 

1D Convolutional Neural Networks (1D CNNs) (Kiranyaz et al., 2015; Abdeljaber et al., 2018; 

Harbola and Coors, 2019; Yang et al., 2023; Huang et al., 2023). The cited studies have proven 

that when dealing with 1D signals, 1D CNNs are beneficial and hence preferred to their 2D 

equivalents. Reasons for this include the need for specialized hardware configuration for training 

2D CNN and the high computational complexity of 2D convolution and its deep architecture with 

more than 10M parameters compared to that of 1D CNN (typically fewer than 10K parameters) 

(Kiranyaz et al., 2021).  

In 1D convolutional neural networks, two types of layers have been proposed: 1) CNN-layers 

which perform 1D convolutions, activation functions, and sub-sampling (pooling), 2) Layers that 

are fully connected (dense) and similar to the layers of a standard multi-layer perceptron (MLP), 
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which are referred to as “MLP-layers” (Hou et al., 2018; Ozcan et al., 2022). Each layer's filter 

(kernel) size, subsampling factor, pooling, and activation functions, as well as the total number of 

hidden CNN and MLP layers/neurons, are all crucial hyper-parameters that make up a 1D 

configuration (Ni et al., 2023). 

This study employs the 1D-CNN model developed by Kabir et al. (2020) based on the Python 

programming language. With a 5 m DEM, the model performed well in validation, with an RMSE 

of 0.11 meters and a Nash-Sutcliffe efficiency coefficient of 0.86 (Kabir et al., 2020). Figure 1 

depicts the main structure of the 1D-CNN model. The network comprises five hidden layers, two 

of which are convolutional and three of which are dense. The dense layers are fully connected and 

function similarly to an MLP network. The output layer comprises nodes equal to the number of 

cells in the simulation domain, while the input layer receives the upstream flow discharge data. 

Details of specific model parameters are discussed in the study area section. 

2.2 Hydraulic modeling 

LISFLOOD-FP is a raster-based model for simulating fluvial or coastal flood inundation that was 

first proposed by Bates and De Roo (2000). Thanks to its remarkable computational efficiency, 

the model has been extensively developed and tested effectively in several case studies across the 

world (e.g., Neal et al., 2011; Amarnath et al., 2015; Sosa et al., 2020). With its first release, 

LISFLOOD-FP used an explicit forward difference approach on a staggered grid in a 2D plane to 

solve the zero-inertial approximation of the Saint Venant equations (also known as the diffusion-

wave approximation) (Bates and De Roo, 2000).  In order to simulate floodplain hydrodynamics, 

a re-formulation of the LISFLOOD-FP model version 6.3.1 (Neal et al., 2012) is utilized, which 

solves the shallow water equations while simply ignoring the convective acceleration element 

(Bates et al., 2010). LISFLOOD-FP employs a sub-grid river channel representation for locations 
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with insufficient channel information. Channels are 1D sub-grid scale features that may be wider 

or narrower than the floodplain grid. The development of floodplain inundation in two dimensions 

is modeled when the channel water depth surpasses the channel bank elevation and overflows to 

the overlying structured grid (O'Loughlin et al., 2020). In addition to the aforementioned features, 

the model's remarkable flexibility, coupled with its ability to effectively handle few input datasets 

and its straightforward input and output format, renders it highly compatible with various flood 

risk assessment frameworks. Moreover, as an open-source model, the model benefits from 

continuous development and improvement driven by a community of experts, ensuring that it stays 

up to date with the latest advancements in flood modeling. Notably, the recent implementation of 

new GPU-accelerated solvers has significantly expedited flood simulations, thereby enabling its 

applicability in urban and catchment scale modeling scenarios (Sharifian et al., 2023). 

To demonstrate the performance of the ML-based predictive models, it is necessary to generate 

sufficient input (upstream boundary conditions, i.e., flow hydrographs) and output (water depth) 

data to train the ML models. For this purpose, multiple synthetic hydrographs with various peaks 

and durations are produced to represent flood scenarios of different magnitudes. The next 

important input data source for hydraulic models is the digital elevation model (DEM) (Dutta and 

Herath, 2001; Saksena and Merwade, 2015; Karamouz and Fereshtehpour, 2019). In this study, 

the DTM of various spatial resolutions is produced using the highest DEM resolution available 

using the bilinear interpolation approach. Then to produce the DSMs, the building footprints are 

added to the constructed DTMs. Given the importance of buildings in influencing flood routes in 

urban settings, the proposed DEM correction approach would concentrate on these critical urban 

terrain elements. Buildings are represented in the raw DEM by raising the topographic elevation 

to a specific height, thereby creating 'islands' that hinder flood water as they do in reality (Xing et 
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al., 2022). Since we only included buildings, the current method could be sufficient. However, the 

accuracy of the building footprints used in the correction process can impact the quality of the 

corrected DEM. Moreover, the constant height assumption may not always hold true, as buildings 

and infrastructures can have varying heights and the terrain can be complex, thus, taking into 

account height adjustments would be more beneficial. 

Considering DTMs and DSMs of different spatial resolutions, the LISFLOOD-FP is executed 

while employing sets of synthetic inflow hydrographs. The output of this process would be grid-

based distribution of flood depths, which would serve as the target dataset for training the 

predictive model.  

2.3 Predictive model 

The CNN model is trained on each of the DEM datasets by utilizing the input (predictor) and 

output (target) variables from the synthetic flood scenarios. By transforming the synthetic 

hydrographs at each upstream location and the accompanying raster-based flood depths predicted 

by LISFLOOD-FP into matrices, both the input and the output variables can be defined.  In this 

study, the primary inputs for predicting water depths are discharge values with 𝑛𝑡𝑠  antecedent 

time-steps for each of the upstream locations 𝑖 and the associated observation time. As a result, 

there are a total of (𝑛𝑡𝑐 + 1)𝑛𝑖  input variables.  The input feature matrix is constructed by vertically 

stacking the discharge with antecedent values and associated observation periods for all synthetic 

hydrographs. After transforming the consecutive water depth raster data into arrays, they are 

stacked vertically to form the target matrix. The input and target variables are then used to train 

the ML models, with each row of the input and output matrices being considered as a sample of 

the training dataset. It should be noted that the CNNs are trained on an Intel I5-8250U CPU with 
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four cores. In the last step, the test datasets are fed into the CNN-based model that has already 

been pre-trained to predict water depths over the whole study area.  

In order to prevent the CNN model from overfitting, several regularization techniques are used 

during the training phase, such as “early stopping”, “batch normalization” and “dropout” (Kabir 

et al. 2020). “Early stopping” was implemented to prevent the model from learning irrelevant 

patterns or noise in the data (Prechelt, 2002). It halts the training process when the model's 

performance on a validation dataset no longer improves, avoiding overfitting and finding the 

optimal point for generalization improvement. “Batch normalization” was employed to stabilize 

the training process by normalizing the inputs of each layer in the neural network (Kim and Panda, 

2021). This technique addresses issues related to internal covariate shift, leading to faster 

convergence and improved generalization by reducing reliance on specific parameter 

initializations. “Dropout” was incorporated as a regularization method to prevent co-adaptation 

among neurons. By randomly dropping out a fraction of neurons during each training iteration, 

this technique encourages the network to learn robust features and reduces the risk of overfitting 

by avoiding dependency on specific neurons (Srivastava et al., 2014). As such, the hyper-

parameter settings were determined through a process of experimentation and fine-tuning, aiming 

to achieve the optimal balance between model performance and preventing overfitting. For the 

"early stopping" technique, the settings for patience (the number of epochs to wait before stopping) 

and the improvement criteria (min delta) were configured as 5 and 0.001, respectively. 

Additionally, a batch size of 10 and a dropout rate of 0.2 were chosen. The Adam optimizer was 

employed for training the network, with a learning rate set to 0.01. Moreover, as depicted in Figure 

1, the convolutional layers in the network utilized filters of size 28 and 128. In the fully connected 

layers, the number of neurons were set to 32, 256, and 512.  
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2.4 Performance assessments 

The outputs from the employed hydraulic model are directly compared with the ML predictions to 

assess the performance of the CNN-based flood depth prediction model in simulating the outcomes 

of a 2D hydraulic model. Two metrics—RMSE and Bias—are used in this study to determine the 

CNN model's efficacy in predicting flood depth, and three additional metrics—Recall, Precision, 

and F1 score—are used to demonstrate how well the model performs in identifying the correct 

binary inundation status for each computational pixel. The root mean squared error (RMSE) 

(Boyle et al., 2000) and Bias are defined as  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑆𝑖 − 𝑂𝑖)2𝑛

𝑖=1    
(1) 

𝐵𝑖𝑎𝑠 =
∑ (𝑆𝑖 − 𝑂𝑖)𝑛

𝑖=1

𝑛
 

(2) 

where 𝑛 is the total number of pixels, 𝑂𝑖 and 𝑆𝑖 are the ‘observed’ and ‘simulated’ values, 

respectively. When presenting the RMSE, the underlying assumption is that the errors are unbiased 

and follow a normal distribution (Chai and Draxler, 2014). In the realm of forecasting, Bias denotes 

a systematic deviation between the simulated data and the observed data, leading to an 

overestimation or underestimation. 

In order to assess the precision of a binary segmentation analysis, such as flood inundation, two 

results corresponding to wet (i.e., flooded) and dry pixels are attainable (Peng et al., 2019). True 

Positive (TP), where wet pixels are accurately recognized as wet; True Negative (TN), where dry 

pixels are correctly classified as dry; False Positive (FP), where dry pixels are wrongly classified 

as wet, and False Negative (FN), wet pixels misclassified as dry pixels. Based on these outputs, 
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pixel accuracy, which defines the proportion of properly categorized pixels, may be calculated. 

However, since accuracy computes this proportion regardless of classes, it might be deceptive 

when the class of interest (e.g., wet) contains a very small number of pixels. In order to circumvent 

this issue, the scores of Precision, Recall, and F1 are often used. Precision is the percentage of 

correctly labeled wet pixels that were expected. However, Recall indicates how many pixels were 

correctly identified as wet by the ML-based predictive model. An accurate classification of an 

inundation map requires high levels of Precision and Recall. F1 score is often used as a tradeoff 

metric in this context to combine over- and under-segmentation into a single measure (Konapala 

et al., 2021). 

𝐹1 =
𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 

(3) 

In this study, instead of using actual field data, the outputs from the LISFLOOD-FP model are 

utilized as a baseline to evaluate the predictive abilities of the ML models with different spatial 

resolutions of DTMs and DSMs. 

3. Study Area 

The city of Carlisle, a medium-sized urban settlement in the United Kingdom, is used as the case 

study in this work to illustrate the effects of DEM resolution and model types on the performance 

of the CNN-based flood depth prediction model. Here, site-specific information as well as 

important hydrometric and spatial data are presented.  
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The city of Carlisle in Northwest England, which is located in the downstream Eden Catchment, 

is quite vulnerable to floods. Nearly 2500 km2 of the Eden Catchment's drainage region gets an 

annual average precipitation of 1148 mm (Allen et al., 2010) with more than 150 wet days (i.e., 

with rainfall of ≥ 1 mm) (Met Office, 2023). The Carlisle region is predominantly characterized 

by its rural landscape, as urban land use comprises a mere two percent of the catchment area 

(Carlisle City Council, 2011). The research domain encompasses about 14.5 km2 of Carlisle's 

urbanized region (Figure 2), which has historically experienced severe flooding, notably the floods 

of 2005 and 2015 (Liu et al., 2021). The study area encompasses the point at which three significant 

rivers, namely the Rivers Eden, Petteril, and Caldew, converge. As a result, fluvial flooding is the 

primary cause of flooding, accounting for 67% of all flooding incidents (Carlisle City Council, 

2011). 

The flooding that occurred in Carlisle in 2005 was selected for benchmarking and simulated using 

the LISFLOOD-FP. Heavy rains that fell across Northwest England on January 6-7, 2005, caused 

major flooding in and around Carlisle on January 8. Areas of the Eden watershed received up to 

175 mm of rain in the 36 hours before the disaster (Day, 2005; Neal et al., 2009). The event began 

gradually, with flooding beginning early in the morning, well before the peak around midday. The 

majority of the residential/commercial sectors along the waterways and the low-lying rural regions 

towards the northeastern section of the city were flooded. It was calculated that the return period 

of this occurrence was about once every 150 years (Liu et al., 2021). Due to the large inundation 

extent of this event, there will be an opportunity to assess how well a model functions when 

subjected to various resolutions of DTM and DSM. 

At the upstream sites of the three contributing rivers, boundary conditions are required to drive the 

flood event. The three boundary locations are shown in Figure 2 as "Upstream 1" in the northeast 
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corner of the domain, "Upstream 2" and "Upstream 3" in the southern side. This study uses 15-

minute discharge hydrographs for the 2005 event that were generated using 1D flood routing 

(Kabir et al., 2020). To train the ML model, 24 "synthetic" hydrographs—eight for each of the 

three upstream boundary locations—are created with variable peaks and durations to simulate 

alternative flood scenarios (Figure 3). For each upstream location, hydrographs corresponding to 

historical floods were chosen. As the peak discharge of these hydrographs was less than that of the 

January 2005 event, and the differences between the peaks were not significant enough for the 

study, the hydrographs were adjusted by multiplying them with a specific ratio of 𝑃𝑒𝑎𝑘𝑚𝑎𝑥  to 

𝑄𝑚𝑎𝑥 . Here, 𝑃𝑒𝑎𝑘𝑚𝑎𝑥  represents the user-defined peak greater than the observed peak discharge, 

𝑄𝑚𝑎𝑥. This technique introduces greater variability in the peak discharge values of the input 

hydrographs. The data for the last three hydrographs (SH-6, SH-7, SH-8) comes from the past 

records kept at several gauging stations along the river Eden (Kabir et al., 2020). The hydrographs 

are generated or selected such that the flow in the river Eden is much bigger than the flows in the 

two tributaries to approximate reality. 
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Figure 2. Study area as part of Carlisle City, UK, and 18 validation points within the domain. 

 

 
 

Figure 3. The ‘synthetic’ and routed/observed hydrographs used to train and test the ML models. 

For the 2005 Carlisle flood event, the hydrographs start at 00:00 h on 7th January 2005 as time 0. 

SH denotes synthetic hydrographs.  
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In this study, the LiDAR 1 m DTM released by the Environment Agency in 2020 with a vertical 

accuracy of +/-15cm RMSE (https://environment.data.gov.uk/) was further processed to obtain the 

DTM dataset of 5, 15, 20, 25, and 30 m resolutions. The associated DSMs were generated by 

combining the DTMs with the building footprint Polygons made available by OpenStreetMap 

(www.openstreetmap.org/). The DSM with a resolution of 5 m is considered to represent the 

baseline. 

Different flood conditions at the study area characterized by DEMs are generated by running 

LISFLOOD-FP with eight sets of synthetic and one observed inflow hydrographs leading to 

training and test samples, respectively. The output files include 15-minute interval water depth 

grids in raster format. Each simulation has a uniform Manning coefficient 𝑛 of 0.055 sm−1/3 across 

the whole domain. Here, a depth threshold of 0.3 m is implemented to exclude inconsequential 

depths from the target data (Kabir et al., 2020). 

In this study, the key inputs for predicting water depths are discharge values with eight antecedent 

time steps and their corresponding observation time for each of the upstream locations. Therefore, 

timestamps, three upstream discharge values, and eight preceding discharges add up to a total of 

28 input variables. The total number of samples amounts to 2104, which is the cumulative sum of 

the time steps from all eight synthetic hydrographs. Therefore, the input feature matrix takes the 

form of a 2104×28 matrix. The target matrix, on the other hand, depends on the resolution of each 

DEM and the total number of cells within the domain, as indicated in Table 2. 
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Table 2. Target matrix of the developed CNNs based on the resolution of DEMs. 

DEM 

Resolution (m) 

Target matrix 

No. Rows 

(Train) 

No. Rows 

(Test) 
No. Columns (Train and Test) 

15 

2104 266 

64668 

20 36414 

25 23180 

30 16218 

The input feature matrix, consisting of 2104 samples, is constructed by vertically stacking the 

discharge with antecedent values and related observation periods for all synthetic hydrographs (see 

Figure 1). Moreover, flood depth raster data are read sequentially and then converted into arrays, 

which are then stacked vertically to form the target matrix. In order to get the most accurate results 

from a CNN-based model, it is necessary to optimize its hyperparameters. To fine-tune each of the 

prediction models, the Bayesian optimization approach is used. The data associated with the 2005 

flood event is retained for use in model testing, while the eight synthetic flood scenarios are used 

for hyperparameter optimization across multiple DEMs.  

Given that the synthetic hydrographs are fundamentally rooted in the watershed's actual response 

to hydro-meteorological conditions, the trained CNN-based model holds potential for real-world 

application. The model's ability to learn and generalize from these hydrographs can indeed be seen 

as a step toward applicability in practical scenarios. However, it is essential to emphasize that 

continuously updating and refining the input hydrographs used for training can improve the 

accuracy and adaptability of the CNN-based model. As the model learns from a broader and more 

diverse set of hydrographs that accurately represent evolving real-world conditions, its 

performance and accuracy in predicting and responding to flood events can be enhanced. 
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4. Results and Discussion 

This section presents a comprehensive analysis of the flood inundation maps, focusing on two key 

comparisons. Firstly, the variation of flood inundation depth is compared with a baseline reference. 

Secondly, the flood inundation extent is examined, enabling the identification of spatial patterns, 

trends, and potential impacts. By delving into the findings and engaging in a thoughtful discussion, 

a deeper comprehension of the flood event and its consequences can be achieved. 

4.1 Comparison of different resolutions in selected stations 

The flood inundation map depicted in Figure 4 was generated using LISFLOOD-FP and a DSM 

with a resolution of 5 m. The inundation maps delineate four distinct phases: early (Figure 4a), 

growth (Figure 4b), peak (Figure 4c), and recession (Figure 4d), each occurring at 12-hour 

intervals. Notably, observations indicate that the flood peak at Upstream 1 was noted around 12:00 

on January 8, 2005, approximately 36 hours after the onset of the flood. In contrast, for the smaller 

rivers (Upstream 2 and 3), the flood peak occurs slightly earlier. However, the magnitude of peak 

flooding in these smaller upstream areas (83 and 249 m3/s) is notably lower compared to Upstream 

1 (1272 m3/s). Consequently, it can be inferred that the peak inundation in the study area aligns 

with the timing observed in the main and larger stream (Upstream 1). The corresponding 

inundation area values for these four stages are 1.86, 4.02, 5.11, and 4.41 km2, respectively.  

Figure 5 presents the CNN-based flood depth variations for different DEM resolutions and types 

in some selected locations such as the Bus depot, Caldew level, Watermark 3, and Eden level 

stations. In the Bus depot, the water depth is increased as the resolution of the DTM becomes 

coarser, and it has no effect on the  DSM lower than 30 m resolution. The location of station near 

the riverbanks increases the likelihood of being directly influenced by rising water levels and 
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potential overflow. The surrounding topography, characterized by low-lying areas or inadequate 

drainage systems, further contributes to the station's vulnerability. In the Caldew level which is 

located at the upstream section of the river Caldew, there is a noticeable abrupt increase in water 

depth during the peak flood period in both DTM and DSM with 25 m resolution. However, it is 

important to note that the water depth remains relatively consistent around the peak time, ranging 

between 4.5 to 7.5 m. Watermark 3, which is situated on the lower side of the Caldew level station, 

close to the river Caldew, has less than 4.5 m water depth for the DSM and DTM of lower than 30 

m resolution. During the flood event, it encountered a minimum water depth of at least 3 m at a 

resolution of 30 m, with the maximum water depth occurring at the peak time. The differences are 

most evident at the Eden level station, which experiences greater inundation depth compared to 

the other stations. It might be due to the fact that the station is located at the end of the main river 

and receives the highest volume of water, particularly during peak times and in coarse resolutions. 

At the Eden level station, the flood depths recorded in both DSM and DTM remain consistently 

similar across various resolutions. This can be attributed to the station's proximity to the river. In 

this case, the absence of buildings near the river means that the DSM, which accounts for the 

elevation of structures, does not significantly impact the water depths. Consequently, the flood 

depths obtained from both the DSM and DTM provide comparable results. This proximity to the 

river and the absence of structures influencing the water levels contribute to the reliability and 

consistency of the flood depth measurements at the Eden level station. The inundation depth 

variation for the rest of the validation points can be found in Figures S1 to S14 in the supplementary 

information (SI). 

The findings demonstrated a consistent trend of increasing water depth in most stations as the 

resolution of the DEMs became coarser. The correlation between coarser DEM resolutions and 
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higher water depths in flood modeling can be attributed to several factors. Coarser resolutions are 

linked to higher water depths because of their difficulty in capturing small-scale terrain features. 

High-resolution DEMs catch details like embankments and slopes that significantly influence 

water flow during floods. As the resolution coarsens, it struggles to depict these details accurately. 

Coarser resolutions tend to smooth out elevation differences, especially in areas like densely built 

cities (Zheng et al., 2018; Xu et al., 2021). In addition, coarser resolutions might oversimplify 

channel networks, affecting water routing and contributing to the association with higher water 

depths (Hou et al., 2021). Once the DEM resolution exceeds the river width, the overprediction of 

flood depth and extent increases significantly (Muthusamy et al., 2021). However, Fatdillah et al. 

(2022) observed that in certain situations, the opposite effect can occur, where a finer resolution 

of the DEM leads to an expansion of the inundation area. 
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12:00 8th Jan 00:00 9th Jan  

Figure 4. Flood maps generated by LISFLOOD-FP for 5 m resolution LiDAR DSM in four 

timestamps, all referencing the 2005 event and serving as the baseline.  
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Figure 5. Water depths of Four stations for different resolutions from obtained CNN and 

LISFLOOD-FP. The x-axis (hour) shows the time series of the flood. 

 

4.2 Inundation error maps 

 

To further examine the robustness of the models, spatial error maps were produced and presented 

in Figure 6. The left column shows the result for DTM15, and the right column shows the result 

for DSM15, illustrating the absolute difference in water depth between the CNN-based and 

LISFLOOD-FP inundation maps using a 15 m resolution for the 2005 event. In the error maps, it 

is evident that the DTM exhibits lower error rates compared to the DSM in regions devoid of 

Flood 

depth (m) 
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buildings, with errors primarily concentrated at the peak of the flood event. During the initial stage 

of the flood, the DSM map shows the highest errors in the vicinity of the main river, specifically 

in the areas surrounding the Brown Bros and Bus depot stations, extending towards the Swifts Golf 

Course. Notably, since this region lacks buildings, the application of DSM has no discernible 

impact on improving flood prediction by CNN. These errors gradually diminish as the flood 

progresses and become prominent in certain grassland areas, as depicted in Figure 6d. As the flood 

intensifies, the DSM map experiences maximum errors during the peak flood, in contrast to the 

DTM. Additionally, there are two small green areas surrounding Building 1 and Building 2 stations 

in the DSM maps (Figure 6f and Figure 6h) that exhibit the lowest error rates. This indicates that 

the implementation of DSM positively influences flood inundation mapping for these built-up 

areas. 

4.3 Inundation error indices 

To make a quantitative comparison between the machine learning (ML) predictions and the 

reference results obtained from LISFLOOD-FP, various error measures such as RMSE (Root 

Mean Square Error) and Bias are computed at 18 control sites. This analysis is conducted for both 

DTMs and DSMs with spatial resolutions of 15, 20, 25, and 30 m. When considering RMSE and 

Bias, the performance of DTMs is slightly superior to that of DSMs across all resolutions during 

the flood initiation (48th stage). During this stage, the RMSE and Bias values for the DTM15 

indicated an inundation depth error of approximately 0.65 and 0.45 m, respectively. These values 

appear to fall within an acceptable range. The positive sign of the Bias suggests that the predicted 

inundation depth was overestimated. In contrast, the performance of DSMs and DTMs of 15 m 

and 20 m resolution appears to be more comparable and similar during the remaining stages of the 

flood. Additionally, DTM30 shows lower RMSE and Bias values in comparison to the DSM30, 
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implying that the DTM provides a slightly more accurate estimation of flood conditions. It is 

important to highlight that the RMSE values exhibit significant increases as the time steps 

progress. Specifically, there is an approximately 2-fold increase from the 48th to 96th time steps, a 

4-fold increase from the 48th to 144th time steps, and a slightly less than 3-fold increase from the 

48th to 192nd time steps. These findings suggest that the accuracy of the predictions deteriorates as 

the flood event progresses, indicating the potential limitations of the model over longer durations 

of large floods. Furthermore, the Bias values demonstrate a substantial increase starting from the 

early stages of the flood, reaching their peak at the time of maximum inundation. This significant 

increase in Bias indicates a consistent tendency of the model to overestimate the flood depth as the 

event unfolds.  
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                 Figure 6. Error maps at four selected time stamps for DTM15 and DSM15. 
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Figure 7. Average of RMSE and Bias by the CNN-2005 model in the 18 control locations for 

DTM and DSM in four stages for different four resolutions. 
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The performance of the CNN-based models using DTM and DSM of different resolutions in 

predicting the inundation extent is presented in Table 3, assessing precision, recall, and F1 metrics. 

Precision indicates the proportion of correctly identified inundated cells in the predicted map out 

of the total number of predicted inundated cells. Recall measures the ratio of correctly identified 

inundated cells to the sum of true inundated cells and falsely classified non-inundated cells in the 

predicted map. Lastly, the F1 metric serves as a composite index that combines precision and recall 

providing an overall evaluation of accuracy. 

During the early stage of the flood (48th time step), the accuracy of DTM values is notably higher, 

particularly in finer resolutions. For instance, at resolutions of 15 and 20 m, the F1 scores are 0.644 

and 0.538 for DTM, respectively, compared to 0.573 and 0.522 for DSM. This discrepancy can be 

attributed to the limited extent of inundation at the onset of the flood, primarily affecting bare areas 

near the river. However, as time passes and the flood expands, more buildings come under the 

influence of the flood, resulting in DSM demonstrating greater accuracy in comparison to early 

stages and DTMs of coarser resolutions. This trend is more evident at the peak flood (144th time 

step), where DSM exhibits greater precision and F1 scores for all selected spatial resolutions. The 

same holds true for DSM of resolution higher than 20 m for the second and last stages (i.e., 96th  

and 192nd time steps). Moreover, the recall values approach a high value of 1, indicating accurate 

identification of true inundated pixels. However, this accuracy is achieved at the expense of 

overestimating the flood predictions based on coarser resolution DEMs (Ogania et al. 2019; 

Karamouz and Fereshtehpour 2019). It is important to note that the F1 score, which combines 

precision and recall into a harmonic mean, places greater emphasis on smaller values. Upon 

examination of Table 3, it is evident that the recall values remain consistently high across various 
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resolutions and stages, albeit with lower precision values. As a result, the F1 performance aligns 

more closely with precision. 

It is worth noting that factors such as the resolution of the data, the availability and quality of 

elevation data, and the accuracy of flood prediction models can also influence the accuracy of 

DTM and DSM values throughout the flood event. Furthermore, the effectiveness of DTM and 

DSM may vary depending on the specific geographical and environmental characteristics of the 

area being studied. The DSM is typically employed in densely built areas to evaluate the impact 

of buildings on flood-prone regions, and it is most effective when the buildings cover the entire 

cell. In this study, however, the selected spatial resolutions are relatively low, and the size of each 

cell ranges from 225 m2 (15m×15m) to 900 m2 (30m×30m). Additionally, the cells might not be 

fully occupied by existing buildings in reality, making it difficult for the model to produce accurate 

estimates. Consequently, for the areas with a low density of buildings in the early stages of the 

flood where the inundation is low, DTM has better performance in these low resolutions. However, 

in the next stages, including growing and peak, DSM is more accurate. This is in line with Shen 

and Tan et al. (2020) who compared various modeling scenarios with different DEM resolutions 

to investigate DEM sensitivity to the building treatment method (BTM) and urban inundation 

modeling. Because of the obstruction of flow routes between building elements, modeling 

scenarios that are coarser than the size of the buildings and gaps lead to poor performance in 

inundation simulations.  
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Table 3. Spatial accuracy scores of the CNN-2005 versus LISFLOOD-FP during the flood 

initiation, growing, peak, and recession stages for DTM and DSM. 

 

Index       DEM Resolution (m)           
Time step 

48 96 144 192 

Precision 

DTM 

15 0.476 0.652 0.624 0.662 

20 0.368 0.563 0.550 0.559 

25 0.425 0.601 0.528 0.492 

30 0.315 0.470 0.467 0.481 

     DSM 

15 0.402 0.641 0.645 0.652 

20 0.354 0.606 0.587 0.574 

25 0.381 0.646 0.596 0.582 

30 0.316 0.481 0.497 0.496 

Recall 

DTM 

15 0.992 0.997 1.000 0.999 

20 0.995 0.999 1.000 1.000 

25 0.972 0.983 0.998 0.998 

30 0.986 0.994 0.996 0.995 

DSM 

15 0.996 0.995 0.981 0.986 

20 0.996 0.994 0.980 0.985 

25 0.982 0.977 0.976 0.982 

30 0.988 0.988 0.973 0.978 

F1 

DTM 

15 0.644 0.789 0.768 0.797 

20 0.538 0.720 0.710 0.717 

25 0.591 0.746 0.691 0.659 

30 0.477 0.638 0.636 0.648 

DSM 

15 0.573 0.780 0.778 0.785 

20 0.522 0.753 0.734 0.726 

25 0.549 0.778 0.740 0.731 

30 0.479 0.647 0.658 0.659 
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4.4 Applicability in a data-scarce region 

Building on the insights gained from the study conducted in Carlisle, UK, we now discuss the 

applicability of the developed deep learning models to address the challenges of data-scarce flood-

prone regions, exemplified by Pakistan. This country has been increasingly vulnerable to frequent 

and severe floods, causing extensive damage (Hashemi et al. 2012; Manzoor et al. 2022). Given 

this pressing challenge, recent research endeavors have concentrated on harnessing the power of 

machine learning to predict and map flood inundation (Yaseen et al. 2022a and b). Recently, a 

study employed a combination of remote and social sensing techniques, along with geospatial data 

and advanced machine learning approaches, to comprehensively map flood exposure, assess 

damage, and address population needs during the 2022 Pakistan floods (Akhtar et al. 2023). In 

another study focused on the Jhelum River in the Punjab region, Ahmad et al. (2022) implemented 

various artificial intelligence techniques such as local linear regression, dynamic local linear 

regression, and artificial neural networks to enhance flood prediction accuracy. Additionally, 

innovative machine learning models driven by rainfall data were successfully employed to identify 

flood-prone areas in Karachi, Pakistan, while an ensemble machine learning approach proved 

effective in mapping flood susceptibility in an arid region of the country (Yaseen et al.  2022; 

Rasool et al. 2023). These endeavors underscore the substantial potential of machine learning in 

predicting and mapping flood inundation in Pakistan, thus offering invaluable tools for bolstering 

disaster management and mitigation strategies. However, the use of digital elevation model (DEM) 

data in flood inundation mapping is limited by its low spatial resolution, which constrains the 

accuracy and applicability of ML methods.  
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The availability of DEM data in Pakistan can vary throughout the country. Ahmad et al. (2010) 

noted that the highest available DEM resolution in Pakistan is 30 m. However, numerous studies 

have successfully utilized this data for various purposes. For example, 30 m DEM data obtained 

from the Japan Aerospace Exploration Agency (JAXA) was processed in ArcGIS to identify 

potential runoff harvesting sites in the Karoonjhar Mountainous Area (Siyal et al., 2018). 

Moreover, in recent flood mapping and assessment studies on 2022 mega flood conducted in 

Pakistan, the 30 m STRM DEM data has been employed in conjunction with satellite imagery 

(Wang et al., 2023). These examples demonstrate the utilization of DEM data in different research 

applications in Pakistan. Efforts should continue to ensure the availability and accessibility of 

high-quality DEM data across all country regions to support accurate flood mapping and prediction 

(Ahmad et al., 2010).  

Given DEMs with a spatial resolution of 30 m, it is anticipated that the use of digital surface models 

instead of digital terrain models will result in reduced accuracy throughout all flood stages. When 

considering the specific case of Carlisle, utilizing a 30 m DSM is anticipated to result in an increase 

in RMSE compared to using DTMs, across all flood stages. This increase in RMSE is estimated 

to be around 30% during the flood initiation stage, 21% during the peak stage, and 12% during the 

recession stage. Furthermore, a similar range of reduction is observed for the Bias, indicating a 

tendency to overestimate the results when employing DSMs instead of DTMs. In terms of the 

overlap score (F1), the use of DSMs demonstrates a slight improvement compared to DTMs, with 

the peak stage exhibiting the highest increase of 3.5%. However, this analysis reveals that DTMs 
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generally outperform DSMs. This suggests that considering the current DEM availability, DTMs 

are the recommended choice for flood mapping applications. 

From the spatial resolution lens, employing a 15 m DTM leads to a significant increase in the 

accuracy of flood inundation depth, with RMSE and bias improving by approximately 50% 

compared to the 30 m DTM during all phases of the flood. In terms of the overlap index, elevating 

the DTM resolution from 30 m to 15 m results in a minimum 20% enhancement in the accuracy 

of flood inundation extent, with the flood initiation stage exhibiting the highest improvement of 

35% compared to the 30 m DTM. When comparing a 15 m DSM to a 30 m DTM, the F1 score 

shows a consistent improvement across all flood phases, increasing by approximately 22%. 

Furthermore, taking into account the F1 score of a higher resolution 5 m DSM, as reported by 

Kabir et al. (2020), boosts this score by over 50%, notably by 55% during the peak stage compared 

to a 30 m DTM. 

In addition to accuracy considerations, it is crucial to account for runtime when evaluating the 

overall efficiency of flood prediction models. In general, while higher resolution DEMs can 

enhance the accuracy of flood mapping, they also come with increased computational demands. 

The 1D CNN model used in this study is optimized for acceleration through Graphics Processing 

Units (GPUs). The CNN models developed for all DTMs and DSMs were trained on an NVIDIA 

GeForce 940MX. At a spatial resolution of 15 m, the domain contains 64,668 cells, while at a 30 

m resolution, there are 23,180 cells. The corresponding runtimes are approximately 6 and 3 

minutes, respectively. According to Kabir et al. (2020), employing a more advanced GPU 

dedicated to workstations (Tesla P100 GPU) for a 5 m resolution DSM with 581,061 cells in the 

domain resulted in a total training and testing time of 5 minutes (which is tens of times faster than 

simulating using hydrodynamic models). Hence, for the small domain size in this study, the overall 
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runtime has a minor impact on the 1D CNN model, and the model's efficiency is primarily 

influenced by its accuracy. However, for larger domains like an entire watershed, the 

computational workload could significantly affect the overall efficiency of the model. 

These compelling results indicate the added value of higher resolution DEMs and highlight the 

significance of allocating resources toward data acquisition to facilitate advanced flood mapping 

techniques. The inadequacy of the current DEM resolution in Pakistan underscores the need for 

higher resolution data to achieve precise and reliable flood inundation mapping. Even a 15 m DTM 

can have a significant impact on flood inundation assessments (Fereshtehpour and Karamouz, 

2018), thereby enhancing risk and disaster management efforts. Therefore, continued efforts are 

necessary to improve the availability and accessibility of high-quality, high-resolution DEM across 

all regions, maximizing the potential of advancing machine learning techniques. 

5. Conclusion 

This study delved into the intricate relationship between Digital Elevation Models, deep learning 

techniques, and flood inundation modeling. Despite the growing interest in utilizing machine 

learning approaches for flood prediction and risk assessment, this specific domain has received 

limited attention. To fill this gap, we initially compiled a comprehensive summary of existing 

literature on flood prediction using Machine Learning, aiming to consolidate knowledge in the 

field. Subsequently, our study focused on evaluating the effectiveness of a CNN-based flood 

prediction model in an urban setting by investigating different resolutions of DTMs and DSMs. 

Through the utilization of a hydrodynamic LISFLOOD-FP model and LIDAR-based 1 m 

resolution DTM, the study analyzed fluvial flooding in the city of Carlisle, UK. In densely built-

up areas with high spatial variability, our study revealed that the sensitivity of simulated inundation 
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levels to DEM resolution and resampling approaches is particularly pronounced. We found that, 

within the range of resolutions examined, using a DTM yields slightly lower RMSE and reduced 

bias compared to a DSM. In the case of Carlisle, employing a 30 m DSM resulted in a 21% increase 

in RMSE during the peak stage compared to the 30 m DTM. In addition, employing a 15 m 

resolution yields a superior accuracy in inundation extent prediction compared to 30 m DTM, with 

an average enhancement of 26% and 21.5% for DTM and DSM, respectively, across all flood 

phases. These findings underscore the importance of improving the availability and accessibility 

of high-resolution DEMs, particularly in data-scarce regions like Pakistan, as they can significantly 

impact risk management efforts.  

While higher-resolution DEMs generally offer more accurate results for flood inundation mapping, 

a careful balance between resolution, computational resources, and processing time is required 

when choosing the suitable DEM resolution. 1D CNNs are known for their memory inefficiency, 

limiting their applicability to smaller domains. Therefore, in future research endeavors involving 

higher spatial resolutions, it becomes necessary to either reduce the domain size or explore 

alternative network architectures (e.g., 2D convolutions) that can handle the increased memory 

demands.  
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