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Abstract

TheM -polynomial of a graphG is defined as
∑

i≤j
mi,j(G)xiyj , wheremi,j(G), i, j ≥ 1,

is the number of edges uv of G such that {dv(G), du(G)} = {i, j}. Knowing the M -
polynomial, formulas for bond incident degree indices (an important subclass of degree-
based topological indices) can be obtained by means of specific operators defined on dif-
ferentiable functions in two variables. This is illustrated on three infinite families of Bethe
cacti. Gutman’s approach for the computation of the coefficients of the M -polynomial
is also recalled and an extension of it is given. This extension is used to determine the
M -polynomial of a two-parameter infinite family of lattice graphs.
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1 Introduction

A large part of chemical graph theory investigates topological indices (in other words, graph

invariants) which are aimed to be chemically relevant. Among these topological indices, degree-

based ones, such as different variants of the Randić index and the Zagreb index, play a central

role. For a general and uniform discussion on the degree-based topological indices see the

survey [12]. For selected recent investigations of (variants of) the Randić index see [5, 6, 20, 21]

and for (variants of) the Zagreb index we refer to [2, 29, 30]. We also refer to [13], where these
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indices are correlated with physico-chemical parameters of octane isomers. For a selection of

recent papers that compute degree-based topological indices see [1, 16, 17, 19, 22, 23, 24, 25]; we

especially emphasize the approach to degree-based topological indices of hexagonal nanotubes

in [27].

In order to simplify the computation of the bond incident degree indices, which form an

utmost important subclass of degree-based topological indices (to be defined in Section 2), and

to stop the production of papers that, for a given family of graphs computes a given topological

index from skratch, the M -polynomial was introduced in [8]. (For a related approach using the

degree sequence polynomial for generalized Zagreb indices, see [9].) In [8] it was proved that the

computation of several degree-based topological indices becomes a routine task, provided that

the corresponding M -polynomial is known. More precisely, the problem more or less reduces to

the one of determining the number mi,j of the edges of a graph whose endpoints are of degrees

i and j. Hence a particular purpose of this paper is to point out to future authors that

(i) the expressions for the mi,js should be derived (or explained) and that

(ii) not much space should be taken up by the computation of the topological indices; they

follow easily either by elementary algebra from the mi,js or by elementary calculus from

the M -polynomial.

Numerous very recent papers that compute degree-based topological indices do not satisfy these

natural requirements. Therefore, in this paper we further explain the approach and demonstrate

its power on three families of Bethe cacti from [3]. These families have been selected in particular

because the determination of the M -polynomial (equivalently of the corresponding mi,js) is not

that straightforward as it is in several earlier cases.

The rest of the paper is organized as follows. In the next section we formally introduce the

M -polynomial and recall how it can be applied to bond incident degree topological indices. In

Section 3 we introduce three families of Bethe cacti, give their recursive definitions, and based on

them determine the M -polynomial in all of the cases. In Section 4 we combine the results from

the previous two sections to give closed formulas for several degree-based topological indices

of the considered Bethe cacti. In the concluding section we recall Gutman’s approach for the

computation of the coefficients of the M -polynomial. We extend this approach by adjoining

Euler’s formula to the original six equalities. We use this extended approach to determine the

M -polynomial of a two-parameter infinite family of lattice graphs, consisting of 5-, 6-, and

8-gonal faces.

We do not give basic definitions of graph theory here; the reader can consult the book [31].
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2 Preliminaries

Let G = (V (G), E(G)) be a graph and let mi,j(G), i, j ≥ 1, be the number of edges uv of G

such that {dv(G), du(G)} = {i, j}, where dv(G) (or dv for short) is the degree of the vertex v

in G. (It seems that the variables mi,j were introduced for the first time in [11].) For instance,

if G is k-regular, then mk,k = |E(G)|, while mi,j(G) = 0 as soon as i 6= k or j 6= k. The

M -polynomial of G is the two variable polynomial defined as

∑

i≤j

mi,j(G)xiyj .

The role of this polynomial for degree-based indices is similar to the role of the Hosoya poly-

nomial [15] (see also [7, 10, 18, 26]) for distance-based invariants.

A degree-based topological index I of a graph G is an arbitrary graph invariant that is defined

as a function of the degrees of the vertices of G. In many important cases, I is of the form

I(G) =
∑

e=uv∈E

f(du, dv) , (1)

where f = f(x, y) is a function to be suitable for chemical applications [12, 14]. The degree-

based topological indices I that are of the form (1) were named bond incident degree indices

in [28]; we follow this terminology here. We will also abbreviate bond incident degree index to

BID index. For instance, the generalized Randić index Rα(G), α 6= 0, is a BID index because it

is obtained by selecting f(x, y) = (xy)α [4]; see Table 1 for additional important BID indices.

As examples of degree-based topological indices that are not BID indices consider the higher

order Randić indices. In this case the summation is taken over all paths in a graph of a given

length instead over all edges as it is done in (1).

From our point of view it is utmost important to note that (1) can be rewritten as

I(G) =
∑

i≤j

mi,j(G)f(i, j) . (2)

Consider the following operators defined on differentiable functions in two variables:

Dx(f(x, y)) = x
∂f(x,y)

∂x
, Dy(f(x, y)) = y

∂f(x,y)
∂y

,

Sx(f(x, y)) =
∫ x

0
f(t,y)

t
dt, Sy(f(x, y)) =

∫ y

0
f(x,t)

t
dt,

J(f(x, y)) = f(x, x), Qα(f(x, y)) = xαf(x, y), α 6= 0.

Now we can recall the following key result from [8].

Theorem 2.1 [8, Theorems 2.1,2.2] Let G be a graph.
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(i) If I(G) =
∑

e=uv∈E

f(du, dv), where f(x, y) is a polynomial in x and y, then

I(G) = f(Dx, Dy)(M(G;x, y))
∣

∣

x=y=1
.

(ii) If I(G) =
∑

e=uv∈E

f(du, dv), where f(x, y) =
∑

i,j∈Z
αijx

iyj, then I(G) can be obtained

from M(G;x, y) using the operators Dx, Dy, Sx, and Sy.

(iii) If I(G) =
∑

e=uv∈E

f(du, dv), where f(x, y) = xrys

(x+y+α)k
, where r, s ≥ 0, , t ≥ 1, and α ∈ Z,

then

I(G) = Sk
x Qα J Dr

xD
s
y(M(G;x, y))

∣

∣

x=1
.

Table 1 contains applications of Theorem 2.1 for some of the main BID indices.

BID index f(x, y) derivation from M(G;x, y)

first Zagreb x+ y (Dx +Dy)(M(G;x, y))
∣

∣

x=y=1

second Zagreb xy (DxDy)(M(G;x, y))
∣

∣

x=y=1

second modified Zagreb 1
xy

(SxSy)(M(G;x, y))
∣

∣

x=y=1

general Randić (α ∈ N) (xy)α (Dα
xD

α
y )(M(G;x, y))

∣

∣

x=y=1

general Randić (α ∈ N) 1
(xy)α (Sα

xS
α
y )(M(G;x, y))

∣

∣

x=y=1

symmetric division index x2+y2

xy
(DxSy +DySx)(M(G;x, y))

∣

∣

x=y=1

harmonic 2
x+y

2Sx J (M(G;x, y))
∣

∣

x=1

inverse sum xy
x+y

Sx J Dx Dy (M(G;x, y))
∣

∣

x=1

augmented Zagreb
(

xy
x+y−2

)3

S3
x Q−2 J D3

xD
3
y (M(G;x, y))

∣

∣

x=1

Table 1: How to compute important BID indices from the M -polynomial

3 Families of Bethe cacti

Balasubramanian [3] considered families Cn, Dn, and En (n ≥ 1) of cactus graphs. Since the

recursive structure of the families Cn and En can be described using the family Dn, we first

consider the family Dn.

3.1 Bethe cacti Dn

The recursive definition of the family of the Bethe cacti Dn, n ≥ 1, is shown in Fig. 1. Here the

black vertex of Dn denotes the attaching vertex, where Dn is attached to Dn+1 (three times).
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The smallest Bethe cactus D1 is shown in the recursive description (Fig. 1), while the next two

Bethe cacti D2 and D3 are drawn in Fig. 2. The general construction should then be clear.

Dn, n ≥ 2D1

Dn−1 Dn−1

Dn−1

Figure 1: Recursive definition of the Bethe cacti Dn

Figure 2: The Bethe cacti D2 and D3

Theorem 3.1 M(D1;x, y) = 4x2y2 and if n ≥ 2, then

M(Dn;x, y) = 2 · 3n−1x2y2 + 2(3n−1 + 1)x2y4 + 2(3n−1 − 2)x4y4 .

Proof. Clearly, M(D1;x, y) = 4x2y2. Assume in the rest that n ≥ 2 and for the initial condition

in the following three recurrences consider D2 from Fig. 2. We first infer that

m2,2(D2) = 6, m2,2(Dn) = 3m2,2(Dn−1), n ≥ 3 ,

which solves as m2,2(Dn) = 2 · 3n−1.

Note further that two 24-edges of Dn−1 become 44-edges in Dn. Consequently,

m2,4(D2) = 8, m2,4(Dn) = 3m2,4(Dn−1)− 6 + 2, n ≥ 3 ,

5



which solves into m2,4(Dn) = 2 · 3n−1 + 2 and

m4,4(D2) = 2, m4,4(Dn) = 3m4,4(Dn−1) + 6 + 2, n ≥ 3 ,

which in turn solves into m4,4(Dn) = 2 · 3n−1 − 4. Putting together the three solutions of the

recurrences, the result follows. �

3.2 Bethe cacti Cn

The recursive definition of the family of the Bethe cacti Cn, n ≥ 1, is shown in Fig. 3. The

vertex at which each of the four copies of Dn−1 is attached to the central 4-cycle, respectively,

is the black vertex of Dn−1 as shown in Fig. 2. The smallest Bethe cactus C1 is thus the 4-cycle

graph, while the Bethe cacti C2 and C3 are drawn in Fig. 4. The general construction should

then be clear.

Cn, n ≥ 2C1

Dn−1 Dn−1

Dn−1

Dn−1

Figure 3: Recursive definition of the Bethe cacti Cn

Theorem 3.2 M(C1;x, y) = 4x2y2 and if n ≥ 2, then

M(Cn;x, y) = 8 · 3n−2x2y2 + 8 · 3n−2x2y4 + 4(2 · 3n−2 − 1)x4y4 .

Proof. Clearly, M(C1;x, y) = 4x2y2. Assume in the rest that n ≥ 2. Recalling from the proof

of Theorem 3.1 that m2,2(Dn) = 2 · 3n−1, we have

m2,2(Cn) = 4m2,2(Dn−1) = 4 · 2 · 3n−2 = 8 · 3n−2 .

Recalling further that m2,4(Dn) = 2 · 3n−1+2 and m4,4(Dn) = 2 · 3n−1− 4, and observing that

two 24-edges of Dn−1 become 44-edges in Cn, we get

m2,4(Cn) = 4m2,4(Dn−1)− 8 = 4(2 · 3n−2 + 2)− 8 = 8 · 3n−2

6



Figure 4: The Bethe cacti C2 and C3

and

m4,4(Cn) = 4m4,4(Dn−1) + 8 + 4 = 4(2 · 3n−2 − 4) + 12 = 8 · 3n−2 − 4 .

Hence the result. �

3.3 Bethe cacti En

The recursive definition of the family of the Bethe cacti En, n ≥ 1, is shown in Fig. 5. Again,

the vertex at which each of the three copies of Dn−1 is attached to the central path on three

vertices, respectively, is the black vertex of Dn−1 as shown in Fig. 2. Thus the smallest Bethe

cactus E1 is the path on three vertices, the next two Bethe cacti E2 and E3 are drawn in Fig. 6.

The general construction should then be clear.

Theorem 3.3 M(E1;x, y) = 2xy2, M(E2;x, y) = 6x2y2+4x2y3+2x2y4+2x3y4, and if n ≥ 3,

then

M(En;x, y) = 2 · 3n−1x2y2 + 2 · 3n−1x2y4 + 6x3y4 + (2 · 3n−1 − 10)x4y4 .

Proof. Clearly,M(E1;x, y) = 2xy2 andM(E2;x, y) = 6x2y2+4x2y3+2x2y4+2x3y4. Assume in

the rest that n ≥ 3. Note that two 24-edges of the middle Dn−1 become 44-edges in En, and that

two 24-edges of an extreme Dn−1 become 34-edges in En. Hence, recalling again from the proof

7



En, n ≥ 2E1

Dn−1 Dn−1

Dn−1

Figure 5: Recursive definition of the Bethe cacti En

Figure 6: The Bethe cacti E2 and E3

of Theorem 3.1 that m2,2(Dn) = 2 ·3n−1, m2,4(Dn) = 2 ·3n−1+2, and m4,4(Dn) = 2 ·3n−1− 4,

we get:

m2,2(En) = 3m2,2(Dn−1) = 3 · 2 · 3n−2 = 2 · 3n−1 ,

m2,3(En) = 3m2,3(Dn−1) = 0 ,

m2,4(En) = 3m2,4(Dn−1)− 6 = 3 · 2 · 3n−2 + 6− 6 = 2 · 3n−1 ,

m3,3(En) = 3m3,3(Dn−1) = 0 ,

m3,4(En) = 3m3,4(Dn−1) + 4 + 2 = 6 ,

m4,4(En) = 3m4,4(Dn−1) + 2 = 3 · 2 · 3n−2 − 12 + 2 = 2 · 3n−1 − 10 .

Putting all this together, the result follows. �
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4 Topological indices of Bethe cacti

Combining Theorem 3.1 with the expressions from Table 1, routine computations yield the

expressions for the selected listed topological indices of Dn, Cn, and En, n ≥ 2. Let us

demonstrate this by computing the symmetric division index of Dn, n ≥ 2. From Table 1 we

know that this reduces to compute (DxSy +DySx)(M(G;x, y))
∣

∣

x=y=1
. Now,

Sx(M(Dn;x, y)) =

∫ x

0

2 · 3n−1t2y2 + 2(3n−1 + 1)t2y4 + 2(3n−1 − 2)t4y4

t

=
3n−1x2y2(x2y2 + 2(y2 + 1))

2
− x4y4 + x2y4 ,

and hence

DySx(M(Dn;x, y)) = y · (2 · 3n−1x2y(x2y2 + 2y2 + 1)− 4x2y3(x2 − 1)) . (3)

Similarly we compute that

DxSy(M(Dn;x, y)) = x · (3n−1xy2(2x2y2 + y2 + 2)− xy4(4x2 − 1)) . (4)

Summing (3) and (4) we get

(DxSy +DySx)(M(G;x, y)) = 3n−1x2y2(4x2y2 + 5y2 + 4)− x2y4(8x2 − 5)

from where we conclude that

(DxSy +DySx)(M(G;x, y))
∣

∣

x=y=1
= 13 · 3n−1 − 3 .

All the other entries from Table 2 are computed along the same lines.

topological index I I(Dn) I(Cn) I(En)

first Zagreb 4 · 3n+1 − 20 16 · 3n − 32 4 · 3n+1 − 38

second Zagreb 56 · 3n−1 − 48 224 · 3n−2 − 64 56 · 3n−1 − 88

second modified Zagreb 7
8 · 3n−1 7

2 · 3n−2 − 1
4

7
8 · 3n−1 − 1

8

symmetric division index 13 · 3n−1 − 3 52 · 3n−2 − 8 13 · 3n−1 − 15
2

harmonic 13
2 · 3n−2 − 1

3 26 · 3n−3 − 1 13
2 · 3n−2 − 11

14

inverse sum 26 · 3n−2 − 16
3 104 · 3n−3 − 8 26 · 3n−2 − 68

7

Table 2: Selected topological indices of Bethe cacti
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5 (An extension of) Gutman’s approach

As already pointed out in [8], an approach to determine the coefficientsmi,j of anM -polynomial

has been proposed by Gutman [11] by considering corresponding linear equations. Let us briefly

recall the approach here, in particular to correct a statement from [8, p. 99] (see below).

Let G be a chemical graph (a graph of maximum degree at most 4) with n vertices and m

edges, and let ni, 1 ≤ i ≤ 4, be the number of vertices of degree i. Clearly, m1,1 = 0 as soon as

the graph has at least three vertices and is connected, while for the the other mi,js we have:

n1 + n2 + n3 + n4 = n (5)

m1,2 +m1,3 +m1,4 = n1 (6)

m1,2 + 2m2,2 +m2,3 +m2,4 = 2n2 (7)

m1,3 +m2,3 + 2m3,3 +m3,4 = 3n3 (8)

m1,4 +m2,4 +m3,4 + 2m4,4 = 4n4 (9)

n1 + 2n2 + 3n3 + 4n4 = 2m. (10)

Equations (5)-(9) are linearly independent, while (10) is a consequence of (5)-(9). (In [8] it is

said that all these equations are linearly independent.) Gutman’s approach is to determine first

some of the mi,js and then the remaining ones can be obtained from the above relations.

We extend Gutman’s approach by adjoining to Equations (5)-(10) Euler’s formula (cf. [31,

p. 201])
∑

mi,j −
∑

ni = f − 2 , (11)

usable whenever dealing with a plane graph whose number of faces f can be determined.

In the rest we are going to use this extended Gutman approach to determine the M -

polynomial of the networks G(p, q), p, q ≥ 1. In Fig. 7 the network G(3, 4) is drawn, from

which the general definition should be clear. In particular, G(1, 1) consists of an 8-gon with

two 6-gons attached at the top and two 6-gons attached at the bottom.

Clearly, vertices of G(p, q) are of degrees 2 and 3, hence we need to determine m2,2 =

m2,2(G(p, q)), m2,3 = m2,3(G(p, q)), and m3,3 = m3,3(G(p, q)).

Note first that

m2,2 = 2(p+ 1) + 4 = 2p+ 6 , (12)

where 2(p+ 1) correspond the side edges with both end-points of degree 2, and 4 corresponds

to the corner edges (with both end-points of degree 2). Furthermore, n2 = 4q+4(p+1)+ 2p=

6p + 4q + 4, where 4q comes from the top and bottom vertices of degree 2, the term 4(p + 1)

comes from the sides, and the term 2p from the almost sides. Equation (7) in our case reduces

10



1

2

p = 3

2 3 q = 4

Figure 7: The lattice G(3, 4)

to 2m2,2 +m2,3 = 2n2, from which we get

m2,3 = 8p+ 8q − 4 . (13)

Equation (8) reduces to m2,3 + 2m3,3 = 3n3 and therefore,

3n3 − 2m3,3 = 8p+ 8q − 4 . (14)

Since the number of 8-gons of G(p, q) is pq, the number of its 6-gons is 2q(p + 1), and the

number of its 5-gons is 2p(q − 1), Equation (11) reduces to

m3,3 − n3 = 5pq − 6p− 2q + 1 . (15)

Solving (14) and (15) yields n3 = 10pq − 4p+ 4q − 2 and

m3,3 = 15pq − 10p+ 2q − 1 . (16)

From Equations (12), (13), and (16) we conclude that

M(G(p, q);x, y) = (2p+ 6)x2y2 + (8p+ 8q − 4)x2y3 + (15pq − 10p+ 2q − 1)x3y3 .

11
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of graphs, Appl. Anal. Discrete Math. 111 (2017) 304–313.
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