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Abstract

Changes in morphology of a polycrystalline material may occur through in-

terface motion under the action of a driving force. An important special case

that is considered in this paper is the thermal grooving that occurs when a grain

boundary intersects the flat surface of a recently solidified metal slab giving rise to

the formation of a thin symmetric groove. In case the transient surface diffusion

is the main forming mechanism this yields a fourth-order time-dependent partial

differential equation with unknown time-dependent surface diffusivity. In order to

determine it, the profile of the free grooving surface at a fixed location is recorded

in time. The grooving boundaries are supported by self-adjoint boundary condi-

tions. We provide sufficient conditions on the input data for which the resulting

coefficient identification problem is proved to be well-posed. Furthermore, we

develop a predictor-corrector finite-difference spline method for obtaining an ac-

curate and stable numerical solution to the nonlinear coefficient identification

problem. Numerical results illustrate the performance of the inversion of both

exact and noisy data.
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1 Introduction

The fourth-order derivative with respect to space occurs in in many physics, chemistry,
biology and engineering applications. For instance, the quantitative theory of thermal
grooving through surface diffusion mechanism [29], the free vibration in beams and
shafts [15], the epitaxial thin film growth [22], and the long range effect of insects dis-
persal [10] lead to fourth-order parabolic partial differential equations. Moreover, in
[39], the fourth-order parabolic equation was utilized to balance the trade-off between
noise removal and edge preservation, and avoid the blocky effects in image process-
ing. In addition, it also appears in the Cahn-Hilliard equation which describes the
evolution of a conserved concentration field during phase separation [9], and in the
Kuramoto–Sivashinsky equation which describes the incipient instabilities in a variety
of physical and chemical systems, [24, 34].

The existence, uniqueness, regularity and asymptotic behavior of the strong or weak
solutions to the fourth-order parabolic equations have been widely investigated, e.g.
[22, 26, 33, 37, 38]. Meanwhile, many numerical schemes have been developed to obtain
the solutions of the fourth-order parabolic equations numerically, such as the finite-
difference method [28], the spline method [4] and the finite-element method [23].

Inverse problems for the higher-order equation of order 2m, m ∈ N
∗,

ut + (−1)ma(x, t)∂2m
x u(x, t) = g(x, t)p+ r(x, t), (x, t) ∈ (0, L)× (0, T ), (1.1)

were considered in [19] and [20] to determine the unknown right-hand side term p(t)
or p(x), respectively from an integral observation. The well-posedness of these inverse
problems were established even in the degenerate case when the coefficient a(x, t) is
allowed to vanish on a zero-measure set.

As a practical application important in characterising the strength and stability of
polycrystalline materials, we consider the study of a groove that forms when a ver-
tical grain boundary meets a horizontal free surface. This particularly occurs in the
thermal treatment and metallization of electronic components of power modules, [16].
As a mathematical model, we consider the fourth-order time-dependent Mullins partial
differential equation governing the thermal grooving by surface diffusion [29, 27], which
is the characteristic mechanism for mass transport at special metal surfaces such as
gold. For other metals such as magnesium, the mechanism of evaporation-condensation
is more appropriate, and new analytical expressions of the groove profile and its depth
have recently been derived by [17] for this case. Surface diffusion is also the principal
mechanism for small-size grooves less than 10µm or for grooving temperatures much
lower than the meting temperature of the material, [30]. As such, understanding and
determining surface diffusion unlock further perspectives for the ion transport mecha-
nism at nanoscale, explaining the wide range of reported lifetimes of metallic conductive
filaments used in resitive switching devices, [36].

The inverse mathematical model corresponding to (1.1) with m = 2, a(x, t) = B(t)
and g(x, t)p + r(x, t) = f(x, t), i.e. (2.3), consists of determining the time-dependent
unknown coefficient B(t) from some additional observations, when all other quantities
and initial and boundary conditions are all specified (Section 2). In Section 3, the ex-
istence of the solution to the inverse problem is achieved by using the Fourier method
and Schauder’s fixed point theorem. In addition, the uniqueness and continuous de-
pendence upon the overdetermined data for the solution can be obtained by using the

2



properties of the Volterra integral equation. Meanwhile, the predictor-corrector method
[11] regularized by the cubic spline function method [35] is developed in Section 4 to
obtain the unknown coefficient numerically. Two one-dimensional numerical examples
are performed and discussed in Section 5. Finally, Section 6 highlights the conclusions
of the paper.

2 Problem formulation

We solve the inverse problem of determining the time-dependent thermal grooving
coefficient (i.e., the surface diffusivity) from the measurement of the profile at an inter-
mediate spatial point. The grooving boundaries are supported by the conditions that
are identical to those of Mullins’ [29], which are self-adjoint boundary conditions.

On the assumption that the surface profile u(x, t) has a small slope, i.e. |ux|< < 1,
the nonlinear equation governing the surface diffusion given by, [29, 7],

ut = −B∂x[(1 + u2
x)

−1/2∂x(uxx/(1 + u2
x)

3/2)], (2.1)

where B is the thermal grooving coefficient, reduces to the fourth-order linear equation

ut = −Buxxxx. (2.2)

More advanced models of thermal grooving by surface diffusion have recently been
revisited in [2]; we can also mention here the fractional sub-diffusion modelling given
by ∂α

t u = −Buxxxx, where α ∈ (0, 1], see [1, 18].
We consider the inverse problem of finding the time-dependent B(t) > 0 for t ∈

[0, T ], together with u(x, t) satisfying



















ut +B(t)uxxxx = f(x, t), (x, t) ∈ (0, 1)× (0, T ] =: ΩT ,

ux|x=0 = 0, uxxx|x=0 = 0, t ∈ [0, T ],

ux|x=1 = 0, uxxx|x=1 = 0, t ∈ [0, T ],

u|t=0 = ϕ(x), x ∈ [0, 1],

(2.3)

along with the measurement of the profile

u(x0, t) = E(t), t ∈ [0, T ] (2.4)

at a fixed point x0 ∈ [0, 1]. In the above model, the boundary x = 0 corresponds to the
origin (centre) of the groove at which the slope and the mass flux must be zero due to
symmetry. The thermal grooving coefficient is given by

B =
Dsγsω

kBT
, (2.5)

where Ds is the surface diffusivity, γs is the surface energy, ω is the atomic volume, kB
is the Boltzmann constant and T is the absolute temperature.

In practice, surface diffusivity is measured using sophisticated methods of charac-
terisation based on radiotracers, field ion microscopy or topographic techniques, see e.g.
[31]. However, if an additional chemical phenomenon/treatment is taking place then,
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the surface diffusion Ds depends on time and becomes unknown. In such a situation,
the measurement of surface diffusivity depending on time becomes infeasible using the
current state-of-the-art experimental procedures, but instead, as proposed in the study
for the first time, one can consider the computational mathematics inversion for its de-
termination. We also mention that, although interesting from the mathematical point
of view, the case when B may depend on x is not very physical in our context and
therefore, it is not considered herein. On the other hand, in a future work, it would
make sense to consider identifying a piecewise constant thermal grooving coefficient
corresponding to multiple grooves.

Let B(t) for t ∈ [0, T ], be unknown belonging to the class of admissible functions

M =
{

B(t) ∈ C[0, T ]; 0 < b ≤ B(t) ≤ b for all t ∈ [0, T ]
}

, (2.6)

where b and b are given fixed positive constants. The assumption B(t) ≥ b > 0
for all t ∈ [0, T ] is physical because the themal grroving coefficient defined by (2.5)
involves material properties, which are strictly positive quantities in normal conditions.
However, in anomalous cases where the surface diffsivity may vanish (e.g. at the initial
time t = 0), the PDE in (2.3) becomes degenerate and the techniques of [19, 20] may
be applied. The solution (B(t), u(x, t)) of the inverse problem (2.3) and (2.4) is sought
in the class M× (C4,1(ΩT ) ∩ C3,0(Ω̄T )).

3 Well-posedness of the solution to the inverse prob-

lem

Corresponding to (2.3), we consider the fourth-order auxiliary spectral problem











y′′′′(x) = λy(x), x ∈ [0, 1],

y′(0) = 0, y′′′(0) = 0,

y′(1) = 0, y′′′(1) = 0,

(3.1)

which is self-adjoint in L2(0, 1). Simple calculations yields the eigenvalues and normal-
ized eigenfunctions

λ0 = 0, λn = (πn)4, y0(x) = 1, yn(x) =
√
2 cos(πnx), n ∈ N

∗,

of the fourth order differential operator.
Let us introduce the following classes of functions

D1[0, 1] ≡
{

y ∈ C5[0, 1] : y′(0) = y′′′(0) = y′(1) = y′′′(1) = 0
}

,

D2[0, 1] ≡
{

y ∈ C9[0, 1] : y, y(4) ∈ D1[0, 1]
}

.

Lemma 3.1. For ϕ(x) ∈ Dk[0, 1], the inequality

∞
∑

n=1

λk
n|ϕn| ≤

1√
6

∥

∥ϕ(4k+1)
∥

∥

L2(0,1)

holds for k = 1 and 2.
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Proof. Using integration by parts, it is clear that

λk
nϕn = (ϕ(4k), yn) = − 1

πn
(ϕ(4k+1), zn), n ∈ N

∗

where zn =
√
2 sin(πnx) and (·, ·) denotes the inner product in L2(0, 1). Then,

∞
∑

n=1

λk
n|ϕn| =

∞
∑

n=1

1

πn
|(ϕ(4k+1), zn)|

≤ 1

π

(

∞
∑

n=1

1

n2

)
1
2
(

∞
∑

n=1

∣

∣(ϕ(4k+1), zn)
∣

∣

2

)
1
2

≤ c
∥

∥ϕ(4k+1)
∥

∥

L2(0,1)

holds with c = 1
π

√

∑∞
n=1

1
n2 = 1√

6
, where we have used the Bessel and Cauchy-Schwartz

inequalities.

The well-posedness of solution of the inverse problem (2.3) and (2.4) is presented in
the following theorems.

Theorem 3.1 (Existence of solution). Denote by ϕn := (ϕ, yn) =
∫ 1

0
ϕ(x)yn(x)dx and

fn(t) :=
∫ 1

0
f(x, t)yn(x)dx for n ∈ N, and let the following conditions be satisfied:

(i) ϕ ∈ D2[0, 1] with cos(πnx0)ϕn ≥ 0 for all n ∈ N, and there exists n0 ∈ N
∗ such

that cos(πn0x0)ϕn0 > 0;

(ii) E ∈ C1[0, T ] with E(t) > ϕ0 +
∫ T

0
f0(τ)dτ , E ′(t) < 0 for all t ∈ [0, T ], and

E(0) = ϕ(x0);
(iii) f ∈ C(ΩT ), and f(·, t) ∈ D2[0, 1] with cos(πnx0)fn(t) ≥ 0 for all t ∈ [0, T ] and

n ∈ N.
Then, the inverse problem (2.3) and (2.4) has a classical solution. Moreover,

u(x, t) ∈ C4,1(Ω̄T ).

Proof. To construct the formal solution of the problem (2.3) for arbitrary B(t) ∈
C[0, T ], we will use the Fourier series in terms of the eigenfunctions yn(x) =

√
2 cos(πnx),

n ∈ N, of the auxiliary spectral problem (3.1):

u(x, t) =
∞
∑

n=0

[

ϕne
−λn

∫
t

0 B(s)ds +

∫ t

0

fn(τ)e
−λn

∫
t

τ
B(s)dsdτ

]

yn(x). (3.2)

Because of the convergence the series
∑∞

n=0 λn|ϕn| and
∑∞

n=0 λn|fn(τ)|, as given by
Lemma 3.1, the function (3.2), its t-partial derivative and xxxx-fourth order partial
derivative are continuous in ΩT . Also, the function (3.2), its x-first and xxx-third order
partial derivative are continuous in ΩT . It means that the function u(x, t) defined by
the series (3.2) belongs to the class C4,1(ΩT ) ∩ C3,0(Ω̄T ) and satisfies (2.3).

It can analogously be shown that the series (3.2) can be termwise continuously
differentiated with t and that the series

ut(x, t) ∼ −
∞
∑

n=0

[

λnϕnB(t)e−λn

∫
t

0 B(s)ds − fn(t) + λnB(t)

∫ t

0

fn(τ)e
−λn

∫
t

τ
B(s)dsdτ

]

yn(x)

(3.3)
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is uniformly convergent. Then, differentiating (2.4) with respect to t and using (3.3)
yield an for B(t) given by:

−
√
2B(t)

∞
∑

n=0

λn

[

ϕne
−λn

∫
t

0 B(s)ds +

∫ t

0

fn(τ)e
−λn

∫
t

τ
B(s)dsdτ

]

cos(πnx0)

=E ′(t)−
∞
∑

n=0

fn(t)yn(x0), t ∈ [0, T ],

or
B = Φ(B), (3.4)

where

Φ(B(t)) =
f(x0, t)− E ′(t)

√
2

∞
∑

n=1

λn

[

ϕne
−λn

∫
t

0 B(s)ds +
∫ t

0
fn(τ)e

−λn

∫
t

τ
B(s)dsdτ

]

cos(πnx0)
, (3.5)

where we have used that
∑∞

n=0 fn(t)yn(x0) = f(x0, t). Let us denote

b =

min
t∈[0,T ]

f(x0, t)− max
t∈[0,T ]

E ′(t)

C
, b =

max
t∈[0,T ]

f(x0, t)− min
t∈[0,T ]

E ′(t)

E(T )− ϕ0 −
∫ T

0
f0(τ)dτ

, (3.6)

where C =

(

‖ϕ(5)‖L2(0,1) +
∫ T

0

∥

∥

∥

∂5f
∂x5 (·, t)

∥

∥

∥

L2(0,1)
dt

)

/
√
6. It is clear from (3.5), (3.6) and

Lemma 3.1 that Φ maps the set M onto itself, i.e., Φ : M → M. Since M is bounded
it follows that Φ is uniformly bounded. According to the Arzela theorem, we establish
the equicontinuity of the function Φ. For this purpose, we take an arbitrary ε > 0 and
establish the existence of δ > 0 such that

|Φ(B(t1))− Φ(B(t2))| < ε for |t1 − t2| < δ. (3.7)

Using (3.5) we have that

|Φ(B(t1))− Φ(B(t2))| ≤
|K(t1)−K(t2)|

N(t2)
+

|K(t1)(N(t1)−N(t2))|
N(t1)N(t2)

, (3.8)

where K(t) = f(x0, t)− E ′(t) and

N(t) =
√
2

∞
∑

n=0

λn

[

ϕne
−λn

∫
t

0 B(s)ds +

∫ t

0

fn(τ)e
−λn

∫
t

τ
B(s)dsdτ

]

cos(πnx0).

By using the inequality

|e−λn

∫
t1
τ

B(s)ds − e−λn

∫
t2
τ

B(s)ds| ≤ λn|t1 − t2|max
t∈[0,T ]

B(t)

we obtain
|N(t1)−N(t2)| ≤ α|t1 − t2|, (3.9)
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where

α =
√
2

[

b̄

∞
∑

n=0

λ2
n

(

|ϕn|+
∫ T

0

|fn(τ)|dτ
)

+
∞
∑

n=0

λn max
t∈[0,T ]

|fn(t)|
]

. (3.10)

On the other hand, since K(t) is continuous in the closed interval [0, T ], for any
ε > 0 there exists δ1 = δ1(ε) > 0 such that

|K(t1)−K(t2)| ≤
ε

2

(

E(T )− ϕ0 −
∫ T

0

f0(τ)dτ

)

(3.11)

for all t1 and t2 in [0, T ] for which |t1 − t2| < δ1. By choosing

δ = min















δ1(ε),

(

E(T )− ϕ0 −
∫ T

0
f0(τ)dτ

)2

α

(

max
t∈[0,T ]

f(x0, t)− min
t∈[0,T ]

E ′(t)

)

ε

2















from (3.8) we obtain (3.7). This shows that the operator Φ is uniformly bounded
and equicontinuous. Using Schauder’s fixed point theorem, we obtain that a solution
B(t) ∈ M of the equation (3.4) exists. Substituting it in (3.2), we find that function
u = u(x, t) possesses the extra smoothness u ∈ C4,1(ΩT ).

Remark 3.1. The conditions (i)-(iii) of Theorem 3.1 are conditions on the input data
ϕ, f and E for arbitrary fixed x0 ∈ [0, 1]. Some of these conditions are consistency
conditions, e.g. E(0) = ϕ(x0) in (ii), that need to be satisfied to avoid non-physical
discontinuous solutions. Others, like (i) and (iii) are sufficient conditions that ensure
the positivity of the physical grooving coefficient B(t). Moreover, since we use the
Fourier series method we expect these conditions to appear in terms of the Fourier
coefficients. Probably the more difficult to ensure are the remaining conditions E ′ < 0
and E > ϕ0 +

∫ T

0
f0(τ)dτ ; however, for a given fixed arbitrary point x0 ∈ [0, 1] we can

easily check that the following input that satisfy all the conditions of Theorem 3.1 (and
also of Theorem 3.2) (see also section 5.1 for another example):
(i) if x0 = 0, then consider ϕ(x) = 1 + cos(πn0x), f(x, t) = et cos(πn0x) and E(t) =
1− e−t for any fixed n0 ∈ N

∗;
(ii) if x0 ∈ (0, 1], then consider ϕ(x) = 1 − cos(πn0x), f(x, t) = −et cos(πn0x) and
E(t) = 1 + e−t cos(πn0x0) for n0 = [2.5/x0] + 1, where [·] denotes the integer part of a
number.

Theorem 3.2 (Uniqueness of solution). Let the following conditions be satisfied:
(iv) ϕ ∈ D1[0, 1];
(v) E ∈ C1[0, T ] with E(0) = ϕ(x0);
(vi) f ∈ C(ΩT ) and f(·, t) ∈ D1[0, 1] with f(x0, t) 6= E ′(t) for all t ∈ [0, T ].

Then, the solution of the inverse problem (2.3) and (2.4) is unique.

Proof. Assume that there exist two solutions (Bi(t), u
(i)(x, t)), i = 1, 2, of the inverse

problem (2.3) and (2.4). For the difference of these solutions B(t) = B2(t) − B1(t),
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u(x, t) = u(1)(x, t)− u(2)(x, t), we obtain the following problem:


















ut +B1(t)uxxxx = B(t)u
(2)
xxxx, (x, t) ∈ ΩT ,

ux|x=0 = 0, uxxx|x=0 = 0, t ∈ [0, T ],

ux|x=1 = 0, uxxx|x=1 = 0, t ∈ [0, T ],

u|t=0 = 0, x ∈ [0, 1].

(3.12)

Using that u(x0, t) = 0 for t ∈ [0, T ], from the first equation in (3.12) we obtain

B1(t)uxxxx(x0, t) = B(t)u(2)
xxxx(x0, t). (3.13)

Using the Fourier series representation of the solution of (3.12), identity (3.13) recasts
as

√
2B1(t)

∞
∑

n=0

λn cos(πnx0)

∫ t

0

B(τ)
(

u(2)
xxxx

)

n
(τ)e−λn

∫
t

τ
B1(s)dsdτ = B(t)u(2)

xxxx(x0, t), t ∈ [0, T ],

where (u
(2)
xxxx)n(t) := (u

(2)
xxxx, yn).

Using that u
(2)
xxxx(x0, t) = f(x0,t)−E′(t)

B2(t)
6= 0 for all t ∈ [0, T ], from assumption (vi),

we can represent (3.14) in the form of a homogeneous Volterra integral equation for B,
namely,

B(t) +

∫ t

0

K(t, τ)B(τ)dτ = 0, (3.14)

where

K(t, τ) = −
√
2B1(t)B2(t)

∑∞
n=0 λn cos(πnx0)(u

(2)
xxxx)n(τ)e

−λn

∫
t

τ
B1(s)ds

f(x0, t)− E ′(t)
. (3.15)

The kernel K(t, τ) is continuous. In view of the properties of Volterra integral
equations of the second kind, see e.g. [8], equation (3.14) has only the trivial solution
B(t) ≡ 0. Therefore, B(t) ≡ 0 for all t ∈ [0, T ], and u(x, t) ≡ 0 for all (x, t) ∈ ΩT , as a
solution of problem (3.12).

Remark 3.2. The identification of the thermal grooving coefficient B(t) from the mea-
surement of the total mass/energy

∫ 1

0

u(x, t)dx = E(t), t ∈ [0, T ], (3.16)

can also be considered, but this determination is not unique. This can easily be seen
as follows. By integrating (3.2) with respect to x from 0 to 1 we obtain that E(t) =
ϕ0 +

∫ t

0
f0(τ)dτ is a necessary condition for the component u(x, t) of solution to the

inverse problem (2.3) and (3.16) to exist. However, because this condition does not
depend on B(t), it does not contain any information to enforce in order to obtain the
uniqueness of the component B(t) of solution.

Remark 3.3. In the thermal grooving process proposed in [3], the grooving boundary
conditions are zero flux and zero curvature at the root, namely ux|x=0 = 0, uxx|x=0 = 0.
In this case, the relevant spectral problem is not self-adjoint for any given boundary
condition at x = 1, and the classical theory [12] of expansion in terms of eigenfunctions
for self-adjoint differential operators is not applicable.

8



Justified by the assumptions (ii) and (iii), let us introduce the following class for
the additional data (2.4):

Σ :=

{

E ∈ C1[0, T ]; 0 < M0 ≤ E(t)− ϕ0 −
∫ t

0
f0(τ)dτ,

0 < M1 ≤ f(x0, t)− E ′(t) ≤ M2 for all t ∈ [0, T ]

}

, (3.17)

where M0, M1 and M2 are given fixed positive constants. Then, it is easy to show from
(3.4) and (3.5) that

b :=
M1√

2
∑∞

n=0 λn

[

|ϕn|+
∫ T

0
|fn(τ)|dτ

] ≤ B(t) ≤ M2

M0

= b̄. (3.18)

The continuous dependence upon the overdetermined data E ∈ Σ of the solution of
the inverse problem (2.3) and (2.4) is given in the following theorem.

Theorem 3.3 (Continuous dependence upon the overdetermined data). Let the as-
sumptions (i)-(iii) of Theorem 3.1 be satisfied. Then the solution of the inverse problem
(2.3) and (2.4) depends continuously upon the measurement data E in Σ.

Proof. Let (Bi(t), u
(i)(x, t)), i = 1, 2, be the solutions of problem (2.3) and (2.4) with

same initial data ϕ(x) and free term f(x, t), but different measurement data E1(t)
and E2(t) from the class Σ. For the difference of these solutions B(t) := B2(t) −
B1(t), u(x, t) := u(1)(x, t) − u(2)(x, t), we obtain the problem same as (3.12) with the
overdetermination condition

u(x0, t) = E1(t)− E2(t), t ∈ [0, T ]. (3.19)

Differentiating in (3.19) and using the first equation in (3.12) we obtain

E ′
1(t)− E ′

2(t) + B1(t)uxxxx(x0, t) = B(t)u(2)
xxxx(x0, t). (3.20)

Using the Fourier series representation of the solution of (3.12), identity (3.20) recasts
as

E ′
1(t)− E ′

2(t) +
√
2B1(t)

∞
∑

n=0

λn cos(πnx0)

∫ t

0

B(t)
(

u(2)
xxxx

)

n
(τ)e−λn

∫
t

τ
B1(s)dsdτ

=B(t)u(2)
xxxx(x0, t). (3.21)

As in obtaining (3.14), using that u
(2)
xxxx(x0, t) =

f(x0,t)−E′

2(t)

B2(t)
, we can represent (3.21) in

the form of an inhomogeneous Volterra integral equation for B, namely,

B(t) +

∫ t

0

K(t, τ)B(τ)dτ = g(t), (3.22)

where K(t, τ) is given by (3.15) and

g(t) =
(E ′

1(t)− E ′
2(t))B2(t)

f(x0, t)− E ′
2(t)

.
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The kernel K(t, τ) and the free term g(t) are continuous. In view of the properties of
Volterra integral equations of the second kind, equation (3.22) has a unique continuous
solution B(t). On using (2.3), (3.3), (3.15) and (3.17), the estimates

|K(t, τ)| ≤ 2b̄2

M1

∞
∑

n=0

λ2
n

[

|ϕn|+
∫ T

0

|fn(s)|ds
]

, (3.23)

|g(t)| ≤ b̄

M1

‖E1 − E2‖C1[0,T ], (3.24)

hold for the kernel K(t, τ) and the free term g(t). Then, using (3.22) we obtain

|B(t)| ≤ b̄

M1

‖E1 − E2‖C1[0,T ] +
2b̄2

M1

∫ t

0

∞
∑

n=0

λ2
n

[

|ϕn|+
∫ T

0

|fn(s)|ds
]

|B(τ)|dτ.

Then, by using the integral form of Gronwall’s inequality, we obtain that B(t) = B2(t)−
B1(t) satisfies the stability estimate

‖B1 − B2‖C[0,1] ≤
b̄

M1

emT‖E1 − E2‖C1[0,T ] (3.25)

where

m =
2b̄2

M1

∞
∑

n=0

λ2
n

[

|ϕn|+
∫ T

0

|fn(s)|ds
]

.

This inequality implies the continuous dependence of B upon the overdetermined data
E. Using a similar proof to the above it can we can prove that u, which is given in
(3.2), depends continuously upon the data.

The stability estimate (3.25) is valid for smooth measured data (2.4) in C1[0, T ].
However, in practice such data is seldom smooth and therefore, the inverse problem is
likely to be ill-posed if the data (2.4) is in C[0, T ] only and not in C1[0, T ]. In such a
situation, regularization is necessary, as described in the next section.

4 Predictor-corrector method

In this section, we consider the numerical reconstruction of the unknown thermal groov-
ing coefficient B(t) using the predictor–corrector method [11] combined with the finite-
difference scheme. We first establish the finite-difference method (FDM) to obtain the
numerical solution of the direct initial-boundary value problem:



















ut +B(t)uxxxx = f(x, t), (x, t) ∈ (0, L)× (0, T ],

ux|x=0 = η0(t), uxxx|x=0 = γ0(t), t ∈ [0, T ],

ux|x=1 = η1(t), uxxx|x=1 = γ1(t), t ∈ [0, T ],

u(x, 0) = ϕ(x), x ∈ [0, L],

(4.1)

where B(t) > 0 is known, and the main dependent variable to be determined is the
function u(x, t). The problem (4.1) becomes (2.3), which is investigated in this work,

10



if L = 1 and the boundary conditions satisfy η0(t) = η1(t) = γ0(t) = γ1(t) = 0 for
t ∈ [0, T ].

Divide the domain [0, L]× [0, T ] into the following uniform grid:

xi = (i− 1)h, i = 1, I, tk = (k − 1)τ, k = 1, K,

where h = L
I−1

and τ = T
K−1

are space and time mesh step sizes, and denote the values
of u(x, t), B(t), f(x, t), η1(t), η1(t), γ0(t), γ1(t) and ϕ(x) at the node (i, k) by:

uk
i = u(xi, tk), fk

i = f(xi, tk), Bk = B(tk), ϕi = ϕ(xi),

ηk0 = η0(tk), ηk1 = η1(tk), γk
0 = γ0(tk), γk

1 = γ1(tk).

Defining

f
k− 1

2
i =

fk
i + fk−1

i

2
, δtu

k− 1
2

i =
uk
i − uk−1

i

τ
,

δ2xu
k
i =

uk
i−1 − 2uk

i + uk
i+1

h2
, δ4xu

k
i = δ2x(δ

2
xu

k
i ),

we obtain the Crank-Nicolson scheme for the initial-boundary value problem (4.1), as
follows:























δtu
k− 1

2
i + 1

2
Bk− 1

2 (δ4xu
k
i + δ4xu

k−1
i ) = f

k− 1
2

i , i = 2, I − 1, k = 2, K,

uk
1 =

1
3
(4uk

2 − uk
3 − 2hηk0), k = 2, K,

uk
I =

1
3
(4uk

I−1 − uk
I−2 + 2hηk1), k = 2, K,

u1
i = ϕi, i = 1, I.

(4.2)

The centred finite-difference formula for five-point stencils (of order O(h2)) approxi-
mating the fourth-order derivative term δ4xu

k
i for i = 4, I − 3 and k = 2, K, in (4.2) can

be written as

δ4xu
k
i =δ2x(δ

2
xu

k
i ) = δ2x

(

1

h2
(uk

i−1 − 2uk
i + uk

i+1)

)

=
1

h4
(uk

i−2 − 4uk
i−1 + 6uk

i − 4uk
i+1 + uk

i+2). (4.3)

Other time-stepping algorithms based on the method of lines, [25], as well as the three-
point biharmonic compact operator, [14], or the orthogonal spline collocation, [5, 6],
methods could be interesting alternatives.

For i = 3, i = I − 2 and k = 2, K, using the second and third identities of (4.2), we
have

δ4xu
k
3 =

1

h4
(uk

1 − 4uk
2 + 6uk

3 − 4uk
4 + uk

5) =
1

h4

(

−8

3
uk
2 +

17

3
uk
3 − 4uk

4 + uk
5 −

2h

3
ηk0

)

,

(4.4)

δ4xu
k
I−2 =

1

h4
(uk

I−4 − 4uk
I−3 + 6uk

I−2 − 4uk
I−1 + uk

I )

=
1

h4

(

uk
I−4 − 4uk

I−3 +
17

3
uk
I−2 −

8

3
uk
I−1 +

2h

3
ηk1

)

. (4.5)
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We now consider δ2xu
k
1 before giving the formulation of δ4xu

k
2. Using Taylor’s expansion,

we have

uxx(h, t) = uxx(0, t) + huxxx(0, t) +
h2

2
uxxxx(0, t) + o(h2),

uxx(2h, t) = uxx(0, t) + 2huxxx(0, t) +
4h2

2
uxxxx(0, t) + o(h2),

which implies that

uxx(0, t) =
1

3
(4uxx(h, t)− uxx(2h, t)− 2hγ0(t)) + o(h2).

Then, we can obtain that

δ2xu
k
1 =

1

3
(4δ2xu

k
2 − δ2xu

k
3 − 2hγk

0 ). (4.6)

For i = 2 and k = 2, K, using (4.6) we get

δ4xu
k
2 =δ2x(δ

2
xu

k
2) =

1

h2
(δ2xu

k
1 − 2δ2xu

k
2 + δ2xu

k
3) =

2

3h2
(−δ2xu

k
2 + δ2xu

k
3 − hγk

0 )

=
2

3h4
(−uk

1 + 3uk
2 − 3uk

3 + uk
4 − h3γk

0 )

=
2

3h4

(

5

3
uk
2 −

8

3
uk
3 + uk

4 +
2h

3
ηk0 − h3γk

0

)

, (4.7)

and similarly, for i = I − 1 and k = 2, K, we have

δ2xu
k
I =

1

3
(4δ2xu

k
I−1 − δ2xu

k
I−2 + 2hγk

1 ),

and

δ4xu
k
I−1 =

1

h2
(δ2xu

k
I−2 − 2δ2xu

k
I−1 + δ2xu

k
I ) =

2

3h2
(δ2xu

k
I−2 − δ2xu

k
I−1 + hγk

1 )

=
2

3h4
(uk

I−3 − 3uk
I−2 + 3uk

I−1 − uk
I + h3γk

1 )

=
2

3h4

(

uk
I−3 −

8

3
uk
I−2 +

5

3
uk
I−1 −

2h

3
ηk1 + h3γk

1

)

. (4.8)

Using (4.3)–(4.5), (4.7) and (4.8), the difference equation (4.2) can be reformulated
as a (I − 2)× (I − 2) system of linear algebraic equations of the form



















Ak−1uk = Bk−1uk−1 + Fk−1, k = 2, K,

uk
1 =

1
3
(4uk

2 − uk
3 − 2hηk0), k = 2, K,

uk
I =

1
3
(4uk

I−1 − uk
I−2 + 2hηk1), k = 2, K,

u1 = [ϕ1, ϕ2, · · · , ϕI ]
T ,

(4.9)
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where uk =
[

uk
2, u

k
3, · · · , uk

I−1

]T
, and the (I−2)× (I−2) tridiagonal matrices Ak−1 and

Bk−1 and the vector Fk−1 are given by

Ak−1 =

























1 + 10
9
rk−

1
2 −16

9
rk−

1
2

2
3
rk−

1
2

−8
3
rk−

1
2 1 + 17

3
rk−

1
2 −4rk−

1
2 rk−

1
2

rk−
1
2 −4rk−

1
2 1 + 6rk−

1
2 −4rk−

1
2

. . . . . . . . . . . .

rk−
1
2 −4rk−

1
2 −4rk−

1
2 rk−

1
2

rk−
1
21 + 17

3
rk−

1
2 −8

3
rk−

1
2

−16
9
rk−

1
2 1 + 10

9
rk−

1
2

























,

Bk−1 =

























1− 2rk−
1
2 2rk−

1
2 −2

3
rk−

1
2

4rk−
1
2 1− 6rk−

1
2 4rk−

1
2 −rk−

1
2

−rk−
1
2 4rk−

1
2 1− 6rk−

1
2 4rk−

1
2 −rk−

1
2

. . . . . . . . . . . . . . .

−rk−
1
2 4rk−

1
2 1− 6rk−

1
2 4rk−

1
2 −rk−

1
2

−rk−
1
2 4rk−

1
2 1− 6rk−

1
2 4rk−

1
2

−2
3
rk−

1
2 2rk−

1
2 1− 2rk−

1
2

























,

and

Fk−1 =



























τf
k− 1

2
2 + 2

3
rk−

1
2uk−1

1 − 4
9
hrk−

1
2ηk0 +

2h3

3
rk−

1
2 (γk

0 + γk−1
0 )

τf
k− 1

2
3 − rk−

1
2uk−1

1 + 2
3
hrk−

1
2ηk0

τf
k− 1

2
4

· · ·
τf

k− 1
2

I−3

τf
k− 1

2
I−2 − rk−

1
2uk−1

I − 2
3
hrk−

1
2ηk1

τf
k− 1

2
I−1 + 2

3
rk−

1
2uk−1

I + 4
9
hrk−

1
2ηk1 − 2h3

3
rk−

1
2 (γk

1 + γk−1
1 )



























,

where rk−
1
2 = τ

2h4B
k− 1

2 = τ
4h4 (B

k +Bk−1).

Theorem 4.1 ([32]). If u ∈ C6,3((0, L) × (0, T )), the finite-difference scheme (4.9) to
the initial-boundary value problem (4.1) is convergent with order O(τ 2 + h2).

Now, we construct the predicting-correcting mechanism to recover the unknown
thermal grooving coefficient B(t). Taking x = x0, then (2.3) can be written as

E ′(t) + B(t)uxxxx(x0, t) = f(x0, t),

which formally yields that

B(t) =
f(x0, t)− E ′(t)

uxxxx(x0, t)
. (4.10)

Then, the finite-difference approximation of Bk = B(tk) is

Bk =
fk
I0
− Ek

t

(uxxxx)kI0
=

(fk
I0
− Ek

t )h
4

uk
I0−2 − 4uk

I0−1 + 6uk
I0
− 4uk

I0+1 + uk
I0+2

, k = 1, K, (4.11)
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where I0 =
x0

h
+ 1 and Ek

t = E ′(tk).

Clearly, B1 can be computed by the values of the initial data ϕi for i = I0 − 2, I0 + 2.
Suppose that B1, · · · , Bk and uk

i for k = 1, K − 1 and i = 1, I, have been determined,
we now present the algorithm [13, 21] to reconstruct Bk+1, k = 1, K − 1, as follows:

Step 1. Since the time step τ is small, choose initial guesses Bk+1(0) and u
k+1(0)
i of

Bk+1 and un+1
i as Bk+1(0) = Bk and u

k+1(0)
i = uk

i , k = 1, K − 1, i = 1, I.
Step 2. Calculate the update of Bk+1 as

Bk+1(1) =
(fk+1

I0
− Ek+1

t )h4

u
k+1(0)
I0−2 − 4u

k+1(0)
I0−1 + 6u

k+1(0)
I0

− 4u
k+1(0)
I0+1 + u

k+1(0)
I0+2

.

Step 3. Compute the update of uk+1 by solving the following system of linear
algebraic equations:











u
k+1(1)
i

−u
k+1(0)
i

τ
+ Bk+1(1)+Bk+1(0)

4
(δ4xu

k+1(1)
i + δ4xu

k+1(0)
i ) = f

k+ 1
2

i , i = 2, I − 1,

u
k+1(1)
1 = 1

3
(4u

k+1(1)
2 − u

k+1(1)
3 − 2hηk+1

0 ),

u
k+1(1)
I = 1

3
(4u

k+1(1)
I−1 − u

k+1(1)
I−2 + 2hηk+1

1 ).

Step 4. Compute the difference between two iterations, i.e. |Bk+1(1)−Bk+1(0)|, and
choose an arbitrarily small positive constant γ, for instance γ = h3, as the prescribed
tolerance. If

|Bk+1(1) − Bk+1(0)| < γ (4.12)

then take Bk+1 = Bk+1(1) and uk+1
i = u

k+1(1)
i , i = 1, I, and go to Step 5. Else go to

Step 2 with the new initial guesses Bk+1(0) = Bk+1(1) and u
k+1(0)
i = u

k+1(1)
i , i = 1, I.

Step 5. End.
For exact input data E(t), its first-order derivative can be approximated by the

difference quotients as follows:

E1
t =

E2 − E1

τ
, EK

t =
EK − EK−1

τ
, Ek

t =
Ek+1 − Ek−1

2τ
, k = 2, K − 1. (4.13)

However, in practice the measured data is noisy and given by a noisy perturbation Eǫ

of E satisfying
‖Eǫ − E‖C(0,T ) ≤ ǫ. (4.14)

In such case, the finite difference (4.13) can only be employed for exact input data or
when ǫ is very small. In general, the process of numerical differentiating of a noisy
function is known to be ill-posed. In order to obtain a stable derivative of Eǫ(t),
formulae (4.13) need to be employed with τ = O(

√
ǫ). Alternatively, as described

below, we can employ the cubic spline function method [35] to stably approximate the
derivative of noisy input data Eǫ.

The natural cubic spline s(t) approximating the function E(t) satisfies the following
conditions:

(a) s(t) is a twice differentiable natural cubic spline of time mesh grid tk, i.e.

s(tk+) = s(tk−), s′(tk+) = s′(tk−), s′′(tk+) = s′′(tk−), k = 2, K − 1,

where s(tk+) = limt→tk+ s(t) and s(tk−) = limt→tk− s(t).

14



(b) s′′(0) = s′′(T ) = 0.
(c) The third-order derivative of s(t) at tk satisfies the following conditions:

s′′′(tk+)− s′′′(tk−) =
τ

α
(Eǫ(tk)− s(tk)), k = 2, K − 1,

where α > 0 is the regularization parameter. The details of calculating s(t) are pre-
sented in [13].

Theorem 4.2 ([35]). Suppose that E(t) ∈ H2(0, T ). Then, the function s(t) obtained
above satisfies the following estimate:

‖s′ − E ′‖L2(0,T ) ≤
(

2τ + 4α1/4 +
τ

π

)

‖s′′‖L2(0,T ) + τ
α1/2

ǫ
+

2ǫ

α1/2
.

If α = ǫ2, then

‖s′ − E ′‖L2(0,T ) ≤
(

2τ + 4
√
ǫ+

τ

π

)

‖s′′‖L2(0,T ) + τ + 2
√
ǫ.

Remark 4.1. The above theorem indicates that the regularization parameter α can be
chosen as ǫ2, and for the derivative of the noisy input data Eǫ(t) we can use instead
s′(t). For exact data, formula (4.13) is employed instead of the cubic spline function
method.

5 Numerical results and discussions

In this section, we perform a couple of one-dimensional experiments to numerically re-
construct the time-dependent thermal grooving coefficient B(t), based on the predictor-
corrector method described in Section 4.

The measured data Eǫ in (4.14) is simulated by adding Gaussian noise to the true
data E(t)

Eǫ = E + σ × random(1), (5.1)

where σ is the standard deviation given by σ = p
100

×maxt∈[0,T ] |B(t)|, p% denotes the
percentage of noise, and random(1) generates random values from a normal distribution
with zero mean and unit standard deviation.

We consider examples with the terminal time T = 1, x0 = 0.2, and the mesh size
h = τ = 0.01. The tolerance γ = h3 = 10−6 is used to stop the iteration of the
predictor-corrector method in (4.12).

5.1 Example 1

We take the input data as

f(x, t) = 0, ϕ(x) = cos(πx), E(t) = e−t cos
(π

5

)

.

One can easily check that the conditions of Theorems 3.1 and 3.2 are satisfied and hence
the existence of a unique solution guaranteed. In fact, the analytical solution to the
inverse problem (2.3) and (2.4) is given by

B(t) =
1

π4
, u(x, t) = e−t cos(πx). (5.2)
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For noiseless data p = 0, Figures 1 and 2 illustrate the convergence of the numerical
solutions for B(t) and u(x, t) toward the corresponding analytical solutions (5.2), as
the mesh size h = τ decreases from 0.1 to 0.05 and to 0.01. The corresponding l2-
accuracy errors between the numerical and analytical solutions for the thermal grooving
coefficient

‖Bnumerical − Banalytical‖l2 =

√

√

√

√

1

K

K
∑

k=1

[(Bk)numerical − (Bk)analytical]2, (5.3)

and the l∞ for the profile u(x, t) have been obtained as {3.6×10−4, 1.8×10−4, 4.2×10−5}
and {9.9× 10−3, 5.8× 10−3, 1.3× 10−3} for h = τ{0.1, 0.05, 0.01}, respectively. To test
stability the data (5.1) is further perturbed by p% = 2% random noise. The numerically
obtained results for h = τ = 0.01 are presented in Figure 3. For p = 2, the l2-accuracy
error for B(t) has been obtained as 8.4×10−4. Overall, the numerical results presented
in Figures 1-3 indicate that the numerically obtained solution are stable and accurate.

5.2 Example 2

We take the input data as

f(x, t) = (π2 + et) cos(πx), ϕ(x) = cos(πx), E(t) = et cos
(π

5

)

.

One can easily check that the conditions of Theorem 3.2 are satisfied and hence the
uniqueness of solution is guaranteed. In fact, the analytical solution to the inverse
problem (2.3) and (2.4) is given by

B(t) =
e−t

π2
, u(x, t) = et cos(πx). (5.4)

Figure 4 illustrates the comparison between the analytical solution (5.4) and the nu-
merical results computed by the predictor-corrector method with the cubic spline ap-
proximation and the formula (4.13), for p% = 1% noise. From this figure it can be
seen that the predictor-corrector method regularized by the cubic spline approximation
achieves stable and accurate results, while unstable oscillations are obtained using the
finite-difference formula (4.13) with τ = 0.01.

The numerical solutions to the thermal grooving coefficient B(t) for p = 0 and p = 2
noise are presented in Figure 5 in comparison with the analytical solution (5.4). For
more clarity, we have calculated the l2-accuracy errors (5.3) between the numerical and
analytical solutions for the thermal grooving coefficient and obtained the small values
{0.87, 2.0} × 10−3 for p% ∈ {0, 2}% noise, respectively. These small errors and the
illustration depicted in Figure 5 indicate that the numerically obtained solutions are
stable and accurate.
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5.3 Example 3

A more severe test of recovering a discontinuous thermal grooving coefficient is investi-
gated in this example. We take the input data as

f(x, t) = 2t cos(πx) + (1 + t2)π2 cos(πx)×
{

2, t ∈
[

1
4
, 3
4

]

1, otherwise
,

ϕ(x) = cos(πx), E(t) = (1 + t2) cos
(π

5

)

.

One can easily check that the conditions of Theorem 3.2 are satisfied and hence the
uniqueness of solution is guranteed. In fact, the analytical solution to the inverse
problem (2.3) and (2.4) is given by

B(t) =
1

π2
×
{

2, t ∈
[

1
4
, 3
4

]

1, otherwise
, u(x, t) = (1 + t2) cos(πx). (5.5)

Figure 6 illustrates the good agreement between the analytical and numerical results
for both noiseless data p = 0 and noisy data p% = 2%. The l2-accuracy errors (5.3)
are obtained as {1.1, 4.6}×10−3 for p% ∈ {0, 2}%, respectively. These small errors and
the illustration depicted in Figure 6 indicate that the numerically obtained solutions
are stable and reasonably accurate.

6 Conclusion

Thermal grooving by transient surface diffusion has been considered. In this case, the
surface diffusivity depends on time and is unknown. We have shown that within this
model the time-dependent thermal grooving coefficient B(t) defined by (2.5) can be
uniquely identified from the time-history recording of the profile at a single spatial
location. The inverse problem is also known to be well-posed for smooth ideal input
profile data. However, since in practice the measured data is always contaminated
with noise then some sort of regularization needs to be performed to filter the noise
and make the process of numerical differentiation well-posed. This has been achieved
by a cubic spline technique. Numerical results presented and discussed for a couple
of test examples involving smooth and discontinuous coefficients show that accurate
and stable solutions have been achieved. Future work will consider a zero-curvature
boundary condition uxx = 0, [3], instead of uxxx = 0 at the root x = 0, for which the
resulting spectral problem is no more self-adjoint for any boundary condition at x = 1.
In this case, the Fourier method in terms of eigenvalues and associated eigenfunctions
needs further investigation.
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Figure 1: The exact and numerical solutions for the thermal grooving coefficient B(t)
for noiseless data p = 0 and various mesh sizes h = τ ∈ {0.01, 0.05, 0.1}, for Example
1.
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Figure 2: The exact and numerical solutions for the surface profile u(x, t) for noiseless
data p = 0 and various mesh sizes h = τ ∈ {0.01, 0.05, 0.1}, for Example 1.
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Figure 3: The exact and numerical solutions for the thermal grooving coefficient B(t)
for p = 0 and p% = 2% noise and h = τ = 0.01, for Example 1.
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Figure 4: Comparison of the numerical solutions obtained by the predictor-corrector
method with the cubic spline method (with h = τ = 0.01) and the finite-difference
formula (4.13), with τ = 0.01, for p% = 1% noise, for Example 2.
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Figure 5: The exact and numerical solutions for the thermal grooving coefficient B(t)
for p = 0 and p% = 2% noise and h = τ = 0.01, for Example 2.
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Figure 6: The exact and numerical solutions for the thermal grooving coefficient B(t)
for p = 0 and p% = 2% noise and h = τ = 0.01, for Example 3.
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