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Abstract

In this paper, on one hand, a class of linear codes with one or two weights
is obtained. Based on these linear codes, we construct two classes of con-
stant composition codes, which includes optimal constant composition codes
depending on LVFC bound. On the other hand, a class of constant composition
codes is derived from known linear codes.

Key Words Linear codes, Gauss sum, Constant composition codes

1 Introduction

Let p be an odd prime and q be a power of p. A linear [n, k, d] code over the
finite field Fq is a k-dimensional subspace of Fn

q with minimum Hamming distance
d. Let Ai denote the number of codewords with Hamming weight i in a linear code
C of length n. The weight enumerator of C is defined by

1 + A1X + A2X
2 + · · ·+ AnX

n.

The sequence (1, A1, · · · , An) is called the weight distribution of the code C.
∗Corresponding author.
Email addresses: longyu@mails.ccnu.edu.cn (Long Yu), lxs6682@163.com (Xiusheng Liu).
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Let D = {d1, d2, · · · , dn} ⊆ F
∗
pm, where n, m are positive integers. Let Tr denote

the trace function from Fpm to Fp. We define a linear code of length n over Fp by

CD = {c(a) = (Tr(ad1),Tr(ad2), · · · ,Tr(adn)|a ∈ Fpm}.

This construction is generic in the sense that many classes of known codes could be
produced by selecting the defining setD ⊆ Fpm . So, this technique could be employed
to construct linear codes and cyclic codes in different ways (see [5, 6, 8, 9, 11, 12, 14–
21], and references theirin).

Let S = {s0, · · · , sq−1} be an alphabet of size q. An [n,M, d, (ω0, ω1, · · · , ωq−1)q]
constant composition code(CCC) is a subset C ⊂ Sn of size M , minimal distance d
and where the element si occurs exactly ωi times in each codeword in C.

Constant composition codes were studied already in the 1960s. Both algebraic
and combinatorial constructions of CCCs have been proposed. For further informa-
tion, the reader is referred to [1–4, 13].

The objective of this paper is to construct two classes of CCCs. A new construc-
tions CCCs which are subcodes of linear codes (not cyclic codes) is proposed. On
one hand, we define a class of linear codes CD(α) by a set D(α). The corresponding
exponential sums have close relationship with Gauss sums. By using the technology
of finite field, the parameters of linear codes CD(α) are obtained for all α ∈ Fp (see
Theorem 3.2). Furthermore, we select a kind of set S and construct a class of CCCs
whose parameters is presented (see Theorem 3.3). Some of these CCCs are optimal
in the sense that they meet LFVC bound. On the other hand, a class of CCCs is
constructed from known linear codes (see Theorem 4.2).

2 Preliminaries

Throughout this paper, we let q = pm, where m is a positive integer. Let η and η
be the quadratic multiplicative character on Fq and Fp, respectively. Let χ1(·) = ζ

Tr(·)
p

and χ1 = ζ
(·)
p be the canonical additive characters on Fq and Fp, respectively. We

define η(0) = 0 = η(0), then the quadratic Gaussian sum G(η, χ1) on Fq is defined
by

G(η, χ1) =
∑

x∈Fq

η(x)χ1(x),

and the quadratic Gaussian sum G(η, χ1) on Fp is defined by

G(η, χ1) =
∑

x∈Fp

η(x)χ1(x).

The following results are well known.
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Lemma 2.1. [7] Let the notations be given as above, we have

G(η, χ1) = (−1)m−1
√
−1

(p−1
2

)2m√
q

and

G(η, χ1) =
√
−1

(p−1
2

)2√
p.

Lemma 2.2. [7] Let χ be a nontrivial additive character of Fq, and let f(x) =
a2x

2 + a1x+ a0 ∈ Fq[x] with a2 6= 0. Then
∑

x∈Fq

χ(f(x)) = χ(a0 − a21/(4a2))η(a2)G(η, χ).

The conclusions of the following two lemmas are easy to obtain.

Lemma 2.3. If m is odd, then η(a) = η(a) for any a ∈ Fp. If m is even, then
η(a) = 1 for any a ∈ F

∗
p.

Lemma 2.4. For each α ∈ Fp, we let

Nα = #{x ∈ Fpm |Tr(x) = α}.
Then Nα = pm−1.

We will need the following lemma.

Lemma 2.5. [6] With the notations given as above. For each α ∈ Fp, let

Nα = #{x ∈ Fpm|Tr(x2) = α}.
Then

Nα =



















pm−1, if m is odd and α = 0;

pm−1 − (−1)(
p−1
2

)2 m
2 (p− 1)p

m−2
2 , if m is even and α = 0;

pm−1 + η(−α)(−1)(
p−1
2

)2(m+1
2

)p
m−1

2 , if m is odd and α 6= 0;

pm−1 + (−1)(
p−1
2

)2 m
2 p

m−2
2 , if m is even and α 6= 0.

At the end of this section, we give the LFVC bound of constant composition code.

Proposition 2.6. [10] Assume nd − n2 + ω2
0 + ω2

1 + · · · + ω2
p−1 > 0. Then, an

[n,M, d, (ωβ)β∈Fp
] CCC satisfies the following inequality

M ≤ nd/
(

nd− n2 + ω2
0 + ω2

1 + · · ·+ ω2
p−1

)

.

If
M = nd/

(

nd− n2 + ω2
0 + ω2

1 + · · ·+ ω2
p−1

)

,

then we call CCC is optimal.
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3 The first construction

In this section, we will define a CCC as a subcode of linear code CD(α) defined by
(3.1). Throughout this section, we always assume that m is a positive integer. The
defining set D(α) is given by

D(α) = {d ∈ F
∗
pm|Tr(d) = α},

where α ∈ Fp. Let nα be the length of linear code CD(α), where

CD(α) = {c(a) = (Tr(ad1),Tr(ad2), · · · ,Tr(adnα
)|a ∈ Fpm}. (3.1)

Then by Lemma 2.4, we have the following result.

Lemma 3.1. With the notations given as above, we have

nα =

{

pm−1 − 1, α = 0;
pm−1, otherwise.

Theorem 3.2. Let the notations be given as above.

• When α = 0, CD(0) defined by (3.1) is a [pm−1− 1, m− 1] code over Fp with the
weight distribution as follows.

weight frequency
0 1

pm−2(p− 1) pm−1 − 1

• When α ∈ F
∗
p, CD(α) defined by (3.1) is a [pm−1, m] code over Fp with the weight

distribution as follows.

weight frequency
0 1

pm−1 p− 1
pm−2(p− 1) pm − p

Proof. For a 6= 0, the Hamming weight of codeword c(a) is equal to

wt(c(a)) = nα − 1

p

∑

x∈D(α)

∑

u∈Fp

ζuTr(ax)p

4



= nα − 1

p2

∑

x∈F∗

pm

∑

u∈Fp

ζuTr(ax)p

∑

v∈Fp

ζv(Tr(x)−α)
p

= nα − 1

p2

∑

x∈F∗

pm

(1 +
∑

u∈F∗

p

ζuTr(ax)p )(1 +
∑

v∈F∗

p

ζv(Tr(x)−α)
p )

= nα − 1

p2
(pm − 1)− 1

p2

∑

x∈F∗

pm

∑

v∈F∗

p

ζv(Tr(x)−α)
p − 1

p2

∑

x∈F∗

pm

∑

u∈F∗

p

ζuTr(ax)p

− 1

p2

∑

x∈F∗

pm

∑

u∈F∗

p

ζuTr(ax)p

∑

v∈F∗

p

ζv(Tr(x)−α)
p

= nα − 1

p2
(pm − 1) +

1

p2

∑

v∈F∗

p

ζ−vα
p +

1

p2
(p− 1)

− 1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−vα
p (

∑

x∈Fpm

ζTr((au+v)x)
p − 1). (3.2)

1) If α = 0, from (3.2) and Lemma 3.1, we have

wt(c(a)) = n0 −
1

p2
(pm − 1) +

2

p2
(p− 1)− 1

p2

∑

u∈F∗

p

∑

v∈F∗

p

(
∑

x∈Fpm

ζTr((au+v)x)
p − 1)

= n0 − pm−2 + 1− 1

p2

∑

u∈F∗

p

∑

v∈F∗

p

∑

x∈Fpm

ζTr((au+v)x)
p

= n0 − pm−2 + 1− pm−2#{u, v ∈ F
∗
p|au+ v = 0}

=

{

0, if a ∈ F
∗
p;

pm−2(p− 1), otherwise.

Note that when a ∈ Fp, we have wt(c(a)) = 0. This implies that the dimension of
linear code CD(0) is m− 1.

2) If α 6= 0, then

∑

v∈F∗

p

ζ−vα
p = −1 and

∑

u∈F∗

p

∑

v∈F∗

p

ζ−vα
p = −(p− 1).

From (3.2) and Lemma 3.1, we get

wt(c(a)) = nα − pm−2 − 1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−vα
p

∑

x∈Fpm

ζTr((au+v)x)
p

5



=







nα − pm−2 − pm−2
∑

{u,v∈F∗

p|au+v=0}

ζ−vα
p , if a ∈ F

∗
p;

pm−2(p− 1), otherwise.

=

{

nα − pm−2 − pm−2
∑

v∈F∗

p

ζ−vα
p , if a ∈ F

∗
p;

pm−2(p− 1), otherwise.

=

{

pm−1, if a ∈ F
∗
p;

pm−2(p− 1), otherwise.

Note that when a ∈ F
∗
pm, we have wt(c(a)) > 0. This implies that the dimension of

linear code CD(α) is m.

The Code C′
α is defied by

C′
α = {c(a) | a ∈ Fpm \ Fp}. (3.3)

Denote the size of code C′
α by Mα. It is easy to check

Mα =

{

pm−1 − 1, if α = 0;
pm − p, otherwise.

Theorem 3.3. The code C′
α defined by (3.3) is an [nα,Mα, d, (ωβ)β∈Fp

] CCC, where

1) in the case α = 0:

n0 = pm−1 − 1;

M0 = pm−1 − 1;

ω0 = pm−2 − 1;

ωβ = pm−2 for any β ∈ F
∗
p;

d = pm−2(p− 1);

2) in the case α 6= 0:

nα = pm−1;

Mα = pm − p;

ωβ = pm−2 for any β ∈ Fp;

d = pm−2(p− 1).
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Proof. 1) Note that a 6= 0. If α = 0, for any β ∈ F
∗
p, we have

ωβ =
1

p

∑

x∈D(α)

∑

u∈Fp

ζu(Tr(ax)−β)
p

=
1

p2

∑

x∈F∗

pm

∑

u∈Fp

ζu(Tr(ax)−β)
p

∑

v∈Fp

ζvTr(x)p

=
1

p2

∑

x∈Fpm

∑

u∈Fp

ζu(Tr(ax)−β)
p

∑

v∈Fp

ζvTr(x)p

=
1

p2

∑

u∈Fp

∑

v∈Fp

ζ−uβ
p

∑

x∈Fpm

ζTr((au+v)x)
p

= pm−2 +
1

p2

∑

u∈F∗

p

ζ−uβ
p

∑

x∈Fpm

ζTr(aux)p +
1

p2

∑

v∈F∗

p

∑

x∈Fpm

ζTr(vx)p

+
1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−uβ
p

∑

x∈Fpm

ζTr((au+v)x)
p

= pm−2 +
1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−uβ
p

∑

x∈Fpm

ζTr((au+v)x)
p .

Note that a ∈ Fpm \ Fp, then au+ v 6= 0 for any u, v ∈ F
∗
p. This implies that

∑

x∈Fpm

ζTr((au+v)x)
p = 0.

Thus, we have ωβ = pm−2, for any β 6= 0. Recall n0 = pm−1 − 1, then ω0 = pm−2 − 1.

2) If α 6= 0, for any β ∈ F
∗
p and a 6= 0, then

ωβ =
1

p

∑

x∈D(α)

∑

u∈Fp

ζu(Tr(ax)−β)
p

=
1

p2

∑

x∈F∗

pm

∑

u∈Fp

ζu(Tr(ax)−β)
p

∑

v∈Fp

ζv(Tr(x)−α)
p

=
1

p2

∑

x∈Fpm

∑

u∈Fp

ζu(Tr(ax)−β)
p

∑

v∈Fp

ζv(Tr(x)−α)
p

=
1

p2

∑

u∈Fp

∑

v∈Fp

ζ−uβ
p ζ−vα

p

∑

x∈Fpm

ζTr((au+v)x)
p
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= pm−2 +
1

p2

∑

u∈F∗

p

ζ−uβ
p

∑

x∈Fpm

ζTr(aux)p +
1

p2

∑

v∈F∗

p

ζ−vα
p

∑

x∈Fpm

ζTr(vx)p

+
1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−uβ
p ζ−vα

p

∑

x∈Fpm

ζTr((au+v)x)
p

= pm−2 +
1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−uβ
p ζ−vα

p

∑

x∈Fpm

ζTr((au+v)x)
p .

Note that a ∈ Fpm \ Fp, then au+ v 6= 0 for any u, v ∈ F
∗
p. This leads to

∑

x∈Fpm

ζTr((au+v)x)
p = 0, u, v ∈ F

∗
p.

Therefore, ωβ = pm−2 for any β ∈ F
∗
p. Recall nα = pm−1, then ω0 = pm−1− pm−2(p−

1) = pm−2.

Denote by dH(c(a1), c(a2)) the Hamming distance of c(a1) and (a2). For any
α ∈ Fp, when a1 and a2 run through Fpm \Fp with a1 6= a2, then a1−a2 runs through
F
∗
pm. Therefore, the minimal distance of C′ is the same as that of C, which is obtained

by Theorem 3.2. This completes the proof.

Remark 3.4. When α = 0, the parameters of code C′
0 in above Theorem satisfy

n0d/(n0d− n2
0 + ω2

0 + ω2
1 + · · ·+ ω2

p−1) = M0.

Thus, we obtain a class of optimal CCCs. However, if α ∈ F
∗
p, the parameters of

code C′
α satisfy

nαd− n2
α + ω2

0 + ω2
1 + · · ·+ ω2

p−1 = 0.

Therefore, the LFVC bound cannot be applied to measure the optimality of these
CCCs. Note that for large m, code C′

α has the same minimal distance d and length
nα. In this sense, compared to C′

0 which is optimal, C′
α has more codewords with same

minimal distance d for α ∈ F
∗
p. This implies that C′

α are excellent.

4 The second construction

In this section, we let τ = (−1)(
p−1
2

)2 m
2 , where m is even. The defining set E is

given by
E = {d ∈ F

∗
pm|Tr(d2) = 0}.

The linear code CE is defined as

CE = {c(a) = (Tr(ad1),Tr(ad2), · · · ,Tr(adn)|a ∈ Fpm}. (4.1)

8



Lemma 4.1. [6] Then the code CE defined by (4.1) over Fp has parameters [pm−1 −
τ(p− 1)p

m
2
−1 − 1, m] and weight distribution in the following.

weight frequency
0 1

(p− 1)pm−2 pm−1 − τ(p− 1)p
m
2
−1 − 1

(p− 1)(pm−2 − τp
m
2
−1) (p− 1)

(

pm−1 + τp
m
2
−1
)

Define set
S = {a ∈ Fqm|Tr(a2) 6= 0}

and code
C′
E = {c(a) | a ∈ S}. (4.2)

By Lemma 2.5, we obtain the size of S is pm−pm−1+τ(p−1)p
m
2
−1. In the following,

we give our main result.

Theorem 4.2. The code C′
E defined by (4.2) is a CCC with parameters [n,M, d, (ωβ)β∈Fp

]
where

n = pm−1 − τ(p− 1)p
m
2
−1 − 1;

M = pm − pm−1 + τ(p− 1)p
m
2
−1;

ω0 = pm−2 − 1;

ωβ = pm−2 − τp
m
2
−1 for any β ∈ F

∗
p;

d =

{

(p− 1)pm−2, τ = −1;
(p− 1)(pm−2 − p

m
2
−1), τ = 1.

Proof. It is easy to see

n = pm−1 − τ(p− 1)p
m
2
−1 − 1

and
M = pm − pm−1 + τ(p− 1)p

m
2
−1.

For any β ∈ F
∗
p, we have

ωβ =
1

p

∑

x∈E

∑

u∈Fp

ζu(Tr(ax)−β)
p

=
1

p2

∑

x∈F∗

pm

∑

u∈Fp

ζu(Tr(ax)−β)
p

∑

v∈Fp

ζvTr(x
2)

p

9



=
1

p2

∑

x∈Fpm

∑

u∈Fp

ζu(Tr(ax)−β)
p

∑

v∈Fp

ζvTr(x
2)

p

=
1

p2

∑

u∈Fp

∑

v∈Fp

ζ−uβ
p

∑

x∈Fpm

ζTr(aux+vx2)
p

= pm−2 +
1

p2

∑

u∈F∗

p

ζ−uβ
p

∑

x∈Fpm

ζTr(aux)p +
1

p2

∑

v∈F∗

p

∑

x∈Fpm

ζTr(vx
2)

p

+
1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−uβ
p

∑

x∈Fpm

ζTr(aux+vx2)
p . (4.3)

Since a · u 6= 0, then
∑

x∈Fpm

ζTr(aux)p = 0.

By Lemmas 2.2 and 2.3, together with a ∈ S, we have (4.3) is equal to

ωβ = pm−2 +
p− 1

p2
G(η, χ1) +

1

p2

∑

u∈F∗

p

∑

v∈F∗

p

ζ−uβ
p ζ

Tr(− a2u2

4v
)

p G(η, χ1)

= pm−2 +
p− 1

p2
G(η, χ1) +

1

p2
G(η, χ1)

∑

v∈F∗

p

(
∑

u∈Fp

ζ
−βu−Tr(a2)

4v
u2

p − 1)

= pm−2 +
1

p2
G(η, χ1)

∑

v∈F∗

p

∑

u∈Fp

ζ
−βu−

Tr(a2)
4v

u2

p

= pm−2 +
1

p2
G(η, χ1)

∑

v∈F∗

p

η(−Tr(a2)

4v
)ζ

β2v

Tr(a2)
p G(η, χ1)

= pm−2 +
1

p2
G(η, χ1)G(η, χ1)

∑

v∈F∗

p

η(−1)η(
β2v

Tr(a2)
)ζ

β2v

Tr(a2)
p

= pm−2 +
1

p2
G(η, χ1)G(η, χ1)η(−1)

∑

v∈F∗

p

η(v)ζvp

= pm−2 +
1

p2
G(η, χ1)G

2(η, χ1)η(−1)

= pm−2 − (−1)(
p−1
2

)2η(−1)τp
m
2
−1

= pm−2 − (−1)(
p−1
2

)2(−1)(
p−1
2

)τp
m
2
−1

= pm−2 − τp
m
2
−1.
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Note that n = pm−1 − τ(p− 1)p
m
2
−1 − 1, then

ω0 = pm−2 − 1.

Denote by dH(c(a1), c(a2)) the Hamming distance of c(a1) and (a2). When a1
and a2 run through S with a1 6= a2, then a1 − a2 runs through F

∗
pm. Therefore, the

minimal distance of C′
E is the same as that of CE . By Lemma 4.1, we finish the

proof.

Remark 4.3. We can check that nd − n2 + ω2
0 + ω2

1 + · · · + ω2
p−1 < 0 for τ = ±1.

Therefore, the LFVC bound cannot be applied to measure the optimality of these
CCCs.

In a similar way, we can prove that {c(a)|a ∈ F
∗
pm \ S} is a CCC. However, this

code has only pm−1 − τ(p− 1)p
m−2

2 − 1 codewords which is fewer in comparison with
C′
E .

Corollary 4.4. The code {c(a)|a ∈ F
∗
pm\S} is a CCC with parameters [n,M ′, d, (ωβ)β∈Fp

]
where

n = pm−1 − τ(p− 1)p
m
2
−1 − 1;

M ′ = pm−1 − τ(p− 1)p
m
2
−1 − 1;

ω0 = pm−2 − τ(p− 1)p
m
2
−1 − 1;

ωβ = pm−2 for any β ∈ F
∗
p;

d =

{

(p− 1)pm−2, τ = −1;
(p− 1)(pm−2 − p

m
2
−1), τ = 1.

5 Conclusion

In this paper, we obtained several classes of CCCs with exact parameters. One
of them is optimal based on LFVC bound. However, the other CCCs cannot be
measured by LFVC bound. The optimality of these CCCs is not clear. At the end,
we mention that CCCs over Fp obtained in this paper can be generalized to the case
of CCCs over Fq.
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